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Abstract
In this paper, we study a class of stochastic fractional differential equations. We first
establish a novel comparison principle for such equations. Then, we use the new
comparison principle to obtain some stability criteria, which include the stability in
probability, uniform stability in probability, asymptotic stability in probability, and pth
moment exponential stability. Finally, an example is provided to illustrate the
obtained results.

Keywords: comparison principle; stochastic fractional differential equation; stability
in probability; uniform stability in probability; asymptotic stability in probability; pth
moment exponential stability

1 Introduction
In recent decades, stochastic models have been applied in many areas such as social sci-
ence, physical science, finance, control engineering, mechanical, electrical and industry.
The stability analysis is one of the most important research topics in stochastic models.
There has been a large number of stability results in the literature. For instance, see []
and the references therein.
On the other hand, fractional calculus is a mathematical subject with a history of more

than  years. There have been more and more researchers interested in studying the
fractional calculus in the last twenty years. One of the main reasons is that the integer-
order calculus and conventional differential equations are no longer suitable tools for
many systems and processes, such as viscoelastic system [], dielectric polarization [],
electrode-electrolyte polarization [], electrical circuit [], electromagneticwaves [], heat
condition [], biological system [], quantitative finance [], and quantum evolution of
complex system []. However, such systems can be elegantly described by fractional-
order differential equations with the help of the fractional calculus.
In comparison with the classical integer-order calculus, the fractional calculus has nat-

ural advantages in describing systems possessing memory and hereditary properties. In
recent years, the classical mathematical modeling approaches coupled with the stochastic
methods have been used to develop stochastic dynamic models for financial data (stock
price). In order to extend this approach to more complex dynamic processes in sciences
and engineering operating under internal structural and external environmental perturba-
tions, we establish stochastic fractional differential equations by introducing the concept
of dynamics processes operating under a set of linearly independent time-scales.
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Recently, the authors in [] studied the problem of existence and uniqueness of solu-
tions of the initial value problem of stochastic fractional differential equations. But they
did not discuss the stability analysis problem. This situation encourages our present re-
search.
Motivated by the above discussion, in this paper we investigate the stability analysis

problem for a class of stochastic fractional differential equations. Different from the tra-
ditional Lyapunov stability theory, we first establish a novel comparison principle for
stochastic fractional differential equations, and then obtain some stability criteria includ-
ing the stability in probability, uniform stability in probability, asymptotic stability in prob-
ability, pth moment stability of such equations based on the new comparison principle.
Finally, we use an example to illustrate our stability results.
The rest of this paper is organized as follows. In Section , we introduce the model of

a class of stochastic fractional differential equations, some preliminary results and defini-
tions. In Section , we construct the comparison principle for stochastic fractional differ-
ential equations of Itô-Doob type and obtain some stability criteria including the stability
in probability, uniform stability in probability, asymptotic stability in probability, pth mo-
ment stability of such equations. An example is provided to illustrate how to apply the
developed results in the stability analysis in Section . Finally, in Section , we conclude
the paper with some general remarks.

2 Preliminary description and problem formulation
Throughout this paper, unless otherwise specified, R denotes the set of real numbers, R+

denotes the set of positive real numbers, Z denotes the set of integers and N is the set of
positive integers. Let B(t) = (B(t),B(t), . . .Bm(t)) be anm-dimensional Brownian motion
defined on a complete probability space (�,F ,P), let dαx denote the differential of order
α, and let ‖ · ‖ denote the Euclidean norm in R

n.

Definition  (R-L fractional integral [, ]) Let f (t) be a continuous function defined
on the interval [a,b], where a,b ∈R and a < b. Then, for v ∈ (, ), we define the Riemann-
Liouville fractional integral as follows:

aD–υ
t f (t) =


�(υ)

∫ t

a
(t – ξ )υ–f (ξ )dξ , ()

where �(·) is the gamma function defined by

�(z) =
∫ ∞


tz–e–t dt.

Definition  (R-L fractional derivative []) Let f (t) ∈ C[a,b], l ∈ R+, m ≤ l <m + , and
then the Riemann-Liouville derivative is defined as

aDl
tf (t) = aDm+

t
(
aD–υ

t f (t)
)
, υ =m +  – l > . ()

Submitting () into (), we have

aDl
tf (t) =


�(–l +m + )

(
d
dt

)m+ ∫ t

a
(t – ξ )m–lf (ξ )dξ . ()
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When l is a nonnegative integer, then equality () represents the classical derivative of
integer order. However, the properties of differential and integral with integer order are
different. For instance, letting f (t) ≡ c in equality (), where c is a constant, then we can
obtain its lth derivative,

aDl
tc =

c(t – a)–l

�(–l + )
�= ,

which is clearly different from the differential with integer order.

Definition  (Multi-time scale integral []) For p ∈ N , p > , let {T,T, . . . ,Tp} be a set
of linearly independent time-scales. Let f : [a,b] × R

p– → R
n be a continuous function

defined by f (t) := f (T(t),T(t), . . . ,Tp(t)). The multi-time scale integral of the composite
function f over an interval [t, t] ⊆ (a,b) is defined as the sum of p integrals with respect
to the time-scales T,T, . . . ,Tp. We denote it by If ,

(If )(t) =
∫ t

t
f (s)ds =

p∑
j=

(Ijf )(t),

where the sense of the integral

(Ijf )(t) =
∫ t

t
f (s)dTj(s)

depends on the time-scale Tj for each j = , , . . . ,p.

Definition (Multi-time scale differential []) Let f be a function defined inDefinition .
Themulti-time scale differential of the composite function f is defined to be the sumof the
partial differentials of f with respect to the times-scales T(t),T(t), . . . ,Tp(t). We denote
it by df ,

(df )(t) =
p∑
j=

(djf )(t),

where for each j = , , . . . ,p,

(djf )(t) = f
(
T(t), . . . ,Tj–(t),Tj(t +�t),Tj+(t), . . . ,Tp(t)

)
– f

(
T(t), . . . ,Tj–(t),Tj(t),Tj+(t), . . . ,Tp(t)

)
,

�t 
 dt for small �t, and (djf )(t) corresponds to the integral (Ijf )(t) in Definition . In
particular, if the function f has continuous partial derivatives with respect to each time-
scale, then the following holds:

(df )(t) =
p∑
j=

∂f
∂Tj

(t)dTj(t).

Remark  For p = , consider the linearly independent set consisting of time-scale T(t) =
t, which signifies the ideal and controlled environmental condition; T(t) = B(t), where B
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is anm-dimensional Brownianmotion on a complete probability space� ≡ (�,F ,P); and
T(t) = tα ,  < α <  indicates the time-varying delay or lagged process. Under this set
of time-scale, the following stochastic fractional differential equation of Itô-Doob type is
suggested:

dx = b(t,x)dt + σ(t,x)dB(t) + σ(t,x)(dt)α , x(t) = x, ()

where α ∈ (, ), b(t,x) ∈ C[R+ × R
n;Rn], σ(t,x) ∈ C[R+ × R

n;Rn×m], σ(t,x) ∈ C[R+ ×
R

n;Rn].

Remark  The differentials dt, dB(t), and (dt)α are in the sense of Cauchy-Riemann or
Lebesgue [], Itô-Doob [], and Jumarie [, ], respectively.

Assume that b, σ, and σ satisfy the Lipschitz condition and linear growth condition,
and thus it follows from [] that system () has a unique solution x(t). Also, assume that
b(t, ) ≡ , σ(t, ) ≡ , σ(t, ) ≡ , and then system () admits a trivial solution or zero
solution x(t)≡  corresponding to the initial data x = .

Remark  We remark that some classical models are special cases of system ().

(i) If σ(·, ·) =  in Remark , then () is reduced to the following Itô-Doob type
stochastic differential equation:

dx = b(t,x)dt + σ(t,x)dB(t), x(t) = x. ()

(ii) Letting σ(·, ·) =  in (), then we have the following generalized version of the
classical deterministic fractional differential equation:

dx = b(t,x)dt + σ(t,x)(dt)α , x(t) = x. ()

(iii) If b(·, ·)≡  and σ(·, ·) ≡ , then () becomes the following deterministic fractional
differential equation:

Dα
tx = σ(t,x), x(t) = x. ()

Take Sh
.= {x | ‖x‖ < h} ⊂ R

n, and then Sh is an open set and  ∈ Sh. Let C[R+ × Sh,Rm]
denote the family of all nonnegative functions V (t,x) on R+ × Sh, which are continuously
twice differentiable in x and differentiable in t. If V ∈ C[R+ × Sh,Rm], then by the Itô’s
formula and (), we have the following:

dV (t,x) =LV (t,x)dt +LV (t,x)dB(t) +LV (t,x)(dt)α ,

where

LV (t,x) = Vt(t,x) +Vx(t,x)b(t,x) +


σT
 (t,x)Vxx(t,x)σ(t,x),

Vt(x, t) =
∂V (x, t)

∂t
, Vx(x, t) =

(
∂V (x, t)

∂x
, . . . ,

∂V (x, t)
∂xn

)
,
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Vxx(x, t) =
(

∂V (x, t)
∂xi ∂xj

)
n×n

,

LV (t,x) = Vx(t,x)σ(t,x), LV (t,x) = Vx(t,x)σ(t,x).

Definition  (Lyapunov stable)
(i) The zero solution x(t)≡  of system () is said to be Lyapunov stable if for every

ε >  and t ∈ [,∞), there exists δ = δ(ε, t) >  such that ‖x(t, t,x)‖ < ε for all
t > t when ‖x‖ < δ.

(ii) The zero solution of system () is uniformly Lyapunov stable if for every ε > ,
there exists δ = δ(ε) >  such that ‖x(t, t,x)‖ < ε for all t > t when ‖x‖ < δ(ε).

(iii) The zero solution of system () is asymptotically stable if it is Lyapunov stable and
there exists δ(t) >  such that limt→∞ x(t) =  when ‖x‖ < δ(t).

Definition  (Stable in probability) The zero solution x(t) ≡  of system () is said to be
stable in probability if for every ε ∈ (, ) and ε > , there exists δ = δ(ε, ε, t) >  such
that

P
{∥∥x(t, t,x)∥∥ < ε, t ≥ t

} ≥  – ε,

when ‖x‖ < δ.

Definition  (Asymptotically stable in probability) The zero solution x(t) ≡  of system
() is asymptotically stable if it is stable in probability, and for every η ∈ (, ), there exists
δ = δ(η, t) >  such that

P
{
lim
t→∞x(t, t,x) = 

}
≥  – η,

when ‖x‖ < δ.

Definition  ([]) A function ϕ(z) is said to belong to the classK if ϕ ∈ C[R+,R+], ϕ() =
 and ϕ(z) is strictly increasing in z. A function ϕ(z) is said to belong to the class VK if
ϕ belongs to K and ϕ is convex. A function ϕ(t, z) is said to belong to the class CK if
ϕ ∈ C[R+ ×R+;R+], ϕ(t, ) = , and ϕ(t, z) is concave and strictly increasing in z for each
t ∈R+.

Lemma  ([, ]) Let f (t) be a continuous function, then the solution of the following
equation:

dx = f (t)(dt)α , t ≥ , x() = x,  < α ≤ 

is defined by the equality

∫ t


f (τ )(dτ )α = α

∫ t


(t – τ )α–f (τ )dτ ,  < α ≤ .

3 Comparison principle and stability for stochastic fractional differential
equations

In this section, we present our main results. First of all, we give the comparison principle,
which plays an important role in the proof of our results.
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Lemma  Assume that the following conditions are satisfied.
(i) [t,T) (T ≤ ∞) is the largest interval of existence of the maximal solution

u(t) ≡ u(t, t,u) of the following deterministic fractional differential equation:

du(t) = f
(
t,u(t)

)
dt + ϕ

(
t,u(t)

)
(dt)α , u(t) = u, ()

where f ,ϕ ∈ C[[t,T)×R
n;Rn] and f (t,u), ϕ(t,u) are monotonically non-increasing

in u for each t, and f (t, )≡ , ϕ(t, ) ≡ .
(ii) V ∈ C[R+ ×R

n;R+], and for (t,x) ∈R+ ×R
n, τ ∈ (t, t)

ELV
(
t,x(t)

) ≤ f
(
t,EV

(
t,x(t)

))
+ αϕ

(
t,EV

(
t,x(t)

))
(t – τ )α–. ()

where LV is the operator defined in Section .
(iii) For the solution x(t)≡ x(t, t,x) of (), EV (t,x(t)) exists for t ≥ t.
If E[V (t,x)]≤ u, then

E
[
V

(
t,x(t)

)] ≤ u(t, t,u). ()

Proof We shall prove Lemma  by contradiction. Now suppose that () is not true, then
there exists a constant a > t such that

E
[
V

(
a,x(a)

)]
> u(a, t,u). ()

Since E[V (t,x)] ≤ u, by the continuity of u(t) and E[V (t,x(t))], we see that there exists
a constant b ∈ (t,a) satisfying

E
[
V

(
b,x(b)

)]
= u(b).

Noting that f (t,u) and ϕ(t,u) are monotonically non-increasing in u for all t, it follows
from () and () that for each s ∈ [b,a],

ELV
(
s,x(s)

) ≤ f
(
s,EV

(
s,x(s)

))
+ αϕ

(
s,EV

(
s,x(s)

))
(s – τ )α–

≤ f
(
s,u(s)

)
+ αϕ

(
s,u(s)

)
(s – τ )α–

=
du(s)
ds

.

Integrating both sides of the above inequality, we obtain

∫ a

b
ELV

(
s,x(s)

)
ds≤

∫ a

b

du(s)
ds

ds = u(a) – u(b).

Thus, by using the Dynkin formula, we get

E
[
V

(
a,x(a)

)]
– E

[
V

(
b,x(b)

)]
=

∫ a

b
ELV

(
s,x(s)

)
ds

≤
∫ a

b

du(s)
ds

ds

= u(a) – u(b).
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Recalling that E[V (b,x(b))] = u(b), the above inequality yields

E
[
V

(
a,x(a)

)] ≤ u(a),

which contradicts (). Hence, () is satisfied. This completes the proof of Lemma . �

As an application of the comparison principle, we will deduce some stability criteria for
system ().

Theorem  Assume that there exists a function V (t,x) ∈ C[R+ × R
n;Rn] such that the

following two conditions are satisfied:
() V (t, ·) is a locally Lipschitz continuous in x and uniformly in t compact set of [,∞)

satisfying

E
[
LV

(
t,x(t)

)] ≤ f
(
t,EV

(
t,x(t)

))
+ αϕ

(
t,EV

(
t,x(t)

))
(t – τ )α–, ∀(t,x) ∈R+ ×R

n,

where f and ϕ are from Lemma .
() For every (t,x) ∈ R+ ×R

n, V (t,x) satisfies

ϕ
(‖x‖) ≤ V

(
t,x(t)

) ≤ ϕ
(‖x‖), ()

where ϕ,ϕ ∈K.
If the zero solution of () is Lyapunov stable, then the zero solution of () is stable in

probability. Moreover, if the zero solution of () is uniformly stable, then the zero solution
of () is uniformly stable in probability.

Proof Let x(t) be the solution of (), then by () we have

E
[
ϕ

(‖x‖)] ≤ E
[
V

(
t,x(t)

)]
. ()

Now suppose that the zero solution of () is Lyapunov stable. Then it follows from the
definition of Lyapunov stability that for any  < η <  and ε > , there exists δ = δ(ε,η, t) >
 such that if u < δ, then u(t, t,u) ≤ ηϕ(ε), t ≥ t. Obviously, the function E[V (t,x(t))]
is continuous with respect to x sinceV (t,x) is continuous with respect to x. Choosing u =
V (t,x) ≥ , then for δ = δ(ε,η, t) > , there exists δ = δ(δ) >  such thatE[V (t,x)] =
E[u] = u < δ(ε,η, t) when ‖x‖ < δ. So it follows from Lemma  that

E
[
V

(
t,x(t)

)] ≤ u(t, t,u) ≤ ηϕ(ε). ()

By using the Chebyshev inequality and ()-(), we have

P
[∥∥x(t)∥∥ ≥ ε

]
= P

[
ϕ

(∥∥x(t)∥∥) ≥ ϕ(ε)
]

≤ 
ϕ(ε)

E
[
ϕ

(∥∥x(t)∥∥)]

≤ 
ϕ(ε)

E
[
V

(
t,x(t)

)]

≤ ηϕ(ε)
ϕ(ε)

= η,

http://www.advancesindifferenceequations.com/content/2014/1/221
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and so

P
[∥∥x(t)∥∥ ≤ ε,∀t ≥ t

] ≥  – η.

Therefore, from the definition of the stability in probability, we see that the zero solution
of () is stable in probability. Furthermore, we suppose that the zero solution of () is
uniformly stable. Noting that the constants δ, δ in the above proof are independent of t,
we can prove similarly that δ does not depend on t, which verifies that the zero solution
of () is uniformly stable in probability. The proof of Theorem  is completed. �

Theorem  Assume that all the conditions of Theorem  are satisfied. If the zero solution
of () is asymptotically stable, then the zero solution of () is asymptotically stable.

Proof Suppose that the zero solution of () is asymptotically stable. Then, for any η ∈ (, )
and ε > , there exists a positive constant δ = δ(η, t) >  such that

u(t) < ηϕ(ε), t → ∞,

when u < δ(t). Choosing u = V (t,x) ≥ , then by Theorem , inequality () and the
continuity of E[V (t,x(t))], we obtain

E
[
V

(
t,x(t)

)] ≤ u(t) < ηϕ(ε), t → ∞,

P
{∥∥x(t, t,x)∥∥ < ε, t → ∞} ≥  – η.

Hence, there exists δ = δ(η, t) >  such that

P
{
lim
t→∞x(t, t,x) = 

}
≥  – η,

when ‖x‖ < δ. This together with the definition of asymptotic stability in probability
implies that the zero solution of () is asymptotically stable in probability. This completes
the proof of Theorem . �

Theorem  Assume that all the conditions of Theorem  are satisfied. Moreover, for any
p≥ ,

ϕ
(∥∥x(t)∥∥p) ≤ V

(
t,x(t)

) ≤ ϕ
(∥∥x(t)∥∥p), ∀(t,x) ∈R+ ×R

n, ()

where ϕ ∈ VK, ϕ ∈ CK. If the zero solution of () is Lyapunov stable, then the zero solution
of () is pth moment exponentially stable.

Proof By using Jensen’s inequality and (), we obtain

 ≤ ϕ
(
E
[∥∥x(t)∥∥p]) ≤ E

[
ϕ

(∥∥x(t)∥∥p)] ≤ E
[
V

(
t,x(t)

)]
≤ E

[
ϕ

(∥∥x(t)∥∥p)] ≤ ϕ
(
E
[∥∥x(t)∥∥p]). ()

http://www.advancesindifferenceequations.com/content/2014/1/221
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For the solution x(t) = x(t, t,x) of (), it follows from Lemma  that

E
[
V

(
t,x(t)

)] ≤ u(t, t,u), ()

when E[V (t,x)] ≤ u.
Now suppose that the zero solution of () is Lyapunov stable. Then, for any ε >  and

ϕ(ε) > , there exists δ = δ(t, ε) such that

u(t, t,u) ≤ ϕ(ε), t ≥ t, ()

when u ≤ δ.
Let us choose x such that u = ϕ(E[‖x‖p]) and E[V (t,x)] ≤ u. Recalling that ϕ ∈

CK, there exists δ = δ(ε) such that u = ϕ(E[‖x‖p]) < δ, when E[‖x‖p] < δ. Hence, by
()-(), we obtain

ϕ
(
E
[∥∥x(t)∥∥p]) ≤ ϕ(ε), t ≥ t.

This fact together with ϕ ∈ VK yields that

E
[∥∥x(t)∥∥p] ≤ ε, t ≥ t.

Therefore, from the definition of the pth moment exponential stability, we see that the
zero solution of () is pth moment exponentially stable. The proof of Theorem  is com-
pleted. �

4 An example
Consider the following stochastic fractional differential system:

{
dx(t) = x(t)dt + (x(t) + x(t))(dt)α ,
dx(t) = (–x(t) – x(t))dt + ( x(t) – x(t))dB(t) + (x(t) – x(t))(dt)α ,

()

where α ∈ (, ), t ∈ [,∞).
Letting V (t,x(t)) = x(t) + x(t)x(t) + x(t), and then we have

V
(
t,x(t)

) ≥ x(t) –


x(t) –



x(t) + x(t)

≥ 

[
x(t) + x(t)

]
=



∥∥x(t)∥∥,

V
(
t,x(t)

) ≤ x(t) +
x(t) + x(t)


+ x(t)

≤ 

[
x(t) + x(t)

]
=



∥∥x(t)∥∥.
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Obviously, V (t,x(t)) is locally Lipschitz continuous in x and uniformly in t,

ELV
(
t,x(t)

)
=

[
x(t) + x(t)

]
x(t) +

[
x(t) + x(t)

][
–x(t) – x(t)

]
+

[


x(t) – x(t)

][


x(t) + x(t)

]

= –


x(t) – x(t)x(t) – x(t)

≤ –x(t) –


x(t)x(t) –



x(t)

≤ –


V

(
t,x(t)

)
+ αV

(
t,x(t)

)
(t – τ )α–,

where τ ∈ (, t). Thus, for the stochastic fractional differential system (), the comparison
function can be chosen as

du(t) = –


u(t)dt + u(t)(dt)α , u() = u. ()

The solution of equation () is

u(t) = u()Eα

[
α

α – 
�( + α)tα–

]
e–


 t , ()

where Eα(x) denotes the Mittag-Leffler function

Eα(x) =
∞∑
k=

xk

�( + αk)
.

For more details about the Mittag-Leffler function, we refer the reader to []. It is ob-
vious that the solution of () is stable. So, according to Theorem , the zero solution of
stochastic fractional differential equation () is stable in probability.

5 Conclusion
In this paper, we have established a novel comparison principle for a class of stochastic
fractional differential systems. By employing the new comparison principle and Lyapunov
stability theory, we obtain some useful stability criteria. These criteria are drawn from the
stability of the comparison function with regard to the original system and an inequality
constraint condition. As an application, an example is presented to illustrate how to ap-
ply the developed results in the stability analysis. The example shows that the proposed
method is very convenient.
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