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Abstract
It is the purpose of this paper to give oscillation criteria for the third-order neutral
dynamic equations with continuously distributed delay,
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on a time scale T, where γ is the quotient of odd positive integers. By using a
generalized Riccati transformation and an integral averaging technique, we establish
some new sufficient conditions which ensure that every solution of this equation
oscillates or converges to zero.
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1 Introduction
We are concerned with the oscillatory behavior of third-order neutral dynamic equations
with continuously distributed delay,
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on an arbitrary time scale T, where γ is a quotient of odd positive integers. Throughout
this paper, we will assume the following hypotheses:
(H) r and q are positive rd-continuous functions on T and

∫ ∞

t

(


r(t)

) 
γ

�t =∞; ()

(H) p(t,η) ∈ Crd([t,∞)× [a,b],R),  ≤ p(t) ≡ ∫ b
a p(t,η)�η ≤ P < ;

(H) τ (t,η) ∈ Crd([t,∞)× [a,b],T) is not a decreasing function for η and such that

τ (t,η)≤ t and lim
t→∞ min

η∈[a,b]
τ (t,η) =∞;
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(H) φ(t, ξ ) ∈ Crd([t,∞)× [c,d],T) is not decreasing function for ξ and such that

φ(t, ξ )≤ t and lim
t→∞ min

ξ∈[c,d]
φ(t, ξ ) =∞;

(H) the function f ∈ Crd(T,R) is assumed to satisfy uf (u) >  and there exists a
positive rd-continuous function δ(t) on T such that f (u)

uγ ≥ δ, for u �= .
Define the function by

z(t) = x(t) +
∫ b

a
p(t,η)x

[
τ (t,η)

]
�η. ()

Furthermore, () is like the following:
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]��)γ ]� +
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q(t, ξ )f
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x
[
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])
�ξ = . ()

A solution x(t) of () is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is non-oscillatory.
Much recent attention has been given to dynamic equations on time scales, or mea-

sure chains, and we refer the reader to the landmark paper of Hilger [] for a comprehen-
sive treatment of the subject. Since then, several authors have expounded various aspects
of this new theory; see the survey paper by Agarwal et al. []. A book on the subject of
time scales by Bohner and Peterson [] also summarizes and organizes much of the time
scale calculus. In the recent years, there has been increasing interest in obtaining suffi-
cient conditions for the oscillation and non-oscillation of solutions of various equations
on time scales; we refer the reader to the papers [–]. Candan [] considered oscilla-
tion of second-order neutral dynamic equations with distributed deviating arguments of
the form

(
r(t)

((
y(t) + p(t)y

(
τ (t)

))�)γ )� +
∫ d

c
f
(
t, y

(
θ (t, ξ )

))
�ξ = ,

where γ >  is a ratio of odd positive integers with r(t) and p(t) real-valued rd-continuous
positive functions defined on T. He established some new oscillation criteria and gave
sufficient conditions to ensure that all solutions of nonlinear neutral dynamic equation
are oscillatory on a time scale T.
To the best of our knowledge, there is very little known about the oscillatory behavior of

third-order dynamic equations. Erbe et al. [] are concernedwith the oscillatory behavior
of solutions of the third-order linear dynamic equation

x���(t) + p(t)x(t) = ,

on an arbitrary time scale T, where p(t) is a positive real-valued rd-continuous function
defined on T. Li et al. [] considered third-order nonlinear delay dynamic equation

x�
+ p(t)xγ

(
τ (t)

)
= ,

on a time scale T, where γ >  is quotient of odd positive integers.
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Erbe et al. [, ] established some sufficient conditions which guarantee that every
solution of the third-order nonlinear dynamic equation

(
c(t)

(
a(t)x�(t)

)�)� + q(t)f
(
x(t)

)
= ,

and the third-order dynamic equation

(
c(t)

((
a(t)x�(t)

)�)γ )� + f
(
t,x(t)

)
= 

oscillate or converge to zero. Li et al. [] considered the third-order delay dynamic equa-
tions

(
a(t)

([
r(t)x�(t)

]�)γ )� + f
(
t,x

(
τ (t)

))
= ,

on a time scale T, where γ >  is quotient of odd positive integers, a and r are positive rd-
continuous functions on T, and the so-called delay function τ : T → T satisfies τ (t) ≤ t,
and τ (t) → ∞ as t → ∞, f (x) ∈ Crd(T×R,R) is assumed to satisfy uf (t,u) > , for u �= ,
and there exists a function p on T such that f (t,u)

uγ ≥ p(t) > , for u �= .
Saker [] considered the third-order nonlinear functional dynamic equations

(
p(t)

([
r(t)x�(t)

]�)γ )� + q(t)f
(
x
(
τ (t)

))
= ,

on a time scale T, where γ >  is quotient of odd positive integers. Recently Han et al. []
and Grace et al. [] considered the third-order neutral delay dynamic equation

(
r(t)

(
x(t) – a(t)x

(
τ (t)

))��)� + p(t)xγ
(
δ(t)

)
= ,

on a time scale T.
In this paper, we consider third-order neutral dynamic equation with continuously dis-

tributed delay on time scales which is not in literature.We obtain some conclusions which
contribute to oscillation theory of third-order neutral dynamic equations.

2 Several lemmas
Before stating our main results, we begin with the following lemmas which play an impor-
tant role in the proof of the main results. Throughout this paper, we let

d+(t) :=max
{
,d(t)

}
, d–(t) :=max

{
,–d(t)

}
,

and

β(t) := b(t),  < γ ≤ , β(t) := bγ (t), γ > ,

b(t) =
t

σ (t)
, R(t, t∗) :=

∫ t

t∗

(

r(s)

) 
γ

�s,

where we have sufficiently large t∗ ∈ [t,∞)T.
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In order to prove our main results, we will use the formula

(
zγ (t)

)� = γ

∫ 



[
hzσ + ( – h)z

]γ–z�(t)dh,

where z(t) is delta differentiable and eventually positive or eventually negative, which is a
simple consequence of Keller’s chain rule (see Bohner and Peterson []).

Lemma . Let x(t) be a positive solution of (), z(t) is defined as in (). Then z(t) has only
one of the following two properties:

(I) z(t) > , z�(t) > , z��(t) > ,
(II) z(t) > , z�(t) < , z��(t) > ,

with t ≥ t, t sufficiently large.

Proof Let x(t) be a positive solution of () on [t,∞), so that z(t) > x(t) > , and

[
r(t)

(
z��(t)

)γ ]� = –
∫ d

c
q(t, ξ )f

(
x
[
φ(t, ξ )

])
�ξ < .

Then r(t)([z(t)]��)γ is a decreasing function and therefore eventually of one sign, so z��(t)
is either eventually positive or eventually negative on t ≥ t ≥ t. We assert that z��(t) > 
on t ≥ t ≥ t. Otherwise, assume that z��(t) < , then there exists a constantM > , such
that

r(t)
(
z��(t)

)γ ≤ –M < .

By integrating the last inequality from t to t, we obtain

z�(t) ≤ z�(t) –M

γ

∫ t

t

(

r(s)

) 
γ

�s.

Let t → ∞. Then from (H), we have (z(t))� → –∞, and therefore eventually z�(t) < .
Since z��(t) <  and z�(t) < , we have z(t) < , which contradicts our assumption

z(t) > . Therefore, z(t) has only one of the two properties (I) and (II).
This completes the proof. �

Lemma . Let x(t) be an eventually positive solution of (), correspondingly z(t) has the
property (II). Assume that () and

∫ ∞

t

∫ ∞

v

[


r(u)

∫ ∞

u
q(s)�s

] 
γ

�u�v =∞ ()

hold. Then limt→∞ x(t) = .

Proof Let x(t) be an eventually positive solution of (). Since z(t) has the property (II), then
there exists finite limt→∞ z(t) = I . We assert that I = . Assume that I > , then we have
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I + ε > z(t) > I for all ε > . Choosing ε < I(–P)
P and using () and (H), we obtain

x(t) = z(t) –
∫ b

a
p(t,η)

[
x
(
τ (t,η)

)]
�η
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∫ b
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x
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�η
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[
z
(
τ (t,a)

)]
≥ I – P(I + ε) > Kz(t), ()

where K = I–P(+ε)
I+ε

> . Using (H) and (), we find from () that

[
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)γ ]� = –
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c
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(
x
[
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])γ
δ�ξ
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∫ d

c
q(t, ξ )

(
z
[
φ(t, ξ )

])γ
�ξ .

Note that z(t) has property (II) and (H), and we have

[
r(t)

(
z��(t)

)γ ]� ≤ –Kγ · δ · (z[φ(t,d)])γ

∫ d

c
q(t, ξ )�ξ = –q(t)

(
z
(
φ(t)

))γ , ()

where q(t) = Kγ δ
∫ d
c q(t, ξ )�ξ , φ(t) = φ(t,d). Integrating inequality () from t to ∞, we

obtain

r(t)
(
z��(t)

)γ ≥
∫ ∞

t
q(s)

(
z
(
φ(s)

))γ
�s.

Using (z(φ(s)))γ ≥ Iγ , we obtain

z��(t)≥ I

r

γ

[∫ ∞

t
q(s)

] 
γ

�(s). ()

Integrating inequality () from t to ∞, we have

–z�(t)≥ I
∫ ∞

t

[


r(u)

∫ ∞

u
q(s)�(s)

] 
γ

�u.

Integrating the last inequality from t to ∞, we obtain

z(t) ≥ I
∫ ∞

t

∫ ∞

v

[


r(u)

∫ ∞

u
q(s)�(s)

] 
γ

�u�v.

Because () and the last inequality contradict (), we have I = . Since  ≤ x(t) ≤ z(t),
limt→∞ x(t) = . This completes the proof. �
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Lemma . Assume that x(t) is a positive solution of (), z(t) is defined as in () such that
z��(t) > , z�(t) > , on [t∗,∞)T, t∗ ≥ . Then

z�(t) ≥ R(t, t∗)r

γ (t)z��(t). ()

Proof Since r(t)(z��(t))γ is strictly decreasing on [t∗,∞)T, we get for t ∈ [t∗,∞)T

z�(t) > z�(t) – z�(t∗)

=
∫ t

t∗

(r(s)(z��(t))γ )

γ

r

γ (s)

�s

≥ (
r(t)

(
z��(t)

)γ ) 
γ

∫ t

t∗

(

r(s)

) 
γ

�s.

Using the definition of R(t, t∗), we obtain

z�(t) > R(t, t∗)r

γ (t)z��(t) on [t∗,∞)T . �

Lemma . Assume that x(t) is a positive solution of (), correspondingly z(t) has the prop-
erty (I). Such that z�(t) > , z��(t) > , on [t∗,∞)T, t∗ ≥ t. Furthermore,

∫ t

t
q(s)φγ

 (s)�s =∞. ()

Then there exists a T ∈ [t∗,∞)T, sufficiently large, so that

z(t) > tz�(t),

z(t)/t is strictly decreasing, t ∈ [T ,∞)T.

Proof Let U(t) = z(t) – tz�(t). Hence U�(t) = –σ (t)z��(t) < . We claim there exists a
t ∈ [t∗,∞)T such that U(t) > , z(φ(t, ξ )) >  on [t,∞)T. Assume not. Then U(t) <  on
[t,∞)T. Therefore,

(
z(t)
t

)�

=
tz�(t) – z(t)

tσ (t)
= –

U(t)
tσ (t)

> , t ∈ [t,∞)T ,

which implies that z(t)/t is strictly increasing on [t,∞)T. Pick t ∈ [t,∞)T so that
φ(t, ξ )≥ φ(t, ξ ), for t ≥ t. Then

z(φ(t, ξ ))
φ(t, ξ )

≥ z(φ(t, ξ ))
φ(t, ξ )

= d > ,

so that z(φ(t, ξ )) > dφ(t, ξ ), for t ≥ t. By (), (), and (H), we obtain

x(t) = z(t) –
∫ b

a
p(t,η)x

[
τ (t,η)

]
�η

≥ z(t) –
∫ b

a
p(t,η)z

[
τ (t,η)

]
�η
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≥ z(t) – z
[
τ (t,b)

]∫ b

a
p(t,η)�η

≥
(
 –

∫ b

a
p(t,η)�η

)
z(t)

≥ ( – P)z(t). ()

Using (), (H), and (H), we have

[
r(t)

([
z(t)

]��)γ ]� = –
∫ d

c
q(t, ξ )f

(
x
[
φ(t, ξ )

])
�ξ

≤ –δ( – P)γ
∫ d

c
q(t, ξ )zγ

(
φ(t, ξ )

)
�ξ

≤ –δ( – P)γ zγ
(
φ(t, c)

)∫ d

c
q(t, ξ )�ξ

≤ –q(t)zγ
(
φ(t)

)
, ()

where q(t) = δ( – P)γ
∫ d
c q(t, ξ )�ξ , φ(t) = φ(t, c).

Now by integrating both sides of last equation from t to t, we have

r(t)
(
z��(t)

)γ – r(t)
(
z��(t)

)γ +
∫ t

t
q(s)zγ

(
φ(s)

)
�s ≤ .

This implies that

r(t)
(
z��(t)

)γ ≥
∫ t

t
q(s)

(
z
(
φ(s)

))γ
�s≥ dγ

∫ t

t
q(s)φγ

 (s)�s,

which contradicts (). So U(t) >  on t ∈ [t,∞)T and consequently,

(
z(t)
t

)�

=
tz�(t) – z(t)

tσ (t)
= –

U(t)
tσ (t)

< , t ∈ [t,∞)T ,

and we find that z(t)/t is strictly decreasing on t ∈ [t,∞)T. The proof is now complete.
�

3 Main results
In this section we give some new oscillation criteria for ().

Theorem . Assume that (), (), and () hold. Furthermore, assume that there exists
a positive function ρ ∈ C

rd( [t,∞)T ,R), for all sufficiently large T ∈ [t,∞)T, there is a
T > T such that

lim sup
t→∞

∫ t

T

[
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

–
((ρ�(s))+)γ+

(γ + )γ+(β(s)ρσ (s)R(s, t∗))γ

]
�s =∞. ()

Then every solution of () is either oscillatory or tends to zero.
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Proof Assume () has a non-oscillatory solution x(t) on [t,∞)T.Wemay assumewithout
loss of generality that x(t) > , t ≥ t; x(τ (t,η)) > , (t,η) ∈ [t,∞)× [a,b] and x(φ(t, ξ )) > ,
(t, ξ ) ∈ [t,∞)× [c,d] for all t ∈ [t,∞)T. z(t) is defined as in ().We suppose that z(t) > .
We shall consider only this case, since the proof when z(t) is eventually negative is similar.
Therefore Lemma . and Lemma ., we get

[
r(t)

([
z(t)

]��)γ ]� < , z��(t) > , t ∈ [t,∞)T ,

and either z�(t) >  for t ≥ t ≥ t or limt→∞ x(t) = . Let z�(t) >  on [t,∞)T.
By () and (), we have

[
r(t)

([
z(t)

]��)γ ]� ≤ –q(t)zγ
(
φ(t)

)
,

where q(t) = δ( – P)γ
∫ d
c q(t, ξ )�ξ , φ(t) = φ(t, c).

Define the function w(t) by the Riccati substitution

w(t) = ρ(t)
r(t)([z(t)]��)γ

zγ (t)
. ()

Then

w�(t) = ρ�(t)
r(t)([z(t)]��)γ

zγ (t)
+ ρσ (t)

[
r(t)([z(t)]��)γ

zγ (t)

]�

= ρ�(t)
r(t)([z(t)]��)γ

zγ (t)
+ ρσ (t)

[r(t)([z(t)]��)γ ]�

zγ σ (t)

– ρσ (t)
r(t)([z(t)]��)γ (zγ (t))�

zγ (t)zγ σ (t)
.

From (), the definition of w(t) and using the fact z(t)/t is strictly decreasing for t ∈
[t,∞)T, t ≥ t, it follows that

w�(t)≤ ρ�(t)
ρ(t)

w(t) – ρσ (t)q(t)
zγ (φ(t))
zγ σ (t)

– ρσ (t)
r(t)([z(t)]��)γ (zγ (t))�

zγ (t)zγ σ (t)
,

w�(t)≤ ρ�(t)
ρ(t)

w(t) – ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

– ρσ (t)
r(t)([z(t)]��)γ (zγ (t))�

zγ (t)zγ σ (t)
.

()

Now we consider the following two cases:  < γ ≤  and γ > . In the first case  < γ ≤ .
Using the Keller chain rule (see []), we have

(
zγ (t)

)� = γ

∫ 



[
hzσ + ( – h)z

]γ–z�(t)dh≥ γ
(
zσ (t)

)γ–z�(t), ()

in view of (), Lemma ., Lemma ., and (), we have

w�(t) ≤ –ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

+
(ρ�(t))+

ρ(t)
w(t) – γρσ (t)

r(t)(z��(t))γ z�(t)z(t)
zγ+(t)zσ (t)

≤ –ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

+
(ρ�(t))+

ρ(t)
w(t)
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– γρσ (t)R(t, t∗)
r

γ+
γ (t)(z��(t))γ+z(t)
zγ+(t)z(σ (t))

≤ –ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

+
(ρ�(t))+

ρ(t)
w(t) – γρσ (t)R(t, t∗)

t
σ (t)

w
γ+
γ (t)

ρ
γ+
γ (t)

. ()

In the second case γ > . Applying the Keller chain rule, we have

(
zγ (t)

)� = γ

∫ 



[
hzσ + ( – h)z

]γ–z�(t)dh≥ γ
(
z(t)

)γ–z�(t), ()

in the view of (), Lemma ., Lemma ., and (), we have

w�(t)≤ –ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

+
(ρ�(t))+

ρ(t)
w(t)

– γρσ (t)
r(t)([z(t)]��)γ z�(t)zγ (t)

zγ+(t)zγ σ (t)
,

w�(t)≤ –ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

+
(ρ�(t))+

ρ(t)
w(t)

– γρσ (t)
(

t
σ (t)

)γ

R(t, t∗)
w

γ+
γ (t)

ρ
γ+
γ (t)

.

()

By (), (), and the definition of b(t) and β(t), we have, for γ > ,

w�(t) ≤ –ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

+
(ρ�(t))+

ρ(t)
w(t) – γρσ (t)β(t)R(t, t∗)

wλ(t)
ρλ(t)

, ()

where λ := γ+
γ
. Define A≥  and B ≥  by

Aλ := γρσ (t)β(t)R(t, t∗)
wλ(t)
ρλ(t)

,

Bλ– :=
ρ�(t)

λ(γρσ (t)β(t)R(t, t∗))

λ

.

Then using the inequality []

λABλ– –Aλ ≤ (λ – )Bλ, ()

which yields

(ρ�(t))+
ρ(t)

w(t) – γρσ (t)β(t)R(t, t∗)
wλ(t)
ρλ(t)

≤ ((ρ�(t))+)γ+

(γ + )γ+(β(t)ρσ (t)R(t, t∗))γ
.

From this last inequality and (), we find

w�(t) ≤ –ρσ (t)q(t)
(

φ(t)
σ (t)

)γ

+
((ρ�(t))+)γ+

(γ + )γ+(β(t)ρσ (t)R(t, t∗))γ
.
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Integrating both sides from T to t, we get

∫ t

T

[
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

–
((ρ�(s))+)γ+

(γ + )γ+(β(s)ρσ (s)R(s, t∗))γ

]
�s ≤ w(T) –w(t)≤ w(T),

which contradicts assumption (). This completes the proof of Theorem .. �

Remark . From Theorem ., we can obtain different conditions for oscillation of ()
with different choices of ρ(t).

Remark . The conclusion of Theorem . remains intact if assumption () is replaced
by the two conditions

lim sup
t→∞

∫ t

T
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

�s =∞,

lim sup
t→∞

∫ t

T

((ρ�(s))+)γ+

(γ + )γ+(β(s)ρσ (s)ψ(s, t∗))γ
�s < ∞.

For example, let ρ(t) = t. Now Theorem . yields the following results.

Corollary . Assume that (H)-(H), (), and () hold. If

lim sup
t→∞

∫ t

T

[
σ (s)q(s)

(
φ(s)
σ (s)

)γ

–


(γ + )γ+(β(s)σ (s)R(s, t∗))γ

]
�s =∞ ()

holds, then every solution () is either oscillatory or limt→∞ x(t) = .

For example, let ρ(t) = . Now Theorem . yields the following results.

Corollary . Assume that (H)-(H), (), and () hold. If

lim sup
t→∞

∫ t

T
q(s)

(
φ(s)
σ (s)

)γ

�s =∞, ()

then every solution () is either oscillatory or limt→∞ x(t) = .

Theorem . Assume that (), (), and () hold. Furthermore, suppose that there exist
functions H ,h ∈ Crd(D,R), where D ≡ (t, s) : t ≥ s ≥ t such that

H(t, t) = , t ≥ ,

H(t, s) > , t > s≥ t,

and H has a nonpositive continuous �-partial derivative H�s(t, s) with respect to the sec-
ond variable and satisfies

H�s(σ (t), s) +H
(
σ (t),σ (s)

)ρ�(s)
ρ(s)

= –
h(t, s)
ρ(s)

H
(
σ (t),σ (s)

) γ
γ+ , ()
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and for all sufficiently large T ∈ [t,∞)T, there is a T > T such that

lim sup
t→∞


H(σ (t),T)

∫ σ (t)

T
K (t, s) =∞, ()

where ρ is a positive �-differentiable function and

K (t, s) =H
(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

–
(h–(t, s))γ+

(γ + )γ+(β(s)ρσ (s)R(s,T))γ
�s =∞.

Then every solution of () is either oscillatory or tends to zero.

Proof Suppose that x(t) is a non-oscillatory solution of () and z(t) is defined as in ().
Without loss of generality, we may assume that there is a t ∈ [t,∞)T sufficiently large so
that the conclusions of Lemma . hold and () holds for t > t. If case () of Lemma .
holds then proceeding as in the proof of Theorem ., we see that () holds for t > t.
Multiplying both sides of () by H(σ (t),σ (s)) and integrating from T to σ (t), we get

∫ σ (t)

T
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

�s

≤ –
∫ σ (t)

T
H

(
σ (t),σ (s)

)
w�(s)�s +

∫ σ (t)

T
H

(
σ (t),σ (s)

)ρ�(s)
ρ(s)

w(s)�s

–
∫ σ (t)

T
H

(
σ (t),σ (s)

)
γρσ (s)β(s)R(s,T)

wλ(s)
ρλ(s)

�s
(

λ =
γ + 

γ

)
. ()

Integrating by parts and using H(t, t) = , we obtain

∫ σ (t)

T
H

(
σ (t),σ (s)

)
w�(s)�s = –H

(
σ (t),T

)
w(T) –

∫ σ (t)

T
H�s(σ (t), s)w(s)�s.

It then follows from () that

∫ σ (t)

T
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

�s

≤H
(
σ (t),T

)
w(T) +

∫ σ (t)

T
H�s(σ (t), s)w(s)�s

+
∫ σ (t)

T
H

(
σ (t),σ (s)

)ρ�(s)
ρ(s)

w(s)�s

–
∫ σ (t)

T
H

(
σ (t),σ (s)

)
γρσ (s)β(s)R(s,T)

wλ(s)
ρλ(s)

�s,

∫ σ (t)

T
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

�s

≤H
(
σ (t),T

)
w(T)

+
[∫ σ (t)

T
H�s(σ (t), s) +H

(
σ (t),σ (s)

)ρ�(s)
ρ(s)

]
w(s)�s

–
∫ σ (t)

T
H

(
σ (t),σ (s)

)
γρσ (s)β(s)R(s,T)

wλ(s)
ρλ(s)

�s.
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It then follows from () that

∫ σ (t)

T
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

�s

≤H
(
σ (t),T

)
w(T)

+
∫ σ (t)

T

[
–
h(t, s)
ρ(s)

H
(
σ (t),σ (s)

) γ
γ+

]
w(s)�s

–
∫ σ (t)

T
H

(
σ (t),σ (s)

)
γρσ (s)β(s)R(s,T)

wλ(s)
ρλ(s)

�s

≤H
(
σ (t),T

)
w(T) +

∫ σ (t)

T

[
h(t, s)
ρ(s)

H
(
σ (t),σ (s)

) γ
γ+

]
w(s)�s

–
∫ σ (t)

T
H

(
σ (t),σ (s)

)
γρσ (s)β(s)R(s,T)

wλ(s)
ρλ(s)

�s.

Therefore, as in Theorem ., by letting

Aλ :=H
(
σ (t),σ (s)

)
γρσ (t)β(t)R(t,T)

wλ(t)
ρλ(t)

,

Bλ– :=
h–(t, s)

λ(γρσ (t)β(t)R(t,T))

λ

.

Then using the inequality []

λABλ– –Aλ ≤ (λ – )Bλ.

We have

∫ σ (t)

T

[
h–(t, s)
ρ(s)

H
(
σ (t),σ (s)

) γ
γ+

]
w(s)�s

–
∫ σ (t)

T
H

(
σ (t),σ (s)

)
γρσ (s)β(s)R(s,T)

wλ(s)
ρλ(s)

�s

=
∫ σ (t)

T

(h–(t, s))γ+

(γ + )γ+(β(s)ρσ (s)R(t,T))γ
�s,

∫ σ (t)

T
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

�s

≤H
(
σ (t),T

)
w(T) +

∫ σ (t)

T

(h–(t, s))γ+

(γ + )γ+(β(s)ρσ (s)R(t,T))γ
�s.

Then for T > T we have

∫ σ (t)

T

[
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

–
(h–(t, s))γ+

(γ + )γ+(β(s)ρσ (s)R(s,T))γ

]
�s

≤H
(
σ (t),T

)
w(T),
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and this implies that


H(σ (t),T)

∫ σ (t)

T

[
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

–
(h–(t, s))γ+

(γ + )γ+(β(s)ρσ (s)R(s,T))γ

]
�s < w(T),

for all large T , which contradicts (). This completes the proof of Theorem .. �

Remark . The conclusion of Theorem . remains intact if assumption () is replaced
by the two conditions

lim sup
t→∞


H(σ (t),T)

∫ σ (t)

T
H

(
σ (t),σ (s)

)
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

�s =∞,

lim inf
t→∞


H(σ (t),T)

∫ σ (t)

T

(h–(t, s))γ+

(γ + )γ+(β(s)ρσ (s)R(s,T))γ
�s <∞.

Remark . Define w as (), we also get

w�(t) = rσ (t)
(
z��(t)

)γ σ

[
ρ(t)
zγ (t)

]�

+
ρ(t)
zγ

[
r(t)

(
z��(t)

)γ ]�,

similar to the proofs of Theorem ., we can obtain different results. We leave the details
to the reader.

Example . Consider the following third-order neutral dynamic equation t ∈ [t,∞)T:

(
x(t) +

∫ b

a
e–tx(t – η)�η

)���

+
∫ d

c

β · t
(t – tξ )(t – tξ )σ

x(t – ξ )�ξ = , ()

where γ = , r(t) = , τ (t,η) = t – η, φ(t, ξ ) = t – ξ , δ = , q(t) = β

tφ(t)
, p(t,η) = e–t , q(t, ξ ) =

β · t/(t – tξ )(t – tξ )σ .
It is clear that condition (), (), and () hold. Therefore, by Theorem ., picking

ρ(t) = t, we have

lim sup
t→∞

∫ t

T

[
ρσ (s)q(s)

(
φ(s)
σ (s)

)γ

–
((ρ�(s))+)γ+

(γ + )γ+(β(s)ρσ (s)R(s, t∗))γ

]
�s

= lim sup
t→∞

∫ t

T

[
β

s
–


(γ + )(γ+)s(s – t∗)

]
�s =∞.

Hence, by Theorem . every solution of () is oscillatory or tends to zero if β > .

Example . Consider the following third-order neutral dynamic equation t ∈ [t,∞)T:

[

t

([
x(t) +

∫ b

a



x
[
τ

(
t


)]
�η

]��)]�

+
∫ d

c
q(t, ξ )f

(
x
[
φ

(
t


)])
�ξ = , ()

where γ = , r(t) = 
t , τ (t,η) =

t
 , φ(t, ξ ) =

t
 , δ = , q(t) = β

t
σ(s)
φ
 (t)

, p(t,η) = 
 .
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It is clear that condition (), (), and () hold. Therefore, by Theorem ., picking
ρ(t) = , we have

lim sup
t→∞

∫ t

T
q(s)

(
φ(s)
σ (s)

)

�s = lim sup
t→∞

∫ t

T

β

s
�s =∞.

Hence, by Theorem . every solution of () is oscillatory or tends to zero if β > .
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