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Abstract
In this paper, by utilizing the comparison theorem of the differential equation and
constructing a suitable Lyapunov functional, we consider the existence of almost
periodic solutions to a discrete time ratio-dependent Leslie system with feedback
control. Some sufficient conditions for the existence of positive almost periodic
solutions for the model are obtained. An example is given to illustrate the
effectiveness of the main results.
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1 Introduction
In , Leslie considered the following differential equation (see []):{

ẋ(t) = x(t)[a – bx(t)] – p(x)y(t),
ẏ(t) = y(t)[e – y(t)

x(t) ],

where x(t) and y(t) stand for the population (the density) of the prey and the predator at
time t, respectively, and p(x) is the so-called predator functional response to prey.
Recently,more andmore obvious evidences of biology and physiology show that inmany

conditions, especially when the predators have to search for food (consequently, have to
share or compete for food), a more realistic and general predator-prey system should rely
on the theory of ratio-dependence, this theory is confirmed by lots of experimental re-
sults (see [, ]). A ratio-dependent Leslie system with the functional response of Holling-
Tanner type is as follows:{

ẋ(t) = x(t)[a – bx(t)] – p( x(t)y(t) )y(t),
ẏ(t) = y(t)[e – y(t)

x(t) ],

where p(x) has the same means as before. In particular, Wang et al. [] considered a ratio-
dependent Leslie predator-prey model with feedback controls as follows:⎧⎪⎪⎨

⎪⎪⎩
ẋ(t) = x(t)[b(t) – a(t)x(t) – c(t)x(t)x(t)

h(t)x(t)+x

 (t)

– d(t)u(t)],

ẋ(t) = x(t)[g(t) – f (t) x(t)x(t)
– p(t)u(t)],

u̇i(t) = αi(t) – βi(t)ui(t) + γi(t)xi(t),
(.)
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where x(t) and x(t) stand for the population (the density) of the prey and the predator
at time t, respectively, ui(t) (i = , ) are control variables, the prey grows logistically with
growth rate a(t) and carries capacity a

b in the absence of predation. The parameter f (t) is
a measure of food quality that the prey provides, which is converted to the predator birth.
Under the assumption that the coefficients of the above system are all T-periodic func-
tions, by applying Mawhin’s continuation theorem and constructing a suitable Lyapunov
function, they obtained sufficient conditions which guarantee the existence of a unique
globally attractive positive T-periodic solution to system (.).
Feedback control is the basic mechanism by which systems, whether mechanical, elec-

trical, or biological, maintain their equilibrium or homeostasis. During the last decade, a
series ofmathematical systems have been established to describe the dynamics of feedback
control systems, we refer to [–]. Furthermore, in recent research on species, dynamics
of the Leslie system has important significance, see [–, , , –] and the references
therein for details. Moreover, since the discrete time models can also provide efficient
computational models of continuous models for numerical simulations, it is reasonable
to study discrete time models governed by difference equations. Motivated by the above
idea, we consider a discrete ratio-dependent Leslie system with feedback control:

⎧⎪⎪⎨
⎪⎪⎩
x(n + ) = x(n) exp{b(n) – a(n)x(n) – c(n)x(n)x(n)

h(n)x(n)+x

 (n)

– d(n)u(n)},
x(n + ) = x(n) exp{g(n) – f (n) x(n)x(n)

– p(n)u(n)},
�ui(n) = –αi(n)ui(n) + βi(n)xi(n), i = , ,

(.)

where xi(n) (i = , ) denote the density of the prey and the predator at time n, respectively.
ui(n), i = ,  are control variables, b(n), a(n), c(n), d(n), g(n), f (n), p(n), h(n), αi(n), βi(n),
γi(n) (i = , ) are all almost ω-periodic functions of n; h(n) denotes the constant of cap-
turing half-saturation. For more biological background of system (.), one could refer to
[] and the references cited therein.
To the best of our knowledge, though many works have been done for population dy-

namic systems with feedback controls, most of the works deal with continuous timemod-
els. For more results about the existence of almost periodic solutions of a continuous time
system, we can refer to [] and the references cited therein. There are few works that con-
sider the existence of almost periodic solutions for a discrete time population dynamic
model with feedback controls. On the other hand, in fact, it is more realistic to consider
almost periodic systems than periodic systems. On the existence and stability of almost
periodic sequence solutions for the discrete biological models, some results are found in
the literature, we refer to [, , , ]. Therefore, our main purpose of this paper is to
study the existence and uniqueness of almost periodic solutions for model (.).
Throughout this paper, we assume that

(H) {a(n)}, {b(n)}, {c(n)}, {d(n)}, {h(n)}, {g(n)}, {f (n)}, {p(n)}, {αi(n)} and {βi(n)} for i = , 
are bounded nonnegative almost periodic sequences such that

 < aL < a(n) < aM ,  < bL < b(n) < bM ,  < cL < c(n) < cM ,
 < dL < d(n) < dM ,  < hL < h(n) < hM ,  < gL < g(n) < gM ,
 < pL < p(n) < pM ,  < f L < f (n) < f M ,  < αL

i < αi(n) < αM
i (i = , ),

 < βL
i < βi(n) < βM

i (i = , ).

Here, for any bounded sequence {θ (n)}, θM = supn∈N {θ (n)} and θL = infn∈N {θ (n)}. Further-
more, we need the following assumptions:
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(H) gL – pMu∗
 > ;

(H) bL – dMu∗
 > .

By the biological meaning, we focus our discussion on the positive solution of model (.).
So it is assumed that the initial conditions of model (.) are of the form

xi() > , ui() > , i = , . (.)

One can easily show that all the solutions of model (.) with the initial condition (.) are
defined and remain positive for all n ∈ Z

+.
The organization of this paper is as follows. In Section , we give some basic definitions

and necessary lemmas which will be used in later sections. In Section , the persistence
of model (.) is established. In Section , based on the persistence result, we show the
existence and uniform asymptotic stability of an almost periodic solution to model (.).
An example is given in Section .

2 Definitions and lemmas
Now let us state several definitions and lemmas which will be useful in proving the main
result of this section.

Definition . [] A sequence x : Z → R is called an almost periodic sequence if the
ε-translation number set of x,

E{ε,x} = {
τ ∈ Z :

∣∣x(n + τ ) – x(n)
∣∣ < ε,∀n ∈ Z

}
,

is a relatively dense set in Z for all ε > ; that is, for any given ε > , there exists an integer
l(ε) >  such that each interval of length l(ε) contains an integer τ ∈ E{ε,x} such that

∣∣x(n + τ ) – x(n)
∣∣ < ε, ∀n ∈ Z,

τ is called the ε-translation number of x(n).

Definition . [] Let f : Z × D → R
k , where D is an open set in R

k , f (n,x) is said to
be almost periodic in n uniformly for x ∈ D, or uniformly almost periodic for short, if for
any ε >  and any compact set S in D, there exists a positive integer l(ε,S) such that any
interval of length l(ε,S) contains an integer τ for which

∣∣f (n + τ ,x) – f (n,x)
∣∣ < ε, ∀n ∈ Z,x ∈ S,

τ is called the ε-translation number of f (n,x).

Lemma . [] {x(n)} is an almost periodic sequence if and only if for any sequence {h′
k} ⊂

Z there exists a subsequence {hk} ⊂ {h′
k} such that x(n + hk) converges uniformly on n ∈ Z

as k → ∞. Furthermore, the limit sequence is also an almost periodic sequence.

In [], Zhang and Zheng consider the following almost periodic delay difference system

x(n + ) = f (n,xn), n ∈ Z+, (.)

http://www.advancesindifferenceequations.com/content/2014/1/214
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where f : Z+ × CB → R, CB = {φ ∈ C : ‖φ‖ < B}, C = {φ : [–τ , ]Z → R} with ‖φ‖ =
sups∈[–τ ,]Z |φ(s)|, f (n,φ) is almost periodic in n uniformly for φ ∈ CB and is continuous
in φ, while xn ∈ CB is defined as xn(s) = x(n + s) for all s ∈ [–τ , ]Z.
The product system of (.) is in the form of

x(n + ) = f (n,xn), y(n + ) = f (n, yn). (.)

A discrete Lyapunov functional of (.) is a functional V : Z+ × CB × CB → R+ which is
continuous in its second and third variables. Define the difference of V along the solution
of system (.) by

�V(.)(n,φ,ψ) = V
(
n + ,xn+(n,φ), yn+(n,ψ)

)
–V (n,φ,ψ),

where (x(n,φ), y(n,ψ)) is a solution of system (.) through (n, (φ,ψ)), φ,ψ ∈ CB.

Lemma . [] Suppose that there exists a Lyapunov functional V (n,φ,ψ) satisfying the
following conditions:
() a(|φ() –ψ()|)≤ V (n,φ,ψ) ≤ b(‖φ –ψ‖), where a,b ∈P with

P = {a : [,∞)→ [,∞) | a() =  and a(u) is continuous, increasing in u}.
() |V (n,φ,ψ) –V (n,φ,ψ)| ≤ L(‖φ – φ‖ + ‖ψ –ψ‖), where L >  is a constant.
() �V(.)(n,φ,ψ) ≤ –γV (n,φ,ψ), where  < γ <  is a constant.

Moreover, if there exists a solution x(n) of (.) such that ‖xn‖ ≤ B∗ < B for all n ∈ Z+, then
there exists a unique uniformly asymptotically stable almost periodic solution p(n) of (.)
which satisfies |p(n)| ≤ B∗ for all n ∈ I. In particular, if f (n,φ) is periodic of period ω, then
(.) has a unique uniformly asymptotically stable periodic solution of period ω.

3 Persistence
In this section, we establish a persistence result for system (.).

Proposition . Assume that (H) holds. For every solution (x(n),x(n),u(n),u(n)) of
system (.),

lim sup
n→∞

xi(n) < x∗
i , lim sup

n→∞
ui(n) < u∗

i (i = , ), (.)

where x∗
 =

exp(bM–)
aL , x∗

 =
x∗
 +ε

f L exp(gM – ), u∗
i =

βM
i x∗

i
αLi

(i = , ).

Proof We first present two cases to prove that

lim sup
n→∞

x(n) < x∗
 . (.)

Case . By the first equation of system (.), from (H) and (.), we have

x(n + ) = x(n) exp
{
b(n) – a(n)x(n) –

c(n)x(n)x(n)
h(n)x(n) + x (n)

– d(n)u(n)
}

< x(n) exp
{
b(n) – a(n)x(n) – d(n)u(n)

}
= x(n) exp

{
b(n)

[
 –

a(n)x(n)
b(n)

–
d(n)u(n)

b(n)

]}
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/214
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Then there exists l ∈N such that x(l + ) ≥ x(l). So, – a(l)x(l)
b(l)

– d(l)u(l)
b(l)

≥ . Hence,
x(l) ≤ bL ≤ bM , and

x(l + ) < xl(l) exp
{
b(l) – a(l)x(l) – d(l)u(l)

}
≤ x(l) exp

{
bM

[
 –

a(l)x(l)
b(l)

]}

≤ exp(bM – )
aL

:= x∗
 . (.)

Here we used maxx∈R x exp(r( – x)) = exp(r – )/r for r > . We claim that x(n) ≤ x∗
 for

n≥ l.
In fact, if there exists an integer m ≥ n +  such that x(m) > x∗

 , and letting m be the
least integer between n and m such that x(m) = maxn≤n≤m–{x(n)}, then m ≥ n + 
and x(m) > x(m – ), which implies x(m) < x∗

 < x(m). This is impossible. The claim
is proved.
Case . x(n) ≥ x(n + ) for n ∈ N. In particular, limn→∞ x(n) exists, denoted by x̄.

We claim that x̄ < x∗
 . By way of contradiction, assume that x̄ > x∗

 . Taking limn→∞( –
a(n)x(n)

b(n) – d(n)u(n)
b(n) ) = . Noting that bM ≤ x∗

 , therefore

 –
a(n)x(n)

b(n)
–
d(n)u(n)

b(n)
≤  –

a(n)x(n)
b(n)

≤  –
x̄
bM

<  (.)

for n ∈N , which is a contradiction. This proves the claim.
Similarly to the above analysis, next we prove lim supn→∞ x(n) < x∗

.
Case . By the second equation of system (.), from (H) and (.), we can obtain

x(n + ) = x(n) exp
{
g(n) –

f (n)x(n)
x(n)

– p(n)u(n)
}

= x(n) exp
{
g(n)

[
 –

f (n)x(n)
g(n)x(n)

–
p(n)u(n)

g(n)

]}
. (.)

Then there exists l ∈N such that x(l +)≥ x(l). So, – f (l)x(l)
g(l)x(l)

– p(l)u(l)
g(l)

≥ . Hence,
x(l) ≤ gL ≤ gM , and

x(l + ) < x(l) exp
[
g(l) –

f (l)x(l)
g(l)x(l)

]

≤ x(l) exp
{
gM

[
 –

f (l)x(l)
g(l)x(l)

]}

≤ x∗
 + ε

f L
exp

(
gM – 

)
:= x∗

. (.)

In fact, if there exists an integer m ≥ n +  such that x(m) > x∗
, and letting m be the

least integer between n and m such that x(m) = maxn≤n≤m–{x(n)}, then m ≥ n + 
and x(m) > x(m – ), which implies x(m) < x∗

 < x(m). This is impossible. The claim
is proved.
Case . x(n) ≥ x(n + ) for n ∈ N. In particular, limn→∞ x(n) exists, denoted by x̄.

We claim that x̄ < x∗
. By way of contradiction, assume that x̄ > x∗

. Taking limn→∞( –

http://www.advancesindifferenceequations.com/content/2014/1/214
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f (n)x(n)
g(n)x(n)

– p(n)u(n)
g(n) ) = . Noting that gM ≤ x∗

, therefore

 –
f (n)x(n)
g(n)x(n)

–
p(n)u(n)

g(n)
≤  –

f (n)x(n)
g(n)x(n)

≤  –
f Lx̄

gM(x∗
 + ε)

<  (.)

for n ∈N , which is a contradiction. This proves the claim.
Similarly, by the third and fourth equations of system (.), for all i = , , we can get

ui(n) =
n–∏
i=

(
 – αi(i)

)[
ui() +

n–∑
i=

βi(i)xi(i)∏i
j=( – αi(j))

]

≤ (
 – αL

i
)n[ui() + n–∑

i=

βi(i)xi(i)∏i
j=( – αi(j))

]
+ βM

i
(
x∗
i + ε

) n–∑
i=n

n–∏
j=i+

(
 – αi(j)

)

≤ (
 – αL

i
)n[ui() + n–∑

i=

βi(i)xi(i)∏i
j=( – αi(j))

]
+ βM

i
(
x∗
i + ε

) n–∑
i=n

(
 – αL

i
)n–i–.

Since  < αL
i < , we can find a positive number di such that  – aLi = e–di . Using Stolz’s

theorem, we have

lim
n→∞

n–∑
i=n

(
 – αL

i
)n–i– = lim

n→∞

∑n–
i=n e

di(i+)

edin
=


 – e–di

=

αL
i
.

Hence

lim
n→∞ supui(n) ≤ βM

i (x∗
i + ε)

αL
i

.

By the arbitrariness of ε, limn→∞ supui(n) ≤ u∗
i is valid. So the proof of Proposition . is

complete. �

Proposition . Assume that (H)-(H) hold, where x∗
i and u∗

i (i = , ) are the same in
Proposition .. Then

lim inf
n→∞ xi(n) > xi∗, lim inf

n→∞ ui(n) > ui∗, i = , , (.)

where

x∗ =� exp

{
bL

[
 –

dMu∗


bL
–
aM + cM

hMx∗


bL

]}
,

x∗ =
(gL – pMu∗

)x∗


f M
exp

[
gL

(
 –

f Mx∗


gLx∗

–
pMu∗


gL

)]
, ui∗ =

βL
i x∗

i

αM
i

.

Proof Firstly, we also present two cases to prove that

lim inf
n→∞ x(n) ≥ x∗.

http://www.advancesindifferenceequations.com/content/2014/1/214
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For any ε >  which satisfies (bL – dMu∗
 )/(aM + cM/(hM)x∗

) >  and (gL – pMu∗
)x∗

 /f M > ,
according to Proposition ., there exists n ∈ N such that

xi(n) ≤ x∗
i + ε, ui(n) ≤ u∗

i + ε, i = ,  (.)

for n≥ n.
Case . There exists a positive integer l ≥ n such that x(l + ) ≤ x(l). Note that for

n≥ n, we have

x(n + )

= x(n) exp
{
b(n) – a(n)x(n) –

c(n)x(n)x(n)
h(n)x(n) + x (n)

– d(n)u(n)
}

> x(n) exp
{
b(n) – a(n)x(n) –

c(n)x(n)
h(n)x(n)

– d(n)u(n)
}

= x(n) exp
{
b(n)

[
 –

a(n)x(n)
b(n)

–
d(n)u(n)

b(n)
–
a(n) + c(n)

h(n)x(n)

b(n)
x(n)

]}

≥ x(n) exp
{
b(n)

[
 –

a(n)x(n) + d(n)(u∗
 + ε)

b(n)
–
a(n) + c(n)

h(n)(x∗
+ε)

b(n)
x(n)

]}
. (.)

In particular, with n = l, we obtain

 –
dM(u∗

 + ε)
b(l)

–
aM + cM

(hM)(x∗
+ε)

b(l)
x(l)≤ ,

which implies that x(l)≥ bL–dM(u∗
 +ε)

aM+ cM
(hM )(x∗+ε)

:=�. Then

x(l + ) > � exp

{
bL

[
 –

dM(u∗
 + ε)
bL

–
aM + cM

hM(x∗
+ε)

bL

]}
:= xε . (.)

We claim that x(n) ≥ xε for n≥ l.
By way of contradiction, assume that there exists p ≥ l such that x(p) < xε . Then

p ≥ l+, let p ≥ l+ be the smallest integer such that x(p) < xε . Then x(p –) < x(p).
The above argument produces that x(p) ≥ xε , a contradiction. This proves the claim.
Case . We assume that x(n + ) ≥ x(n) for all large n ∈ N. Then limn→∞ x(n) exists,

denoted by x. We claim that x ≥ �. By way of contradiction, assume that x < �. Take

lim
n→∞

(
 –

a(n) + c(n)
h(n)x(n)

b(n)
x(n) –

d(n)u(n)
b(n)

)
= ,

which is a contradiction since

lim
n→∞

(
 –

a(n) + c(n)
h(n)x(n)

b(n)
x(n) –

d(n)u(n)
b(n)

)

≥  –
aM + cM

hM(x∗
+ε)

b(n)
x(n) –

dM(u∗
 + ε)

b(n)
> .

http://www.advancesindifferenceequations.com/content/2014/1/214
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Noting that x∗
 ≥ bM ≥ bL, we see that � ≥ xε , and limε→ xε = x∗. We can easily see

that limn→∞ infx(n)≥ x∗ holds.
The same as in the above equality analysis, we will obtain the result from the second

equation of system (.).
Case . By the second equation of system (.), (H)-(H) and (.), we can obtain

x(n + ) = x(n) exp
{
g(n) –

f (n)x(n)
x(n)

– p(n)u(n)
}

> x(n) exp
{
g(n) –

f (n)x(n)
x∗
 + ε

– p(n)
(
u∗
 + ε

)}
.

= x(n) exp
{
g(n)

[
 –

f (n)x(n)
g(n)(x∗

 + ε)
–
p(n)(u∗

 + ε)
g(n)

]}

≥ x(n) exp
{
g(n)

[
 –

f Mx(n)
g(n)(x∗

 + ε)
–
pM(u∗

 + ε)
g(n)

]}
. (.)

In particular with n = l, we have

 –
f Mx(l)

g(l)(x∗
 + ε)

–
pM(u∗

 + ε)
g(l)

≤ , (.)

which implies that

x(l) ≥ (g(l) – pM(u∗
 + ε))(x∗

 + ε)
f (l)

:=�.

Then

x(l + ) >� exp

[
gL

(
 –

f M(x∗
 + ε)

g(l)(x∗
 + ε)

–
pM(u∗

 + ε)
g(l)

)]
. (.)

Let xε = (g(l) – pM(u∗
 + ε))(x∗

 + ε)/f (l) exp[gL( – f M(x∗
 + ε)/g(l)(x∗

 + ε) – pM(u∗
 +

ε)/g(l))]. We claim that x(n)≥ xε for n≥ n.
By way of contradiction, assume that there exists q ≥ l such that x(q) < xε . Then

q ≥ l + , let q ≥ l + , let q ≥ l +  be the smallest integer such that x(q) < xε .
Then x(q – ) < x(q). The above argument produces that x(q) ≥ xε , a contradiction.
This proves the claim.
Case . We assume that x(n + ) > x(n) for n ∈ N. Then limn→∞ x(n) exists, denoted

by x. We claim that

x ≥ (g(l) – pM(u∗
 + ε))(x∗

 + ε)
f (l)

.

By way of contradiction, assume that x < �. Take limn→∞( – f (n)x(n)
g(n)x(n)

– p(n)u(n)
g(n) ) = ,

which is a contradiction, since

lim inf
n→∞

(
 –

f (n)x(n)
g(n)x(n)

–
p(n)u(n)

g(n)

)
≥  –

f Mx
gL(x∗

 + ε)
–
pM(u∗

 + ε)
gL

> . (.)

http://www.advancesindifferenceequations.com/content/2014/1/214
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Noting that x∗
 ≥ gM ≥ gL, we see that � ≥ xε , and limε→ xε = x∗. We can easily see

that lim infn→∞x(n)≥ x∗ holds. Thus, for any ε >  small enough, there exists a positive
integer n, such that xi(n) ≥ xi∗ – ε >  for n≥ n.
The proof of lim infn→∞ ui(n) > ui∗, i = , , is very similar to that of Proposition  in [].

Here we omit the details. �

Now the main result of this section is obtained as follows.

Theorem . Suppose that assumptions (H)-(H) hold. Then system (.) is persistent.

4 Existence of a unique almost periodic solution
According to Lemma ., we first prove that there exists a bounded solution of system
(.) and then construct an adaptive Lyapunov functional for system (.).
The next results tells that there exists a bounded solution of system (.).

Proposition . Assume that (H)-(H) hold, then (S) �= ∅.

Proof It is now possible to show by an inductive argument that system (.) leads to

⎧⎪⎪⎨
⎪⎪⎩
x(n) = x() exp

∑n–
l= {b(l) – a(l)x(l) – c(l)x(l)x(l)

h(l)x(l)+x

 (l)

– d(l)u(l)},
x(n) = x() exp

∑n–
l= {g(l) – f (l) x(l)x(l)

– p(l)u(l)},
ui(n) = ui() –

∑n–
l= {αi(l)ui(l) – βi(l)xi(l)}, i = , .

(.)

From Proposition . and Proposition ., any solution X(n) = (x(n),x(n),u(n),u(n)) of
system (.) with initial condition (.) satisfies system (.). Hence, for any ε > , there
exists n. If n is sufficiently large, we have

xi∗ – ε ≤ xi(n) ≤ x∗
i + ε, ui∗ – ε ≤ ui(n) ≤ u∗

i + ε, ∀n≥ n, i = , . (.)

Let {tn} be any integer-valued sequence such that tn → ∞ as n → ∞. We claim that
there exists a subsequence of {tn}, we still denote it by {tn}, such that

xi(n + tn) → x∗
i (n) (.)

uniformly in n on any finite subset B of Z as n → ∞, where B = {α,α, . . . ,αm}, αh ∈ Z

(h = , , . . . ,m) andm is a finite number.
In fact, for any finite subset B ⊂ Z, when α is large enough, tn + αh > n, h = , , . . . ,m.

So

xi∗ – ε ≤ xi(n + tn) ≤ x∗
i + ε, ui∗ – ε ≤ ui(n + tn) ≤ u∗

i + ε. (.)

That is, {xi(n + tn)}, {ui(n + tn)} are uniformly bounded for large enough n.
Similarly, for a ∈ B, we can choose a subsequence {tn} of {tn} such that {xi(a + tn)},

{ui(a + tn)} uniformly converges on Z
+ for n large enough.

Repeating this procedure, for am ∈ B, we obtain a subsequence {tmn } of {tm–
n } such that

{xi(am + tmn )}, {ui(am + tmn )} uniformly converges on Z
+ for n large enough.

http://www.advancesindifferenceequations.com/content/2014/1/214
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Nowpick the sequence {tmn }which is a subsequence of {tn}, we still denote it by {tn}, then
for all n ∈ B, we have xi(n + tn) → x∗

i (n), ui(n + tn) → u∗
i (n) uniformly in n ∈ B as p→ ∞.

By the arbitrariness of B, the conclusion is valid.
Since a(n), b(n), c(n), d(n), h(n), g(n), p(n), f (n), αi(n) and βi(n) are almost periodic se-

quences, for the above sequence {τp}, τp → ∞ as p → ∞, there exists a subsequence still
denoted by {τp} (if necessary, we take a subsequence) such that

a(n + τp)→ a(n), b(n + τp) → b(n), c(n + τp) → c(n),

d(n + τp) → d(n), g(n + τp) → g(n), f (n + τp) → f (n),

p(n + τp) → p(n), αi(n + τp) → αi(n), βi(n + τp) → βi(n), i = , ,

as p → ∞ uniformly on Z
+. For any σ ∈ Z, we can assume that τp + σ ≥ n for p large

enough. Let n ≥  and n ∈ Z
+, an inductive argument of system (.) from τp + σ to n +

τp + σ leads to
⎧⎪⎪⎨
⎪⎪⎩
x(n + τp + σ ) = x(τp + σ ) exp

∑n+τp+σ–
l=τp+σ {b(l) – a(l)x(l) – c(l)x(l)x(l)

h(l)x(l)+x

 (l)

– d(l)u(l)},
x(n + τp + σ ) = x(τp + σ ) exp

∑n+τp+σ–
l=τp+σ {g(l) – f (l) x(l)x(l)

– p(l)u(l)},
ui(n + τp + σ ) = ui(τp + σ ) –

∑n+τp+σ–
l=τp+σ {αi(l)ui(l) – βi(l)xi(l)}.

(.)

Then, for i = , , we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x(n + τp + σ ) = x(τp + σ ) exp
∑n+σ–

l=σ {b(l + τp) – a(l + τp)x(l + τp)
× c(l+τp)x(l+τp)x(l+τp)

h(l+τp)x(l+τp)+x (l+τp)
– d(l + τp)u(l + τp)},

x(n + τp + σ ) = x(τp + σ ) exp
∑n+σ–

l=σ {g(l + τp) – f (l + τp)
x(l+τp)
x(l+τp)

– p(l + τp)u(l + τp)},
ui(n + τp + σ ) = ui(τp + σ ) –

∑n+σ–
l=σ {αi(l + τp)ui(l + τp) – βi(l + τp)xi(l + τp)}.

(.)

Let p → ∞, for any n≥ ,
⎧⎪⎪⎨
⎪⎪⎩
x∗
 (n + σ ) = x∗

 (σ ) exp
∑n+σ–

l=σ {b(l) – a(l)x∗
 (l) –

c(l)x∗
 (l)x

∗


h(l)x∗

(l)+x∗


(l)

– d(l)u∗
 (l)},

x∗
(n + σ ) = x∗

(σ )
∑n+σ–

l=σ exp{g(l) – f (l) x
∗
(l)
x∗
 (l)

– p(l)u∗
(l)},

u∗
i (n + σ ) = u∗

i (σ ) –
∑n+σ–

l=σ {αi(l)u∗
i (l) – βi(l)x∗

i (l)}.
(.)

By the arbitrariness of σ , X∗ = (x∗
 (n),x∗

(n),u∗
 (n),u∗

(n)) is a solution of system (.) on Z
+.

It is clear that  < xi∗ ≤ x∗
i (n) ≤ x∗

i ,  < ui∗ ≤ u∗
i (n) ≤ u∗

i , for all n ∈ Z
+, i = , . So  �= ∅.

Proposition . is valid. �

The main results of the following theorem concern the existence of a uniformly asymp-
totically stable almost periodic sequence solution of system (.).

Theorem . Assume that (H)-(H) hold. Suppose further that (H):  < � < , here � =
min{�,�,�,�}, where

� = aLx∗ –
cMx∗

 x∗


[hLx∗ + x∗]
– dM –

cMx∗
 x∗



[hLx∗ + x∗]

–
cMx∗

(hMx∗
 + x∗

 )
[hLx∗ + x∗]

– aMdMx∗
 – aMx∗
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–
aMcMx∗

 x∗


[hLx∗ + x∗]
–
dMcMx∗

 x∗


[hLx∗ + x∗]
–
f Mx∗

 x∗


x∗
–
f Mx∗

x∗


x∗

–
pMf Mx∗

 x∗


x∗
– βM

 x∗
 –

(
 – αL


)
x∗
β

M
 – aMx∗

 ,

� =
f Lx∗x∗

x∗


–
cMx∗

 (hMx∗
 + x∗

 )

[hLx∗ + x∗]
–
cMx∗

(hMx∗
 + x∗

 )
[hLx∗ + x∗]

– pM

–
aMcMx∗

 (hMx∗
 + x∗

 )

[hLx∗ + x∗]
–
dMcMx∗

 (hMx∗
 + x∗

 )

[hLx∗ + x∗]
–
f Mx∗

 x∗


x∗

–
f Mx∗

x∗


x∗
–
pMf Mx∗

 x∗


x∗
– βM

 x∗
 –

(
 – αL


)
x∗
β

M
 ,

� = αL
 – dM – dM – aMdM – αL

 –
(
 – αL


)
βM


and

� = αL
 – pM – pM – αL

 –
(
 – αL


)
βM
 ,

then there exists a unique uniformly asymptotically stable almost periodic solution X(n) =
(x(n),x(n),u(n),u(n)) of system (.) which is bounded by  for all n ∈ Z+.

Proof Let pi(n) = lnxi(n). From (.), we have

p(n + ) = p(n) + b(n) – a(n)ep(n)

– c(n)
ep(n)

h(n)ep(n) + ep(n)
– d(n)u(n),

p(n + ) = p(n) + g(n) – f (n)
ep(n)

ep(n)
– p(n)u(n),

�ui(n) = –αi(n)ui(n) + βi(n)epi(n),

(.)

where i = , . From Proposition ., we know that system (.) has a bounded solution
Y (n) = (p(n),p(n),u(n),u(n)) satisfying

lnxi∗ ≤ pi(n)≤ lnx∗
i , ui∗ ≤ ui(n)≤ u∗

i , i = , ,n ∈ Z+. (.)

Hence, |pi(n)| ≤ Ai, |ui(n)| ≤ Bi, where Ai =max{| lnxi∗|, lnx∗
i }, Bi =max{ui∗,u∗

i }, i = , .
For (X,U) ∈ R+, we define the norm ‖(X,U)‖ =∑

i= |xi| +
∑

i= |ui|.
Consider the product system of system (.)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(n + ) = p(n) + b(n) – a(n)ep(n) – c(n)ep(n)

h(n)ep(n)+ep(n)
– d(n)u(n),

p(n + ) = p(n) + g(n) – f (n) ep(n)
ep(n)

– p(n)u(n),
�ui(n) = –αi(n)ui(n) + βi(n)epi(n),
q(n + ) = q(n) + b(n) – a(n)eq(n) – c(n)eq(n)

h(n)eq(n)+eq(n)
– d(n)ω(n),

q(n + ) = q(n) + g(n) – f (n) eq(n)
eq(n)

– p(n)ω(n),
�ωi(n) = –αi(n)ωi(n) + βi(n)eqi(n).

(.)

http://www.advancesindifferenceequations.com/content/2014/1/214
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Suppose that Z = (p(n),p(n),u(n),u(n)), W = (q(n),q(n),ω(n),ω(n)) are any two
solutions of system (.) defined on Z+ × S∗ × S∗, then ‖Z‖ ≤ B, ‖W‖ ≤ B, where

B =
∑
i=

{Ai + Bi},

S∗ =
{(
p(n),p(n),u(n),u(n)

) | lnxi∗ ≤ pi(n) ≤ lnx∗
i , (.)

ui∗ ≤ ui(n) ≤ u∗
i , i = , ,n ∈ Z+}.

Consider the Lyapunov function defined on Z+ × S∗ × S∗ as follows:

V (n,Z,W ) =
∑
i=

{(
pi(n) – qi(n)

) + (
ui(n) –ωi(n)

)}. (.)

It is easy to see that the norm ‖Z–W‖ = ∑
i={|pi(n)–qi(n)|+ |ui(n)–ωi(n)|} and the norm

‖Z –W‖∗ = {∑
i={(pi(n) – qi(n)) + (ui(n) – ωi(n))}}/ are equivalent, that is, there exist

two constants C > , C >  such that

C‖Z –W‖ ≤ ‖Z –W‖∗ ≤ C‖Z –W‖, (.)

then

(
C‖Z –W‖) ≤ ‖Z –W‖∗ ≤ (

C‖Z –W‖). (.)

Let a ∈ C(R+,R+), a(x) = C
 x, b ∈ C(R+,R+), b(x) = C

x, thus condition () in Lemma .
is satisfied.
In addition,

∣∣V (n,Z,W ) –V (n, Z̃,W̃ )
∣∣

=

∣∣∣∣∣
∑
i=

{(
pi(n) – qi(n)

) + (
ui(n) –ωi(n)

)}

–
∑
i=

{(
p̃i(n) – q̃i(n)

) + (
ũi(n) – ω̃i(n)

)}∣∣∣∣∣
≤

∑
i=

∣∣(pi(n) – qi(n)
) + (

ui(n) –ωi(n)
)∣∣ + ∑

i=

∣∣(p̃i(n) – q̃i(n)
) + (

ũi(n) – ω̃i(n)
)∣∣

=
∑
i=

{∣∣(pi(n) – qi(n)
)
+

(
p̃i(n) – q̃i(n)

)∣∣∣∣(pi(n) – qi(n)
)
–

(
p̃i(n) – q̃i(n)

)∣∣}

×
∑
i=

{∣∣(ui(n) –ωi(n)
)
+

(
ũi(n) – ω̃i(n)

)∣∣∥∥(
ui(n) –ωi(n)

)
–

(
ũi(n) – ω̃i(n)

)∥∥}

≤
∑
i=

{(∣∣pi(n)∣∣ + ∣∣qi(n)∣∣ + ∣∣p̃i(n)∣∣ + ∣∣q̃i(n)∣∣)(∣∣pi(n) – p̃i(n)
∣∣ + ∣∣qi(n) – q̃i(n)

∣∣)}

×
∑
i=

{(∣∣ui(n)∣∣ + ∣∣ωi(n)
∣∣ + ∣∣ũi(n)∣∣ + ∣∣ω̃i(n)

∣∣)(∣∣ui(n) – ũi(n)
∣∣ + ∣∣ωi(n) – ω̃i(n)

∣∣)}
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≤ L

{ ∑
i=

{∣∣pi(n) – p̃i(n)
∣∣ + ∣∣ui(n) – ũi(n)

∣∣} + ∑
i=

{∣∣qi(n) – q̃i(n)
∣∣ + ∣∣ωi(n) – ω̃i(n)

∣∣}}

= L
{‖Z – Z̃‖ + ‖W – W̃‖}, (.)

where L =max{Ai,Bi} (i = , ). Hence condition () of Lemma . is satisfied.
Finally, calculating �V of V (n) along the solutions of (.), we can obtain

�V(.)(n,Z,W ) = V (n + ,Z,W ) –V (n,Z,W )

=
∑
i=

{[
pi(n + ) – qi(n + )

] + (
ui(n + ) –ωi(n + )

)}

–
∑
i=

{[
pi(n) – qi(n)

] + [
ui(n) –ωi(n)

]}

=
∑
i=

{(
pi(n + ) – qi(n + )

) – (
pi(n) – qi(n)

)
+

(
ui(n + ) –ωi(n + )

) – (
ui(n) –ωi(n)

)}
=

∑
i=

{[
pi(n + ) – qi(n + )

] – (
pi(n) – qi(n)

)
+

[(
 – αi(n)

)(
ui(n) –ωi(n)

)
+ βi(n)

(
epi(n) – eqi(n)

)]
–

(
ui(n) –ωi(n)

)}. (.)

In view of system (.) and using the mean value theorem, we get

epi(n) – eqi(n) = ξi(n)
(
pi(n) – qi(n)

)
, i = , , (.)

where ξi(n) lies between epi(n) and eqi(n), i = , ,

[
p(n + ) – q(n + )

]
=

[(
p(n) – q(n)

)
– a(n)

[
ep(n) – eq(n)

]
– d(n)

[
u(n) –ω(n)

]

– c(n)
(

ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

)]

=
[
p(n) – q(n)

] + a(n)
[
ep(n) – eq(n)

] + d(n)
[
u(n) –ω(n)

]
+ c(n)

[
ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]

– a(n)
[
p(n) – q(n)

][
ep(n) – eq(n)

]
– d(n)

[
p(n) – q(n)

][
u(n) –ω(n)

]
– c(n)

[
p(n) – q(n)

][ ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]

+ a(n)d(n)
[
ep(n) – eq(n)

][
u(n) –ω(n)

]
+ a(n)c(n)

[
ep(n) – eq(n)

][ ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]
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+ c(n)d(n)
[
u(n) –ω(n)

][ ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]

≤ [
p(n) – q(n)

] + aMx∗


[
p(n) – q(n)

] + dM[u(n) –ω(n)
]

+W 
 (n) +W(n) +W(n) +W(n) +W(n) +W(n), (.)

where

W(n) = c(n)
[

ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]

= c(n)
h(n)ep(n)eq(n) + ep(n)eq(n) – h(n)eq(n)ep(n) – eq(n)ep(n)

[h(n)ep(n) + ep(n)][h(n)eq(n) + eq(n)]

≤ cM(hMx∗
 + x∗

 )|ep(n) – eq(n)| + cMx∗
x∗

|ep(n) – eq(n)|
[hlx∗ + x∗]

≤ cMx∗
 x∗



[hlx∗ + x∗]
∣∣p(n) – q(n)

∣∣ + cMx∗
(hMx∗

 + x∗
 )

[hlx∗ + x∗]
∣∣p(n) – q(n)

∣∣,
W(n) = –a(n)

[
p(n) – q(n)

][
ep(n) – eq(n)

]
– d(n)

[
p(n) – q(n)

][
u(n) –ω(n)

]
≤ –alx∗

[
p(n) – q(n)

] + dM[
p(n) – q(n)

] + dM[
u(n) –ω(n)

],
W(n) = –

[
p(n) – q(n)

]
W(n)

= –c(n)
[
p(n) – q(n)

][ ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]

≤ c(n)
∣∣[p(n) – q(n)

]∣∣∣∣∣∣ ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

∣∣∣∣
≤ cMx∗

 x∗


[hlx∗ + x∗]
[
p(n) – q(n)

]

+
cMx∗

(hMx∗
 + x∗

 )
[hlx∗ + x∗]

∣∣p(n) – q(n)
∣∣∣∣p(n) – q(n)

∣∣
≤ cMx∗

 x∗


[hlx∗ + x∗]
[
p(n) – q(n)

]

+
cMx∗

(hMx∗
 + x∗

 )
[hlx∗ + x∗]

[
p(n) – q(n)

] + cMx∗
(hMx∗

 + x∗
 )

[hlx∗ + x∗]
[
p(n) – q(n)

],
W(n) = a(n)d(n)

[
ep(n) – eq(n)

][
u(n) –ω(n)

]
≤ aMdMx∗


[
p(n) – q(n)

] + aMdM[
u(n) –ω(n)

],
W(n) = a(n)c(n)

[
ep(n) – eq(n)

][ ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]

≤ aM
[
ep(n) – eq(n)

] + aMW 


≤ aMx∗

[
p(n) – q(n)

]
+ aM

[
cMx∗

 x∗


[hlx∗ + x∗]
∣∣p(n) – q(n)

∣∣ + cMx∗
(hMx∗

 + x∗
 )

[hlx∗ + x∗]
∣∣p(n) – q(n)

∣∣]

≤ aMx∗

[
p(n) – q(n)

]
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+
aMcMx∗

 x∗


[hlx∗ + x∗]
∣∣p(n) – q(n)

∣∣

+
aMcMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]
∣∣p(n) – q(n)

∣∣
and

W(n) = c(n)d(n)
[
u(n) –ω(n)

][ ep(n)

h(n)ep(n) + ep(n)
–

eq(n)

h(n)eq(n) + eq(n)

]

≤ dM[
u(n) –ω(n)

] + dMcMx∗
 x∗


[hlx∗ + x∗]

∣∣p(n) – q(n)
∣∣

+
dMcMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]
∣∣p(n) – q(n)

∣∣.
Similarly, we also have

[
p(n + ) – q(n + )

]
=

([
p(n) – q(n)

]
– f (n)

[
ep(n)

ep(n)
–
eq(n)

eq(n)

]
– p(n)

[
u(n) –ω(n)

])

=
[
p(n) – q(n)

] + f (n)
[
ep(n)

ep(n)
–
eq(n)

eq(n)

]

+ p(n)
[
u(n) –ω(n)

]

– f (n)
[
p(n) – q(n)

][ep(n)
ep(n)

–
eq(n)

eq(n)

]
– p(n)

[
p(n) – q(n)

][
u(n) –ω(n)

]

+ f (n)p(n)
[
ep(n)

ep(n)
–
eq(n)

eq(n)

][
u(n) –ω(n)

]
≤ [

p(n) – q(n)
] + pM[u(n) –ω(n)

] +K
 (n) +K(n) +K(n) +K(n), (.)

where

K(n) = f (n)
[
ep(n)

ep(n)
–
eq(n)

eq(n)

]

= f (n)
ep(n)eq(n) – ep(n)eq(n)

ep(n)eq(n)

≤ f Mx∗
x∗


x∗

∣∣p(n) – q(n)
∣∣ + f Mx∗

x∗


x∗

∣∣p(n) – q(n)
∣∣,

K(n) = –f (n)
[
p(n) – q(n)

][ep(n)
ep(n)

–
eq(n)

eq(n)

]

= –f (n)
[
p(n) – q(n)

]eq(n)(ep(n) – eq(n))
ep(n)eq(n)

– f (n)
[
p(n) – q(n)

]eq(n)(eq(n) – ep(n))
ep(n)eq(n)

≤ –
f lx∗x∗

x∗


[
p(n) – q(n)

] + f Mx∗
x∗



x∗

∣∣[p(n) – q(n)
][
p(n) – q(n)

]∣∣
≤ –

f lx∗x∗
x∗


[
p(n) – q(n)

] + f Mx∗
x∗



x∗

([
p(n) – q(n)

] + [
p(n) – q(n)

]),
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K(n) = –p(n)
[
p(n) – q(n)

][
u(n) –ω(n)

]
= pM

([
p(n) – q(n)

] + [
u(n) –ω(n)

])
and

K(n) = f (n)p(n)
[
ep(n)

ep(n)
–
eq(n)

eq(n)

][
u(n) –ω(n)

]
= pMK

 (n) + pM
[
u(n) –ω(n)

]
≤ pMf Mx∗

 x∗


x∗

∣∣p(n) – q(n)
∣∣

+
pMf Mx∗

 x∗


x∗

∣∣p(n) – q(n)
∣∣ + pM

[
u(n) –ω(n)

].
From system (.), we also obtain

[
ui(n + ) –ωi(n + )

] – [
ui(n) –ωi(n)

]
=

[(
 – αi(n)

) – 
](
ui(n) –ωi(n)

) + β
i (n)

(
epi(n) – eqi(n)

)
+ βi(n)

(
 – αi(n)

)(
ui(n) –ωi(n)

)(
epi(n) – eqi(n)

)
≤ (

αl
i – αl

i
)(
ui(n) –ωi(n)

) + βM
i x∗

i
(
pi(n) – qi(n)

) +Hi(n), (.)

where

Hi(n) = βi(n)
(
 – αi(n)

)(
ui(n) –ωi(n)

)(
epi(n) – eqi(n)

)
≤ (

 – αl
i
)
x∗
i β

M
i

[
pi(n) – qi(n)

] + (
 – αl

i
)
βM
i

[
ui(n) –ωi(n)

].
From (.), (.), (.) and (.), we have

�V(.)(n) ≤
[
aMx∗

 +
cMx∗

 x∗


[hlx∗ + x∗]
– alx∗ + dM +

cMx∗
 x∗


[hlx∗ + x∗]

+
cMx∗

(hMx∗
 + x∗

 )
[hlx∗ + x∗]

+ aMdMx∗
 + aMx∗

 +
aMcMx∗

 x∗


[hlx∗ + x∗]

+
dMcMx∗

 x∗


[hlx∗ + x∗]
+
f Mx∗

 x∗


x∗
+
f Mx∗

x∗


x∗

+
pMf Mx∗

 x∗


x∗
+ βM

 x∗
 +

(
 – αl


)
x∗
β

M


][
p(n) – q(n)

]

+
[
cMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]
+
cMx∗

(hMx∗
 + x∗

 )
[hlx∗ + x∗]

+
aMcMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]

+
dMcMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]
+
f Mx∗

 x∗


x∗
+ pM –

f lx∗x∗
x∗


+
f Mx∗

x∗


x∗
+
pMf Mx∗

 x∗


x∗
+ βM

 x∗
 +

(
 – αl


)
x∗
β

M


][
p(n) – q(n)

]
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+
[
dM + dM + aMdM +

(
αl
 – αl


)
+

(
 – αl


)
βM


][
u(n) –ω(n)

]
+

[
pM + pM +

(
αl
 – αl


)
+

(
 – αl


)
βM


][
u(n) –ω(n)

]
= –

[
alx∗ –

cMx∗
 x∗


[hlx∗ + x∗]

– dM –
cMx∗

 x∗


[hlx∗ + x∗]

–
cMx∗

(hMx∗
 + x∗

 )
[hlx∗ + x∗]

– aMdMx∗
 – aMx∗

 –
aMcMx∗

 x∗


[hlx∗ + x∗]

–
dMcMx∗

 x∗


[hlx∗ + x∗]
–
f Mx∗

 x∗


x∗
–
f Mx∗

x∗


x∗

–
pMf Mx∗

 x∗


x∗
– βM

 x∗
 –

(
 – αl


)
x∗
β

M
 – aMx∗



][
p(n) – q(n)

]

–
[
f lx∗x∗

x∗


–
cMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]
–
cMx∗

(hMx∗
 + x∗

 )
[hlx∗ + x∗]

– pM

–
aMcMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]
–
dMcMx∗

 (hMx∗
 + x∗

 )

[hlx∗ + x∗]
–
f Mx∗

 x∗


x∗

–
f Mx∗

x∗


x∗
–
pMf Mx∗

 x∗


x∗
– βM

 x∗
 –

(
 – αl


)
x∗
β

M


](
p(n) – q(n)

)
–

[
αl

 – dM – dM – aMdM – αl
 –

(
 – αl


)
βM


][
u(n) –ω(n)

]
–

[
αl

 – pM – pM – αl
 –

(
 – αl


)
βM


][
u(n) –ω(n)

]
≤ –�

∑
i=

{(
pi(n) – qi(n)

) + (
ui(n) –ωi(n)

)}
= –�V (n,X,Y ),

where� =min{�,�,�,�}. That is, there exists a positive constant  <� <  such that
�(.)(n,X,Y )≤ –�V (n,X,Y ). From  < � < , condition () of Lemma . is satisfied. So,
from Lemma ., there exists a unique uniformly asymptotically stable almost periodic
solution X(n) = (x(n),x(n),u(n),u(n)) of system (.) which is bounded by S∗ for all
n ∈ Z+, which means that there exists a unique uniformly asymptotically stable almost
periodic solution X(n) = (x(n),x(n),u(n),u(n)) of system (.) which is bounded by 

for all n ∈ Z+. This completes the proof. �

5 An example
In this section, we present an example to illustrate the feasibility of our results.

Example . Consider the following discrete ratio-dependent Leslie model:

⎧⎪⎪⎨
⎪⎪⎩
x(n + ) = x(n) exp{b(n) – a(n)x(n) – c(n)x(n)x(n)

h(n)x(n)+x

 (n)

– d(n)u(n)},
x(n + ) = x(n) exp{g(n) – f (n) x(n)x(n)

– p(n)u(n)},
�ui(n) = –αi(n)ui(n) + βi(n)xi(n), i = , ,

(.)

where b(n) = . + . sinn, a(n) = . + . sinn, c(n) = . + . sinn, h(n) =
. + . sinn, d(n) = ., g(n) = ., f (n) = . – . cosn, p(n) = . –
. cosn, α(n) =  +  sinn, β(n) = . + . sinn, α(n) =  – . cosn, β(n) =
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. + . cosn. Then system (.) is persistent and has a unique uniformly asymptoti-
cally stable almost periodic sequence solution.

Proof It is easy to see that {a(n)}, {b(n)}, {c(n)}, {d(n)}, {h(n)}, {g(n)}, {f (n)}, {p(n)}, {αi(n)}
and {βi(n)} for i = ,  are bounded nonnegative almost periodic sequences. By calculation
of Mathematica software, we get

x∗
 = ., x∗ = .,

x∗
 = ., x∗ = .,

u∗
 = ., u∗

 = .,

� ≈ ., � ≈ .,

� ≈ ., � ≈ ..

Then gL–pMu∗
 = .–.×. = . > , bL–dMu∗

 = –.×. =
. >  and  < � = min{�,�,�,�} = . < . So we can see that all the
conditions of Theorem . hold. According to Theorem ., system (.) has a unique
uniformly asymptotically stable almost periodic solution which is bounded by  for all
n ∈ Z+. �
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