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Abstract
This paper studies fractional evolution equations with infinite delay. We use the
means of the successive approximation to establish the existence and uniqueness of
mild solutions for this class of equations under global and local Carathéodory
conditions. An example is given to illustrate our results.
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1 Introduction
In this paper, we investigate the existence of solutions for a class of fractional differential
equations with infinite delay of the form

{
Dα

t x(t) = Ax(t) + f (t,xt), t ∈ J := [,T],T > ,
x(t) = ϕ(t), ϕ(t) ∈ B,

(.)

where Dα
t is a Caputo fractional derivative of order α ∈ (, ). x(·) takes the value in the

Banach space X; A is the infinitesimal generator of an analytic semigroup {S(t), t ≥ };
xt : (–∞, ] → X, xt(θ ) = x(t + θ ), θ ≤ , belongs to an abstract phase space B (specified
later); f : J × B → X. Throughout this paper, we employ the norm denoted by | · | for X.
The initial data ϕ = {ϕ(t) : –∞ < t ≤ } is a B-valued function.
Fractional differential equations are well known to describe many sophisticated dynam-

ical systems in physics, fluid dynamics, praxiology, viscoelasticity and engineering. The
greatest merit of systems including fractional derivative is their nonlocal property and
history memory []. For more details on the basic theory of fractional differential equa-
tions, one can see the monographs [, ]. At present, the existence of solutions for frac-
tional equations were discussed, for example, in [–], but these equations are usually
assumed to satisfy the Lipschitz condition. Wang and Zhou in [] addressed the existence
of solutions for a class of fractional evolution equations with delay with locally Lipschitz
condition. The existence of mild solutions for fractional neutral evolution equations with
nonlocal initial condition was obtained by the assumption of Lipschitz condition by Zhou
and Jiao in []. Besides, Agarwal et al. in [] examined the existence of fractional neutral
functional differential equations with Lipschitz condition. At present, some important re-
sults of impulsive fractional equations have been obtained.Wang et al. in [, ] addressed
the existence of solutions for impulsive fractional equations. Further, Dabas et al. in []
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investigated the existence of mild solutions for impulsive fractional equations with infi-
nite delay which possess the Lipschitz condition. The existence of solutions for fractional
evolution equationswith Lipschitz conditionwas obtained bymeans of themonotone iter-
ative technique byMu in []. However, as far as we know, there are few works to research
the existence of solutions for fractional evolution equations without Lipschitz condition.
To fill this gap, this paper studies system (.) which has no assumption of Lipschitz con-
dition.
In this paper, we show the existence and uniqueness results for (.) bymeans of the suc-

cessive approximation. Compared with the earlier related existence results that appeared
in [, , ], there are at least two essential differences:
() the conditions on f are nonlinear case and more general, and they do not need any

Lipschitz one and take values in X ;
() the key condition that {S(t), t ≥ } is compact is not required.
The rest of this paper is organized as follows. In Section , we introduce some notations,

concepts and basic results. In Section , the main results are presented. In Section , we
give an example to illustrate our results.

2 Preliminaries
First, we introduce some definitions and lemmas on fractional derivation and fractional
evolution equation.

Definition . Caputo’s derivative of order q with the lower limit  for the function h :
[,∞)→R can be written as

Dqh(t) =


�(n – q)

∫ t



h(n)(s)
(t – s)q+–n

ds, n –  < q < n,n ∈ Z
+.

Obviously, Caputo’s derivative of any constant is zero.

Axiom . B is a linear space that denotes the family of functions from (–∞, ] into X,
endowed with the norm ‖u‖B := sups∈(–∞,] |u(s)|, which satisfies the following axioms:

(i) if x : (–∞,T] → X is continuous on J and x ∈ B, then for every t ∈ J , we have xt ∈ B
and ‖xt‖B ≤ sup≤s≤t |x(s)| + ‖x‖B ;

(ii) for the function x(·) in (i), xt is a B-valued continuous function on J ;
(iii) the space B is complete.

Definition . Denote by L((–∞,T],X) the space of all X-valued continuous mappings
x = {x(t), –∞ < t < T}, such that

(i) x ∈ B and x(t) is continuous on J ;
(ii) define the norm ‖ · ‖L in L((–∞,T],X)

‖x‖L = ‖x‖B +
∫ T



∣∣x(t)∣∣ dt < ∞. (.)

Then L((–∞,T],X) with norm (.) is a Banach space. In the sequel, if there is no ambi-
guity, we will use ‖ · ‖ for this norm.

Definition . x(t), t ∈ J is called a mild solution of (.) if
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(i) the following integral equation is satisfied:

x(t) = Sα(t)ϕ() +
∫ t


(t – s)α–Tα(t – s)f (s,xs)ds, (.)

(ii) x = ϕ ∈ B,
where

Sα(t)x =
∫ ∞


ηα(θ )S

(
tαθ

)
xdθ , Tα(t)x = α

∫ ∞


θηα(θ )S

(
tαθ

)
xdθ ,

and

ηα(θ ) =


πα

∞∑
n=

(–θ )n–
�( + αn)

n!
sin(nπα), θ ∈ (,∞)

is the function of Wright type defined on (,∞).

Lemma . [] The following properties are valid:
(i) Sα(t) and Tα(t) are strongly continuous operators on X ;
(ii) for any y ∈ X , Sα(t) and Tα(t) are linear and bounded operators on X , i.e., there

exists a positive constant M such that

∣∣Sα(t)y
∣∣ ≤M|y|, ∣∣Tα(t)y

∣∣ ≤ M
�(α)

|y| for all y ∈ X and t ∈R
+.

In this paper, we will work under the following assumption:
(H) f : J ×B → X satisfies

(a) there exists a function F(t,u) : J ×R+ →R+ such that |f (t,φ)| ≤ F(t,‖φ‖B)
for φ ∈ B and t ∈ J ;

(b) F(t,u) is locally integrable in t for each fixed u ∈ R+ and is continuous and
monotone nondecreasing in u for each fixed t ∈ J ;

(c) for any constant K > , the fractional differential equation

Dα
t u(t) = KF

(
t,u(t)

)
, t ∈ J

has a global solution for any initial value u;
(H) (a) there exists a function F(t,u) : J ×R+ →R+ such that

∣∣f (t,u) – f (t,u)
∣∣ ≤ F

(
t,‖u – u‖B

)
for all u,u ∈ B and t ∈ J ;

(b) F(t,u) is locally integrable in t for each fixed u ∈R+ and is continuous and
nondecreasing in u for each fixed t ≥ . In addition, F(t, ) =  and if a
non-negative continuous function z(t), t ∈ J satisfies

Dα
t z(t) ≤DF

(
t, z(t)

)
, t ∈ J ,

where D is a positive constant, then z(t) ≡  for t ∈ J ;
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(H) the local condition
(a) for any integer N > , there exists a function FN

 (t,u) : J ×R+ →R+ such that

∣∣f (t,u) – f (t,u)
∣∣ ≤ FN


(
t,‖u – u‖B

)

for u,u ∈ B with ‖u‖B ,‖u‖B ≤N and t ∈ J ,
(b) FN

 (t,u) is locally integrable in t for each fixed u ∈R+ and is continuous and
nondecreasing in u for t ≥ . Moreover, FN

 (t, ) =  and if a nonnegative
continuous function z(t), t ∈ J satisfies

Dα
t z(t) ≤DFN


(
t, z(t)

)
, t ∈ J ,

where D >  is a positive constant, then z(t) ≡  for t ∈ J .

3 Main results
In this section, we establish the existence and uniqueness of mild solutions for (.). We
construct the sequence of successive approximations defined as follows:

(i) x(t) = Sα(t)ϕ(), t ∈ J ,
(ii)

xn(t) =Sα(t)ϕ() +
∫ t


(t – s)α–Tα(t – s)f

(
s,xn–s

)
ds, t ∈ J ,n≥ , (.)

(iii) xn(s) = ϕ(s), –∞ < s ≤ , n ≥ .
The first result is the following theorem.

Theorem . Let the assumptions of (H)-(H) hold. Then there exists a unique mild so-
lution of (.) in the sense of the space L((–∞,T],X).

Proof In order to prove this theorem, we divide the proof into the following steps.
Step . The boundedness of the sequence {xn(t),n ≥ }. From (.), we use the Hölder

inequality and Lemma ., and we obtain

sup
≤s≤t

∣∣xn(s)∣∣ ≤ 
[∣∣Sα(t)ϕ()

∣∣ + ∣∣∣∣
∫ t


(t – s)α–Tα(t – s)f

(
s,xn–s

)
ds

∣∣∣∣
]

≤ 
[
M‖ϕ‖B +

∣∣∣∣
∫ t


(t – s)

α–
 (t – s)

α–
 Tα(t – s)f

(
s,xn–s

)
ds

∣∣∣∣
]

≤ M
[
‖ϕ‖B +

Tα

�(α)�(α + )

∫ t


(t – s)α–

∣∣f (s,xn–s
)∣∣ ds]

≤M‖ϕ‖B +M

∫ t


(t – s)α–F

(
s,

∥∥xn–s
∥∥
B
)
ds,

where

M = M, M =
MTα

�(α)�(α + )
.
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Thus, by assumption (H) we have

sup
≤s≤t

∣∣xn(s)∣∣ ≤M‖ϕ‖B +M

∫ t


(t – s)α–F

(
s, 

(
‖ϕ‖B + sup

≤r≤s

∣∣xn–(r)∣∣))
ds. (.)

In view of (.), for any k ≥ , we have

max
≤n≤k

{
sup
≤s≤t

∣∣xn(s)∣∣}

≤M‖ϕ‖B +M

∫ t


(t – s)α–F

(
s, ‖ϕ‖B +  max

≤n≤k

(
sup
≤r≤s

∣∣xn(r)∣∣))
ds.

This indicates that

max
≤n≤k

{
‖ϕ‖B +  sup

≤r≤s

∣∣xn(r)∣∣}

≤ (M + )‖ϕ‖B + M

∫ t


(t – s)α–F

(
s, 

(
‖ϕ‖B +

(
max
≤n≤k

(
sup
≤r≤s

∣∣xn(r)∣∣))))
ds.

By assumption (H), it implies that there is a solution ut satisfying

ut = (M + )‖ϕ‖B + M

∫ t


(t – s)α–F(s,us)ds.

Since ‖ϕ‖B < ∞, we have

max
≤n≤k

{
sup
≤s≤t

∣∣xn(s)∣∣} ≤ ut ≤ uT < ∞. (.)

Further, since k is arbitrary, we have
∣∣xn(t)∣∣ ≤ uT for all  ≤ t ≤ T ,n≥ . (.)

So, we obtain

∥∥xn∥∥ =
∥∥xn∥∥

B +
∫ T



∣∣xn(t)∣∣ dt ≤ ∥∥xn∥∥
B + TuT ,

which shows the boundedness of the sequence {xn(t),n≥ }.
Step . The sequence {xn(t),n ≥ } is a Cauchy sequence. From (.) and assumption

(H), for allm,n≥  and t ∈ J , we can get that

sup
≤s≤t

∣∣xn+(s) – xm+(s)
∣∣

≤
∣∣∣∣
∫ t


(t – s)α–Tα(t – s)

[
f
(
s,xns

)
– f

(
s,xms

)]
ds

∣∣∣∣


≤ MTα

�(α)�(α + )

∫ t


(t – s)α–

∣∣f (s,xns ) – f
(
s,xms

)∣∣ ds
≤ MTα

�(α)�(α + )

∫ t


(t – s)α–F

(
s,

∥∥xns – xms
∥∥
B
)
ds

≤ MTα

�(α)�(α + )

∫ t


(t – s)α–F

(
s, sup

≤r≤s

∣∣xn(r) – xm(r)
∣∣)ds.
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Let

z(t) := lim sup
n,m→∞

{
sup
≤s≤t

∣∣xn(s) – xm(s)
∣∣}.

In view of (.), assumption (H) and the Fatou lemma, we have

z(t) ≤ MTα

�(α)�(α + )

∫ t


(t – s)α–F

(
s, z(s)

)
ds.

By assumption (H), we can obtain z(t) = . As a result, it is known that {xn(t),n ≥ } is a
Cauchy sequence.
Step . The existence and uniqueness of the solution for (.). Let n → ∞, it follows

that xn(t) → x(t) holds uniformly for ≤ t ≤ T . So, taking limits on both sides of (.) for
t ∈ (–∞,T], we have that x(t) is a solution for (.). This shows the existence of solution
for (.). The uniqueness of the solution could be gotten following the same procedure as
in Step . By Step , we can know that x(t) ∈ L((–∞,T],X). �

Next, we prove the existence and uniqueness of mild solutions for (.) under the local
Carathéodory conditions.

Theorem . Let the assumptions of (H)-(H) hold. Then there exists a unique mild so-
lution of (.) in the sense of the space L((–∞,T],X).

Proof Let N be a natural integral and T ∈ (,T). Define the sequence of the function
f N (t,u) for (t,u) ∈ [,T]×B as follows:

f N (t,u) =

{
f (t,u), ‖u‖B ≤N ,
f (t, Nu

‖u‖B ), ‖u‖B >N .

Then the function f N (t,u) satisfies (H) and the following inequality holds:

∣∣f N (t,u) – f N (t,u)
∣∣ ≤ FN


(
t,‖u – u‖B

)

for u,u ∈ B, t ∈ [,T]. Therefore, by Theorem., there exist solutions xN (t) and xN+(t)
to the following equations, respectively:

xN (t) = Sα(t)ϕ() +
∫ t


(t – s)α–Tα(t – s)f N

(
s,xNs

)
ds, (.a)

xN+(t) = Sα(t)ϕ() +
∫ t


(t – s)α–Tα(t – s)f N+(s,xN+

s
)
ds. (.b)

From (.a) and (.b), we have

xN+(t) – xN (t) =
∫ t


(t – s)α–Tα(t – s)

(
f N+(s,xN+

s
)
– f N

(
s,xNs

))
ds. (.)

http://www.advancesindifferenceequations.com/content/2014/1/216
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Define the stopping times

σN := T ∧ inf
{
t ∈ J :

∥∥xNt ∥∥
B ≥N

}
,

σN+ := T ∧ inf
{
t ∈ J :

∥∥xN+
t

∥∥
B ≥N + 

}
,

τN := σN ∧ σN+.

Thus, from (.), we obtain

sup
≤s≤t∧τN

∣∣xN+(s) – xN (s)
∣∣

≤ MTα

�(α)�(α + )

∫ t∧τN


(t – s)α–

∣∣f N+(s,xN+
s

)
– f N

(
s,xNs

)∣∣ ds. (.)

Noting that f N+(s,xNs ) = f N (s,xNs ) for s ∈ [, τN ], we have

sup
≤s≤t∧τN

∣∣xN+(s) – xN (s)
∣∣

≤ MTα

�(α)�(α + )

∫ t∧τN


(t – s)α–

∣∣f N+(s,xN+
s

)
– f N+(s,xNs )∣∣ ds. (.)

Therefore, this yields

sup
≤s≤t∧τN

∣∣xN+(s) – xN (s)
∣∣

≤ MTα

�(α)�(α + )

∫ t


(t – s)α–

∣∣f N+(s,xN+
t∧τN

)
– f N+(s,xNt∧τN

)∣∣ ds. (.)

By (H), we get

sup
≤s≤t

∣∣xN+(s∧ τN ) – xN (s∧ τN )
∣∣

≤ MTα

�(α)�(α + )

∫ t


(t – s)α–FN+


(
s∧ τN ,

∥∥xN+
s∧τN

– xNs∧τN

∥∥
B
)
ds

≤ MTα

�(α)�(α + )

∫ t


(t – s)α–FN+



(
s∧ τN , sup

≤s≤t

∣∣xN+(s∧ τN ) – xN (s∧ τN )
∣∣)ds.

By (H) we have

xN+(t) = xN (t), t ∈ [,T ∧ τN ].

Since x(t ∧ τN ) = xN (t ∧ τN ), it holds that

x(t ∧ τN ) = Sα(t)ϕ() +
∫ t∧τN


(t – s)α–Tαf N

(
s,xNs

)
ds

= Sα(t)ϕ() +
∫ t∧τN


(t – s)α–Tαf (s,xs)ds.
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Letting N → ∞ for t ∈ J , we have

x(t) = Sα(t)ϕ() +
∫ t


(t – s)α–Tαf (s,xs)ds,

so this proof is finished. �

4 Example
In this section, we provide an example to illustrate our result. Consider the following non-
linear fractional partial differential equations with infinite delay:

Dα
t u(t,x) =

∂u(t,x)
∂x

+ u(t,x) sin t, t ∈ [,T], (.)

with the initial data u(s) ≡ , for s ∈ (–∞, ]. Let F(t,u) = u and F(t,u) = u and they
satisfy conditions (H)-(H). And we have known that

{
Dα

t u(t) = u(t), t ∈ J ,
u(s) ≡ , s ∈ (–∞, ],

has a unique solution, i.e., u(t) = tα–Eα,α(tα), where Eα,β (z) =
∑∞

k=
zk

�(αz+β) , t ∈ J . In addi-
tion,

{
Dα

t u(t) = u(t), t ∈ J ,
u(s) ≡ , s ∈ (–∞, ],

possesses a unique solution of . Thus, according to Theorems . and ., system (.)
has a unique mild solution.
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4. Wang, J, Zhou, Y, Fěckan, M: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 71, 685-700

(2013)
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