
Xiao Advances in Difference Equations 2014, 2014:215
http://www.advancesindifferenceequations.com/content/2014/1/215

RESEARCH Open Access

Periodic solutions of second order difference
systems with even potential
Huafeng Xiao*

*Correspondence:
huafeng@gzhu.edu.cn
School of Mathematics and
Information Science, Guangzhou
University, Guangzhou, China
Key Laboratory of Mathematics and
Interdisciplinary Science of
Guangdong, Guangzhou, China

Abstract
In this article, we study the multiplicity and minimality of periodic solutions to
difference systems, which are globally superquadratic or subquadratic. A new
technique is given to detect the minimal period of periodic solutions to autonomous
systems. Some weaker conditions than a globally subquadratic condition are
obtained to guarantee the existence of periodic solutions with prescribed minimal
period to autonomous system.
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1 Introduction
On one hand, difference equations have been widely used to describe real-life situations
in computer science, economics, neural network, ecology, cybernetics, etc. On the other
hand, they are also natural consequences of the discretization of differential equations.
So it is worthwhile to explore this topic. Many tools are used to study the existence of
all kinds of solutions to discrete systems. A powerful tool is critical point theory, which
firstly was introduced by Guo and Yu in  to study the existence of periodic solutions
to a difference system (cf. [–]). Since then, the study of discrete dynamic systems has
got considerable development. We refer to boundary value problems (cf. [, ]), periodic
solutions (cf. [, ]), homoclinic orbits (cf. [, ]), and heteroclinic orbits (cf. [, ]).
As is well known, the minimal periodic problem is an important but difficult problem.

As far as the author knows, the study of solutions with a prescribed minimal period began
in . In that year, by estimating the energy of a variational functional, Yu et al. (cf.
[]) studied the existence of subharmonic solutions with a prescribed minimal period
to a discrete forced pendulum equation. More recently, by making use of the Clark dual
method, Bin (cf. []), Long (cf. []) and Long et al. (cf. []) studied the existence and
multiplicity of periodic solutions with a prescribed minimal period to difference systems.
Because of the lack of methods, results in this field are scarce.
It is well known that the Nehari manifold has been introduced by Nehari in  (cf. [,

]) and developed by Szulkin andWeth in  (cf. []). It has been used widely to study
the existence of ground state solutions to ordinary differential systems, partial differential
systems, and difference systems (cf. [–]). A ground state solution is a solution which
possesses theminimal energy of all solutions. Since such aminimality can be used to prove
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theminimal periods of solutions, it has been used to study the existence of period solutions
with prescribed minimal period to ordinary differential equations (cf. [–]).
Motivated by the above references, in this paper, one attempts to make use of a Nehari

manifold to study the multiplicity and minimality of periodic solutions to difference sys-
tems. When the systems are globally superquadratic or subquadratic, by restricting our
discussion to the Nehari manifold, firstly, we study the existence of multiple periodic so-
lutions to nonautonomous systems; secondly, we study the existence of periodic solutions
with a prescribed minimal period to autonomous systems. Also, some subquadratic con-
ditions, which are weaker than the globally subquadratic condition, are obtained to guar-
antee the existence of periodic solutions with prescribed minimal period to autonomous
system.
For convenience, we denote by N, Z,R the sets of all natural numbers, integers, and real

numbers, respectively. For a,b ∈ Z with a ≤ b, define Z[a,b] = {a,a + , . . . ,b}. For m ∈ N,
denote by Rm the Euclidean space with the usual inner product (·, ·) and norm | · |.
Consider the nonautonomous difference system

�xn– + f (n,xn) = , n ∈ Z, ()

where xn ∈ R
m, � is a difference operator defined by �xn = xn+ – xn and �xn =�(�xn).

Assume that:
(F) there exists an even function F ∈ C(R×R

m,R) such that f (t, z) is the gradient of
F(t, z) with respect to z, i.e.,

F(–t, –z) = F(t, z), f (t, z) = ∇zF(t, z), ∀(t, z) ∈R×R
m;

(F) there exists a positive integer T >  such that

F(t + T , z) = F(t, z), ∀(t, z) ∈R×R
m;

(F) there exists a α >  such that

 < α
(
f (t, z), z

) ≤ (
f ′(t, z)z, z

)
, ∀z ∈R

m \ {},

where f ′(t, ·) denotes the Hermite matrix of F(t, ·);
(F) there exists a β ∈ (, ) such that

 <
(
f ′(t, z)z, z

) ≤ β
(
f (t, z), z

)
, ∀z ∈R

m \ {}.

Remark  If F satisfies (F), (F), and (F), without loss of generality, we can assume that
F(t, ) =  for all t ∈R. Otherwise, there exists a twice continuously differentiable function
g(t) such that F(t, ) = g(t). Let F̂(t, z) = F(t, z) – g(t). Then F̂ also satisfies (F), (F), and
(F) with F replaced by F̂ . Similarly, if F satisfies (F), (F), and (F), we can assume that
F(t, ) =  for all t ∈ R.

For a nonautonomous system, we have the following two results.
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Theorem Suppose that F satisfies (F), (F), and (F).Then () has at least m[(T –)/]–
 distinct pairs of different T-periodic solutions.

Theorem Suppose that F satisfies (F), (F), and (F).Then () has at leastm[(T –)/]–
 distinct pairs of different T-periodic solutions.

Consider the autonomous difference system

�xn– + f (xn) = , n ∈ Z. ()

Assume that F satisfies
(F) there exists an even function F ∈ C(Rm,R) such that f (z) is the gradient of F(z),

i.e.,

F(–z) = F(z), f (z) = ∇zF(z), ∀z ∈R
m;

(F) there exists a α′ >  such that

 < α′(f (z), z) ≤ (
f ′(z)z, z

)
, ∀z ∈ R

m \ {},

where f ′(·) denotes the Hermite matrix of F(·);
(F) there exists a β ′ ∈ (, ) such that

 <
(
f ′(z)z, z

) ≤ β ′(f (z), z), ∀z ∈R
m \ {}.

Remark  If F satisfies (F) and (F) (respectively, (F) and (F)), without loss of gener-
ality, we can assume that F() = .

For an autonomous system, we have the following two results.

Theorem Suppose that F satisfies (F) and (F).Then, for any integer P > , () possesses
at least a periodic solution with minimal period P.

Theorem Suppose that F satisfies (F) and (F). Then, for any integer P > , () possesses
at least a periodic solution with minimal period P.

Now, one weakens the conditions (F) and (F). Assume that F satisfies the following
conditions:

(F) there exists an even function F ∈ C(Rm,R) such that f (z) is the gradient of F(z),
i.e.,

F(–z) = F(z), f (z) = ∇zF(z), ∀z ∈R
m;

(F) there exist constants G > ,  < γ <  such that for all x ∈R
m and |x| ≥G,

 <
(
f (x),x

) ≤ γ F(x);

http://www.advancesindifferenceequations.com/content/2014/1/215
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(F) there exist constants  <G < ,M >  and  < γ ′ <  such that for all x ∈R
m and

|x| <G,

F(z) ≥M|z|γ ′
.

Remark  Assume that F satisfies (F) and (F). Then there exist some positive constants
M andM such that, for all x ∈R

m,

F(x)≤M|x|γ +M.

Theorem  Suppose that F satisfies (F), (F), and (F). Then, for any integer P > ,
() possesses at least a periodic solution with minimal period P.

The rest of this paper is divided into two parts. In Section , we study the multiplicity of
periodic solutions to a nonautonomous system. In Section , firstly, we study the existence
of periodic solutions with a prescribed minimal period to an autonomous system, which
is globally superquadratic or subquadratic; secondly, some conditions, which are weaker
than the globally subquadratic condition, are given to guarantee the existence of periodic
solutions with prescribed minimal period to autonomous system.

2 Nonautonomous difference system
2.1 Preparations
By a similar argument to [], we can build the space ET

ET =
{
x = (. . . ,x–n, . . . ,x–,x,x, . . . ,xn, . . .) | xn+T = xn,xn ∈R

m,∀n ∈ Z
}
.

ET is a Hilbert space equipping with the following norm and inner product

‖x‖ :=
( T∑

n=

|xn|
) 



, 〈x, y〉 :=
T∑
n=

(xn, yn), ∀x, y ∈ ET .

It is easy to check that ET is linearly homeomorphic to R
mT , which can also be identified

with R
mT .

For any s > , we can also define Ls norm on ET as follows:

‖x‖s :=
( T∑

n=

|xn|s
) 

s

.

Obviously, ‖ · ‖ = ‖ · ‖. Since the space ET is a finite-dimensional space, all norms defined
on it are equivalent. Hence, there exists a C,s >  such that


C,s

‖x‖s ≤ ‖x‖ ≤ C,s‖x‖s, ∀x ∈ ET .

The variational functional corresponding to () defined on ET is

J(x) =
T∑
n=

[


|�xn| – F(n,xn)

]
=


〈Ax,x〉 –

T∑
n=

F(n,xn),

http://www.advancesindifferenceequations.com/content/2014/1/215
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where x = (xτ
 ,xτ

, . . . ,xτ
T )τ , A = P–CP, C = diag(B,B, . . . ,B)mT×mT . Here τ denotes the

transposition of a vector and B, P are matrices defined in [].
Since ET is linearly homeomorphic toRmT , it follows from (F) that J can be viewed as a

twice continuously differentiable functional defined on a finite-dimensional Hilbert space.
Thus, for any x, y, z ∈ ET , one has

〈
J ′(x), y

〉
= 〈Ax, y〉 –

T∑
n=

(
f (n,xn), yn

)
,

〈
J ′′(x)z, y

〉
= 〈Az, y〉 –

T∑
n=

(
f ′(n,xn)zn, yn

)
.

It is easy to check that the critical points of J are T-periodic solutions of ().
Similarly to reference [], the eigenvalues of B can be given by

λk =  sin
kπ
T

, k = , , , . . . ,T – .

By matrix theory, A has T eigenvalues λ,λ, . . . ,λT–, each of multiplicitym. Clearly,  is
an eigenvalue of A and set η = (η,η, . . . ,ηm)τ the eigenvector associated to . If T is even,
λT/ =  is also an eigenvalue of A and set η′ = (η′

,η′
, . . . ,η′

m)τ , the eigenvector associated
to λT/. For any k ∈ Z[, �(T – )/], where �· denotes the upper integral function, set

ηk,
n = ak cos

knπ

T
, ηk,

n = bk sin
knπ

T
,

where ak ,bk ∈ R
m. Then ηk,

n , ηk,
n are eigenvectors of A corresponding to eigenvalue λk .

Denote byWi (i = , , , ) the spaces defined as follows:

W = span{η}, W = span

{
ηk,
n ,k = , , . . . ,

⌊
T – 


⌋}
,

W = span

{
ηk,
n ,k = , , . . . ,

⌊
T – 


⌋}
, W = span

{
η′}.

Then dim(W) = m, dim(W) = dim(W) = m�(T – )/ and dim(W) = m if T is even.
Also, we have

ET =W ⊕W ⊕W ⊕W, when T is even;

ET =W ⊕W ⊕W, when T is odd.

Thus, for any x ∈ ET , xn has the form of

xn = a +

T
 –∑
k=

(
ak cos

knπ

T
+ bk sin

knπ

T

)
+ (–)nb, when T is even,

xn = a +

T–
∑

k=

(
ak cos

knπ

T
+ bk sin

knπ

T

)
, when T is odd,

where a, b, ak , bk (k = , , . . . , �(T – )/) are all constant vectors of Rm.
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Xiao Advances in Difference Equations 2014, 2014:215 Page 6 of 14
http://www.advancesindifferenceequations.com/content/2014/1/215

Now, we define a subspace of ET as follows:

ẼT = {x ∈ ET | xn is odd in n}.

Obviously, ẼT =W. Thus dim(̃ET ) =m�(T – )/. For any x ∈ ẼT , no matter T is even or
odd, xn has a Fourier expansion

xn =
� T– ∑
k=

ak sin
knπ

T
.

Consider the following eigenvalue problem:

Ax = λx, x ∈ ẼT . ()

Problem () has �(T –)/ eigenvalues, each of them ofmultiplicitym. The eigenvalues of
() are λk =  sin(kπ/T), where k = , , . . . , �(T –)/. Obviously, the smallest eigenvalue
is λ and the largest eigenvalue is λ�(T–)/, which is denoted by λmax.
Now we give a useful lemma. Since the proof is standard, we omit it.

Lemma  If x is a critical point of J restricted on ẼT , then x is also a critical point of J
on ET .

At the end of this subsection, two useful lemmas are given.
Suppose that H be a real Banach space andM is a closed symmetric C-submanifold of

H with  /∈M. Suppose that φ ∈ C(M,R).

Lemma  [] Suppose that φ is even and bounded below. Define

cj := inf
A∈
j

sup
x∈A

φ(x), j = , , . . . ,

where 
j := {A ⊂ M : A = –A,A ⊂ H \ {},A is compact and γ (A) ≥ j}. If 
k �= ∅ for some
k ≥  and if φ satisfies the (PS)c for all c = cj, j = , , . . . ,k, then φ has at least k distinct
pairs of critical points.

Lemma  [] If φ is bounded below and satisfies the (PS) condition, then c := infM φ is
attained and is a critical value of φ.

2.2 Superquadratic case
In this subsection, we consider the existence of multiple periodic solutions of (), where F
satisfies (F), (F), and (F). Arguing similarly to [], we can prove the following lemma.

Lemma  If F satisfies (F), (F), and (F), then  < ( + α)F(t,x) ≤ (f (t,x),x) for all x ∈
R

m \ {}. Also,

F(t,x)≤ M|x|α+, when |x| ≤ , F(t,x)≥M|x|α+ when |x| ≥ ,

where M =max{t|≤t≤T} max|x|= F(t,x) and M =min{t|≤t≤T} min|x|= F(t,x).

http://www.advancesindifferenceequations.com/content/2014/1/215
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Let h(x) = 〈J ′(x),x〉. Define a Nehari manifoldM on ẼT as follows:

M =
{
x ∈ ẼT \ {} | h(x) = 

}
.

By a similar argument to reference [], one can prove the following lemma.

Lemma  M is C-manifold with dimension m�(T – )/ – . If x is a critical point of J
restricted onM, then x is also a critical point of J restricted on ẼT .

By Lemmas  and , to search for periodic solutions of (), we need find critical points
of J restricted onM.

Lemma  Fixing x ∈ ẼT \ {}, there exists a unique tx >  such that txx ∈M.

Proof Fixing x ∈ ẼT \ {}, define ϕx(t) := J(tx) for t ∈ (, +∞). Obviously, ϕx ∈ C. It is easy
to check that ϕ′

x(t) =  if and only if tx ∈M.
If  < t < /‖x‖ is small enough, then |txn| < . It follows from Lemma  that |F(n, txn)| ≤

M|txn|α+. Thus

ϕx(t) =


〈
tx,A(tx)

〉
–

T∑
n=

F(n, txn) ≥ t


λ‖x‖ – t+αMCα+

,α+‖x‖α+.

Since α > , there exists a t >  depending only on ‖x‖ such that

ϕx(t) > λt‖x‖/, ∀t ∈ (, t).

Denote by A(x) = {n ∈ Z[,T] | xn �= }. Obviously, A(x) �= ∅. If t > /min{|xn| | n ∈
A(x)}, then t|xn| >  for all n ∈ A(x). It follows from Lemma  again that

ϕx(t) =


〈
tx,A(tx)

〉
–

T∑
n=

F(n, txn)

≤ t


λmax‖x‖ – t+αM

∑
n∈A(x)

|xn|α+

≤ t


λmax‖x‖ – t+αMC–(α+)

,α+ ‖x‖α+.

Since α > , ϕx(t) <  when t >  is large enough. Thus the Rolle Mean Value Theorem
implies that there exists a tx >  such that

ϕ′
x(tx) = . ()

Claim: There exists a unique tx >  satisfying ().
Suppose, to the opposite, that there exist  < t < t satisfying (). By a direct computa-

tion, we have

ϕ′
x(t) = t〈x,Ax〉 –

T∑
n=

(
f (n, txn),xn

)
, ϕ′′

x (t) = 〈x,Ax〉 –
T∑
n=

(
f ′(n, txn)xn,xn

)
.

http://www.advancesindifferenceequations.com/content/2014/1/215
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For i = , , since ϕ′
x(ti) = , then ti〈x,Ax〉 =∑T

n=(f (n, tixn),xn). It follows from (F) that

ϕ′′
x (ti) =


ti

T∑
n=

[(
f (n, tixn), tixn

)
–

(
f ′(n, tixn)tixn, tixn

)]
< , i = , . ()

Thus, there exists a t ∈ (t, t) satisfying ϕx(t) =mint≤t≤t ϕx(t). Consequently, ϕ′
x(t) = 

and ϕ′′
x (t) ≥ . However, by a similar argument to (), ϕ′′

x (t) < , which is a contradiction.
Thus tx is unique. �

Since ϕ′
x(tx) =  and ϕ′′

x (tx) < , then ϕx(tx) = maxt∈(,∞) ϕx(t). Hence J(tx) restricted on
(,∞) attains its maximum at tx.

Lemma  J satisfies the (PS) condition onM.

Proof Assume that {xk} ⊂ M is a (PS) sequence for J . Then there exists a M ≥  such
that |J(xk)| ≤M for allm ∈N and J ′(xk)→  as k → ∞. Set

A
(
xk

)
=

{
n ∈ Z[,T] | ∣∣xkn∣∣ ≤ 

}
, A

(
xk

)
=

{
n ∈ Z[,T] | ∣∣xkn∣∣ > 

}
.

Since F is continuous, there exists aM >  such that

∣∣M|x|+α – F(t,x)
∣∣ ≤M, ∀t ∈ [,T],x ∈R

m with |x| ≤ .

Then

–M ≤ J
(
xk

)
=


〈
xk ,Axk

〉
–

T∑
n=

F
(
n,xkn

)
≤ 


λmax

∥∥xk∥∥ –
∑

n∈A(xk )

F
(
n,xkn

)
–M

∑
n∈A(xk )

∣∣xkn∣∣+α

≤ 

λmax

∥∥xk∥∥ +
∑

n∈A(xk )

[
M

∣∣xkn∣∣+α – F
(
n,xkn

)]
–MC–(+α)

,+α

∥∥xk∥∥+α

≤ 

λmax

∥∥xk∥∥ + TM –MC–(+α)
,+α

∥∥xk∥∥+α .

Thus MC–(+α)
,+α ‖xk‖+α – /λmax‖xk‖ ≤ M + TM. Since α > , {‖xk‖} is bounded. Since

ẼT is a finite-dimensional space, there exists a convergent subsequence of {xk}. �

Define a new map

g : S →M,

x �→ txx.

It follows from Lemma  that g is a bijection whose inverse g– is given by g–(x) = x/‖x‖.

Lemma  C = infx∈M J(x) > .

http://www.advancesindifferenceequations.com/content/2014/1/215
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Proof For any x ∈M, since J(x) = supt∈(,+∞) J(tx) = supt∈(,+∞) J(tx/‖x‖), it follows that

inf
x∈M

J(x) = inf
x∈M

sup
t∈(,+∞)

J(tx) = inf
x∈S

sup
t∈(,+∞)

J(tx).

To prove that C > , one only need to show that infx∈S supt∈(,+∞) J(tx) > .
Arguing similarly to Lemma , there exists a t > , which is independent of x, such that

ϕx(t) ≥ λt/, ∀ < t < t,∀x ∈ S.

Setting t = t/, one gets

J
(
t

x
)
= ϕx

(
t


)
≥ λt


> , ∀x ∈ S.

Thus

C = inf
x∈S

sup
t∈(,∞)

J(tx) ≥ λt


> . �

Proof of Theorem  Because of (F), M is a closed symmetric manifold and  /∈ M. It
follows from Lemma  thatM is a C manifold with dimensionm�(T –)/–. By Lem-
mas  and , J is bounded from below and satisfies the (PS) condition. It is easy to check
that J is even. Then Lemma  implies that J has at least m�(T – )/ –  distinct pairs
of critical points. Thus () possesses at least m�(T – )/ –  distinct pairs of periodic
solutions. �

2.3 Subquadratic case
In this subsection, we consider themultiplicity of periodic solutions of (), where F satisfies
(F), (F), and (F). In order to proveTheorem, we consider the functional J = –J and the
Nehari manifoldM is defined asM := {x ∈ ẼT \ {} | 〈J ′(x),x〉 = }. Since the technique
of the proof of Theorem  is just the same as that of Theorem , where J and M are
replaced by J andM, we omit it here.

3 Autonomous difference equations
3.1 Variational framework
In this section, we consider the existence of periodic solutions with any prescribed mini-
mal period of (), that is, for any given positive integer P, we search for periodic solutions
of () with minimal period P.
The argument of this subsection is similar to that in Section .. Let

EP =
{
x = {. . . ,x–n, . . . ,x–,x,x, . . . ,xn, . . .} | xn+P = xn,xn ∈R

m,n ∈ Z
}
,

and equip EP with the inner product 〈·, ·〉P as follows:

〈x, y〉P =
P∑
n=

(xn, yn), ∀x, y ∈ EP.

http://www.advancesindifferenceequations.com/content/2014/1/215
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Then EP is a Hilbert space, which is homeomorphic to R
mP . Denote by ‖ · ‖P the norm

introduced by 〈·, ·〉P .
Define the Ls norm on ẼP by

‖x‖Ls =
( P∑

n=

|x|s
) 

s

.

Then Ls is equivalent to ‖ · ‖P and there exists C,s >  such that


C,s

‖x‖Ls ≤ ‖x‖P ≤ C,s‖x‖Ls , ∀x ∈ ẼP.

The variational functional corresponding to () defined on EP is

I(x) =
P∑
n=

[


|�xn| – F(xn)

]
=


〈Dx,x〉P –

P∑
n=

F(xn),

where #D is a matrix of ordermp. Then I is twice continuously differentiable. The critical
points of I are P-periodic solutions of ().
Define a subspace of EP as follows:

ẼP = {xn ∈ EP | xn is odd in n}.

Then the eigenvalue problem

Dx = λx, x ∈ ẼP,

has �(P – )/ solutions, each of them of multiplicity m. The smallest eigenvalue is λ =
 sin(π/P) and the largest eigenvalue is λ�(P–)/, which is denoted by λmax.

Lemma  If x is a critical point of I restricted on ẼP , then x is also a critical point of I on
the whole space EP .

At the end of this subsection, we define a Nehari manifoldM on ẼP as follows:

M =
{
x ∈ ẼP \ {} | 〈I ′(x),x〉P = 

}
.

3.2 Superquadratic case
In this subsection, we assume that F satisfies (F) and (F). Themain target of this subsec-
tion is to prove Theorem . A similar argument to Section ., one can check the following
facts:

(i)  < ( + α)F(x)≤ (f (x),x) for all x ∈R
m \ {}. Also,

F(x)≤ M′|x|α+, when |x| ≤ , F(x)≥M′|x|α+ when |x| ≥ ,

whereM′ =max|x|= F(x) andM′ =min|x|= F(x);
(ii) M is a C manifold;

http://www.advancesindifferenceequations.com/content/2014/1/215
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(iii) critical points of I restricted onM are also critical points of I restricted on ẼP ;
(iv) for any x ∈ ẼP \ {}, there exists a unique tx such that txx ∈M and

I(txx) =maxt∈(,∞) I(tx);
(v) I restricted onM satisfies the (PS) condition;
(vi) I restricted onM is bounded from below and C = infx∈M I(x) > .

Proof of Theorem  It follows from Lemma  that C is a critical value. Denote by x̃ the
critical point of I corresponding to C. Then x̃ is a P-periodic solution of (). It is easy to
check that x̃ is a nonconstant periodic solution.
Claim: x̃ has P as its minimal period.
Suppose, to the opposite, that there exists a positive integer k ≥  such that x̃ has P/k as

its minimal period. Define ỹ = {̃yl | l ∈ Z[,P]} as follows:

ỹl = x̃� l–k +.

Since x̃ ∈M, then ỹ ∈ ẼP \ {}. Thus there exists a r̃y >  such that r̃ỹy ∈M. Then

I(r̃ỹy) =
P∑
n=

[


|�r̃ỹyn| – F(r̃ỹyn)

]

=



P/k∑
n=

|�r̃ỹxn| –
P∑
n=

F(r̃ỹxn)

=

k

P∑
n=

|�r̃ỹxn| –
P∑
n=

F(r̃ỹxn)

<
P∑
n=

[


|�r̃ỹxn| – F(r̃ỹxn)

]
= I(r̃ỹx) ≤ I (̃x) = inf

x∈M
I(x).

This contradicts r̃ỹy ∈M. Hence x̃ has P as its minimal period. �

3.3 Subquadratic case (I)
In this subsection, we assume that F satisfies (F) and (F). A similar argument to Sec-
tion ., we can prove the following facts:

(I)  < (f (x),x)≤ ( + β ′)F(x) for all x ∈R
m \ {}. Also,

F(x)≥M′|x|β ′+, when |x| ≤ , F(x)≤M′|x|β ′+, when |x| ≥ ,

whereM′,M′ are defined in Section .;
(II) M is a C manifold;
(III) critical points of I restricted onM are critical points of I restricted on ẼP ;
(IV) for any x ∈ ẼP \ {}, there exists a unique tx such that txx ∈M and

I(txx) =mint∈(,∞) I(tx);
(V) I restricted onM satisfies the (PS) condition.
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Lemma  Assume that F satisfies (F) and (F). Then I restricted on ẼP is bounded from
below.

Proof It follows from Fact (I) that F(x) ≤ M′|x|β ′+ when |x| ≥ . Since F is continuous,
there exists a M >  such that F(x) ≤ M when |x| ≤ . Consequently, F(x) ≤ M′|x|β ′+ +
M for all x ∈R

m. Thus

I(x) =


〈Dx,x〉P –

P∑
n=

F(xn) ≥ λ‖x‖P –
P∑
n=

[
M′|x|β ′+ +M

]
≥ λ‖x‖P –M′Cβ ′+

,β ′+‖x‖β ′+
P – PM. ()

Since β ′ ∈ (, ), there exists a constant C such that I(x)≥ C for all x ∈ ẼP . �

Because of Lemma , I restricted on M is bounded from below. Denote by C =
infx∈M I(x). A similar argument to Lemma , we can prove that C < .

Proof of Theorem  It follows from Lemma  that C is a critical value. Denote by x̂ the
critical point of I corresponding to C. Then x̂ is a nonconstant P-periodic solution of ().
By a similar discussion to the proof of Theorem , we can prove that x̂ has P as its minimal
period. �

3.4 Subquadratic case (II)
In this subsection, we assume that F satisfies (F), (F), and (F). By a similar argument
to Lemma , we have the following lemma.

Lemma  Assume that F satisfies (F), (F), and (F).Then I restricted on ẼP is bounded
from below.

Lemma  C = infx∈ẼP I(x) < .

Proof By (F), F(z) ≥M|z|γ ′ if |x| <G. Then, for any x ∈ ẼP with ‖x‖P <G, we have

I(x) =


〈Dx,x〉P –

P∑
n=

F(xn) ≤ 

λmax‖x‖P –

P∑
n=

[
M|xn|γ ′]

≤ ‖x‖γ ′
P

[


λmax‖x‖–γ ′

P –MC–γ ′
,γ ′

]
.

Since  < γ ′ < , if  < ‖x‖P <min{G, [MC–γ ′
,γ ′/λmax]/(–γ ′)}, then

I(x) < –
(MC–γ ′

,γ ′ )/(–γ ′)

(λmax)/(–γ ′) .

Hence C = infx∈ẼP I(x) < . �
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Lemma  I restricted on ẼP satisfies the (PS) condition.

Proof Assume that {xk} ⊂ ẼP is a (PS) sequence for I . Then there exists aM ≥  such that
|I(xk)| ≤M for all k ∈N and I ′(xk) →  as k → ∞. Then

M ≥ I
(
xk

)
=


〈
xk ,Dxk

〉
–

P∑
n=

F
(
xkn

)

≥ 

λ

∥∥xk∥∥ –
P∑
n=

(
M

∣∣xk∣∣γ +M
)

≥ 

λ

∥∥xk∥∥ –MCγ
,γ

∥∥xk∥∥γ –MP.

Thus /λ‖xk‖ –MCγ
,γ ‖xk‖γ ≤MP +M. Since γ < , it follows that {xk} is bounded.

Since ẼT is a finite-dimensional space, there exists a convergent subsequence of {xk}. �

Proof of Theorem  Let {xk} ⊂ ẼP be aminimal sequence of I , that is, I(xk) → C as k → ∞.
By the Ekeland variational principle, I ′(xk) →  as k → ∞. Since I satisfies the (PS) con-
dition, C is a critical point of I restricted on ẼP . Denote by x the critical point of I corre-
sponding to critical value C. Then x is a periodic solution of (). It is easy to check that
x is a nonconstant P-periodic solution. By a similar discussion to the proof of Theorem ,
we can prove that x has P as its minimal period. �
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