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Abstract
In this paper, we show that the Kolmogorov operator K0 associated to a stochastic
PDE with multiplicative noise can be extended to the infinitesimal generator (K ,D(K ))
of the corresponding transition semigroup {Pt}t≥0 in a proper weighted space. Then
we apply the result to obtain the existence and uniqueness of a solution for the
Fokker-Planck equation involving the Kolmogorov operator K0.
MSC: 60H15; 35R15; 47D07

Keywords: Kolmogorov operator; stochastic PDE; transition semigroup; infinitesimal
generator; Fokker-Planck equation

1 Introduction
LetH be a separable Hilbert space (with norm | · | and inner product 〈·, ·〉), and L(H ,H) be
the Banach space of all bounded linear operators fromH toH . We consider the stochastic
differential equation in H

⎧⎨
⎩dX(t) = [AX(t) + F(X(t))]dt +G(X(t))dW (t), t ≥ ,

X() = x ∈H ,
(.)

whereA :D(A)⊂H →H is the infinitesimal generator of a strongly continuous semigroup
(etA)t≥ in H , F : D(F) ⊂ H → H , and G : H → L(H ,H) are measurable mappings, and
(W (t))t≥ is a cylindrical Wiener process on H , defined on a filtered probability space
(�,F ,P), and adapted to some filtration (Ft)t≥ that is assumed to be right-continuous
and complete in the sense that (F) contains all P-null sets. The precise assumptions on
F and G are given in Hypothesis . below.
It iswell known that underHypothesis ., (.) has a uniquemild solution (X(t,x))t≥,x∈H

(see, for instance, [, ]), that is, for any x ∈ H the process (X(t,x))t≥ is adapted to the fil-
tration (Ft)t≥, and it is continuous in mean square and fulfills the integral equation

X(t,x) = etAx +
∫ t


e(t–s)AF

(
X(s,x)

)
ds +

∫ t


e(t–s)AG

(
X(s,x)

)
dW (s) (.)
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for P-a.e. ω ∈ � and any t ≥ . Moreover, a straightforward computation shows that for
any T >  there exists c >  such that

sup
t∈[,T]

∣∣X(t,x) –X(t, y)
∣∣ ≤ c|x – y|, ∀x, y ∈H (.)

and

sup
t∈[,T]

E
∣∣X(t,x)∣∣ ≤ c

(
 + |x|), ∀x ∈H , (.)

where the expectation is taken with respect to P. As we shall see in Lemma ., estimates
(.) and (.) allow us to define the transition semigroup {Pt}t≥ associated to (.) in the
space Cb,(H) (see below for a precise definition), by the setting

Ptϕ(x) = E
[
ϕ
(
X(t,x)

)]
, ϕ ∈ Cb,(H), t ≥ ,x ∈H . (.)

It is not hard to prove that {Pt}t≥ maps Cb,(H) into Cb,(H) and satisfies the semigroup
property, see [], but it is not a strongly continuous semigroup. However, we can define
the infinitesimal generator (K ,D(K)) of {Pt}t≥ in Cb,(H) as

⎧⎪⎪⎨
⎪⎪⎩
D(K) = {ϕ ∈ Cb,(H) : ∃ψ ∈ Cb,(H), limt→+

Ptϕ(x)–ϕ(x)
t = ψ(x),x ∈H ,

supt∈(,) ‖ Ptϕ(x)–ϕ(x)
t ‖, <∞},

Kϕ(x) = limt→+
Ptϕ(x)–ϕ(x)

t , ϕ ∈D(K),x ∈H .

(.)

Naturally, we are interested in the connections between (K ,D(K)) and the Kolmogorov
operator

Kϕ(x) =


Tr

[
G(x)G(x)∗Dϕ(x)

]
+

〈
x,A∗Dϕ(x)

〉
+

〈
Dϕ(x),F(x)

〉
, x ∈H , (.)

where ϕ :H →R is a suitable function and Trmeans trace.
In this paper, we will study the relationship between Kolmogorov operator K and the

infinitesimal generator (K ,D(K)) of the transition semigroup {Pt}t≥ and solve the Fokker-
Planck equation corresponding to K (i.e. the dual of the Kolmogorov equation). As the
firstmain result (see Theorem . below), we show that (K ,D(K)) extends the Kolmogorov
operatorK defined on the domain EA(H), which consists of the linear span of the real and
imaginary parts of the functions

x �→ ei〈x,h〉, x ∈H ,h ∈ D
(
A∗), (.)

and the set EA(H) is a π-core (cf. Section ) for (K ,D(K)).
Let M(H) be the space of all finite Borel measures on H , Mk(H) be the set of all

μ ∈ M(H) such that
∫
H |x|k|μ|(dx) < ∞, where |μ| is the total variation of μ, the second

main result is that for any μ ∈ M(H), there exist a family of measures {μt}t≥ ⊂ M(H)
fulfilling

∫ T



∫
H

(
 + |x|)|μt|(dx)dt < ∞, ∀T > ,
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and the Fokker-Planck equation

⎧⎨
⎩

d
dt

∫
H ϕ(x)μt(dx) =

∫
H Kϕ(x)μt(dx), t ≥ ,ϕ ∈ EA(H),

μ = μ ∈M(H).
(.)

Moreover, this solution is given by {P∗
t μ}t≥, where {P∗

t }t≥ is a semigroup defined by

〈
ϕ,P∗

t f
〉
σ (Cb,(H),Cb,(H)∗) = 〈Ptϕ, f 〉σ (Cb,(H),Cb,(H)∗), (.)

where (Cb,(H))∗ is the topological dual space of Cb,(H); see Theorem ..
For the problems with additive noise case (that is, G is a constant in (.)), it is worth

mentioning, the papers [–] have studied the problems by means of the Ornstein-
Uhlenbeck semigroup method. However, for the multiplicative noise case, the stochas-
tic convolution in (.) is no longer a martingale, so this method and the Itô formula can
not be used to a mild solution, thus new technology is needed. In particular, Da Prato
and Zabczyk [] studied the problem (.) by the semigroup method, based on the clas-
sical fixed point theorem, and used the factorization method to get an estimation of the
stochastic convolution, which is a generalization of maximal inequality of martingales to
stochastic convolution, and plays an important role in the following sections.
On the other hand, we remark that a great deal of research has been devoted to the

extension of a differential operator like (.) to the infinitesimal generator of a diffusion
semigroup in the space Lp(H ,ν), p ≥ , where ν is an invariant measure for the semigroup
(see, for example, [–] and references therein). In fact, if ν is an invariant measure for
the semigroup (.), then the semigroup (.) can be extended to a strongly continuous
contraction semigroup in Lp(H ,ν), p ≥ .
Kolmogorov equations for measures in infinite dimensional space have been the ob-

ject of many authors (see, e.g., [–] and references therein). For example, Bogachev
and Röckner [] considered the existence of measure valued solutions for the equation
involving second order partial differential operators in infinite dimensional spaces. How-
ever, as an extension of the existing theory in [], in this paper we pay attention to the
existence and uniqueness of the solution of the Fokker-Planck equation for Kolmogorov
operators associated to the SPDEs with multiplicative noise case which is important.
We organize the rest of this paper as follows. Some notation and preliminary results are

in Section . In Section , we prove that (K ,D(K)) extends the Kolmogorov operator K,
and the set EA(H) is a π-core for (K ,D(K)). Finally, the existence and uniqueness of the
solution for the Fokker-Planck equation (.) are given in Section ; see Theorem ..

2 Preliminaries
We list some notation which are applied in this paper. Let H be a separable real Hilbert
space (norm | · |, inner product 〈·, ·〉), and H∗ represent its topological dual space. Let
M(H) be the space of all finite Borel measures on H , and for any k > , denote the set of
all ν ∈M(H) such that

∫
H |x|k|ν|(dx) < ∞ byMk(H), where |ν| is the total variation of ν .

We denote the space of all linear bounded operators from H into H by L(H), endowed
with the norm

‖T‖ = sup
{|Tx|;x ∈H , |x| = 

}
, T ∈ L(H), (.)

http://www.advancesindifferenceequations.com/content/2014/1/222
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and let L(H) be the space of all Hilbert-Schmidt operators L :H →H , endowed with the
Hilbert-Schmidt norm. If E is a Banach space (norm | · |), we denote Cb(H ;E) as the linear
space of all continuous and bounded mappings ϕ :H → E, endowed with the norm

‖ϕ‖ = sup
x∈H

∣∣ϕ(x)∣∣, (.)

is a Banach space. Moreover, C
b(H ;E) represents the subspace of Cb(H ;E) of all functions

ϕ :H → Ewhich are Fréchet differentiable onH with a continuous and bounded derivative
Dϕ ∈ Cb(H ;L(H ;E)), and the space Ck

b (H ;E) for all k ≥  can be defined analogously. We
shall write Ck

b(H ;R) = Ck
b(H), k ∈ N for short. For any k > , let Cb,k(H) be the space of all

functions ϕ :H →R such that the functionH →R, x→ (+ |x|k)–ϕ(x) belongs to Cb(H).
The space Cb,k(H) is a Banach space, endowed with the norm ‖ϕ‖,k = ‖( + | · |k)–ϕ‖. In
the following, we shall denote by (Cb,k(H))∗ the topological dual space of Cb,k(H).
If ϕ ∈ C

b(H) and x ∈ H , we shall identify Dϕ(x) with the unique element h of H such
that

Dϕ(x)y = 〈h, y〉, x, y ∈H .

If ϕ ∈ C
b(H) and x ∈H , we shall identify Dϕ(x) with the unique linear operator T ∈ L(H)

such that

Dϕ(x)(y, z) = 〈Ty, z〉, x, y, z ∈H .

Hypothesis .

(H) A :D(A) ⊂ H → H is the infinitesimal generator of a strongly continuous semigroup
etA of type G(M,ω), i.e. there existM >  and ω ∈R such that ‖etA‖L(H) ≤ Meωt , t ≥ .

(H) Let F :D(F)⊂H →H be a continuous vector-field.
(H) Let G :H → L(H) be strongly continuous, and etAG(x) ∈ L(H) for all x ∈H .
(H) There exists κ ∈ Lloc([,∞)) such that

(i) |etAF(x)| + ‖etAG(x)‖L(H) ≤ κ(t)( + |x|) for all x ∈H ,
(ii) |etA(F(x) – F(y))| + ‖etA(G(x) –G(y))‖L(H) ≤ κ(t)|x – y| for all x, y ∈ H .

The following result is about the existence and uniqueness of a mild solution for (.),
the proof essentially follows by Theorem . in [].

Proposition . Under Hypothesis ., for any initial condition x ∈ H , problem (.) has
a unique mild solution (X(t,x))t≥,x∈H , that is, for any x ∈ H , the process (X(t,x))t≥ is
adapted to the filtration (Ft)t≥, and it is continuous in mean square and fulfills the in-
tegral equation

X(t,x) = etAx +
∫ t


e(t–s)AF

(
X(s,x)

)
ds +

∫ t


e(t–s)AG

(
X(s,x)

)
dW (s) (.)

for P-a.e. ω ∈ � and all t > , x ∈ H . Moreover, for any T > , p ≥ , there exists CT > 
such that

sup
t∈[,T]

E
∣∣X(t,x) –X(t, y)

∣∣ ≤ CT |x – y|, ∀x, y ∈H (.)
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and

sup
t∈[,T]

E
[∣∣X(t,x)∣∣p] ≤ CT

(
 + |x|p), ∀x ∈H . (.)

As the semigroups of operators which we will deal with are not strongly continuous, we
introduce the notion of π-convergence in the space Cb(H) (see []).

Definition . (i) A sequence {ϕn}n∈N ⊂ Cb(H) is said to be π-convergent to a function
ϕ ∈ Cb(H) if for any x ∈H we have

lim
n→∞ϕn(x) = ϕ(x) and sup

n∈N
‖ϕn‖ < ∞.

Similarly, them-indexed sequence {ϕn,...,nm}n,...,nm∈N ⊂ Cb(H) is said to beπ-convergent to
ϕ ∈ Cb(H) if for any i ∈ {, . . . ,m– } there exists an i-indexed sequence {ϕn,...,ni} ⊂ Cb(H),
n, . . . ,ni ∈N such that

lim
ni+→∞ϕn,...,ni+

π= ϕn,...,ni , i ∈ {, . . . ,m – }

and

lim
n→∞ϕn

π= ϕ.

We shall write

lim
n→∞· · · lim

nm→∞ϕn,...,nm
π= ϕ

or ϕn
π→ ϕ as n→ ∞, when the sequence has one index.

(ii) For any subsetD⊂ Cb(H) we say that ϕ belongs to the π-closure ofD, and we denote
it by ϕ ∈ D̄π , if there exist m ∈ N and an m-indexed sequence {ϕn,...,nm}n,...,nm∈N ⊂ D such
that

lim
n→∞· · · lim

nm→∞ϕn,...,nm
π= ϕ.

Finally, we shall say that a subset D⊂ Cb(H) is π-dense in C ⊂ Cb(H) if D̄π = C.

Notice that since the convergence is pointwise we cannot take a diagonal sequence.
However, in order to avoid heavy notations, we shall often assume that the sequence has
one index.
As an extension of the π-convergent to the space Cb,k(H) (k > ), a sequence {ϕn}n∈N ⊂

Cb,k(H) is said to be π-convergent to a function ϕ ∈ Cb,k(H) if we have ( + |x|k)–ϕn
π→

( + |x|k)–ϕ as n → ∞ in Cb(H). Similarly, we can define π-dense in the space Cb,k(H)
(k > ).
Here we introduce some properties for the transition semigroup {Pt}t≥ in Cb,(H),

which can be proved by a similar argument to [], and they play an important role in the
proof of the results in the following sections.
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Lemma . Formula (.) defines a semigroup of operators Pt , t ≥  in Cb,(H), and there
exist a family of probability measures {πt(x, ·), t ≥ ,x ∈ H} ⊂ M(H) and two constants
c > , ω ∈R such that

(i) Pt ∈ L(Cb,(H)) and ‖Pt‖L(Cb,(H)) ≤ ceωt ;
(ii) Ptϕ(x) =

∫
H ϕ(y)πt(x,dy), for any t ≥ , ϕ ∈ Cb,(H), x ∈ H ;

(iii) for any ϕ ∈ Cb,(H), x ∈ H , the function R
+ →R, t �→ Ptϕ(x) is continuous;

(iv) PtPs = Pt+s for any t, s ≥  and P = I ;
(v) for any ϕ ∈ Cb,(H) and any sequence (ϕn)n∈N ⊂ Cb,(H) such that ϕn

+|·|
π→ ϕ

+|·| as
n→ ∞, we have Ptϕn

+|·|
π→ Ptϕ

+|·| as n→ ∞, for any t ≥ .

Lemma . Let X(t,x) be the mild solution of problem (.) and let Pt , t ≥  be the asso-
ciated transition semigroups in the space Cb,(H) defined by (.). Let also (K ,D(K)) be the
associated infinitesimal generators, defined by (.). Then

(i) for any ϕ ∈D(K), we have Ptϕ ∈D(K) and KPtϕ = PtKϕ, t ≥ ;
(ii) for any ϕ ∈D(K), x ∈H , the map [,∞) →R, t �→ Ptϕ(x) is continuously

differentiable and (d/dt)Ptϕ(x) = PtKϕ(x);
(iii) given c ≥  and ω as in Lemma ., for any λ > ω the linear operator R(λ,K) on

Cb,(H) done by

R(λ,K)f (x) =
∫ ∞


e–λtPtf (x)dt, f ∈ Cb,(H),x ∈H ,

satisfies, for any f ∈ Cb,(H)

R(λ,K) ∈ L
(
Cb,(H)

)
,

∥∥R(λ,K)
∥∥
L(Cb,(H)) ≤

c
λ –ω

,

R(λ,K)f ∈D(K), (λI –K)R(λ,K)f = f .

We call R(λ,K) the resolvent of K at λ.

Definition . We say that D ⊂ D(K) is a π-core for the operator (K ,D(K)), if D is
π-dense in Cb,(H) and for any ϕ ∈ D(K) there exist m ∈ N and an m-indexed sequence
{ϕn,...,nm}n,...,nm∈N ⊂D such that

lim
n→∞· · · lim

nm→∞
ϕn,...,nm
 + | · |

π=
ϕ

 + | · |

and

lim
n→∞· · · lim

nm→∞
Kϕn,...,nm
 + | · |

π=
Kϕ

 + | · | .

3 A core for operator K
In this section, we give the first main result which is a better understanding of the rela-
tionships between the infinitesimal generator K and the Kolmogorov differential operator
K defined by (.).

Theorem . Assume, besides Hypothesis ., that there exist two constants M >  and
ω ∈ R such that the function κ in hypothesis (H) satisfies κ(t) ≤ Meωt , t ≥ , then the

http://www.advancesindifferenceequations.com/content/2014/1/222


Shi and Liu Advances in Difference Equations 2014, 2014:222 Page 7 of 19
http://www.advancesindifferenceequations.com/content/2014/1/222

operator (K ,D(K)) is an extension of K, that is, for any ϕ ∈ EA(H), we have ϕ ∈D(K) and
Kϕ = Kϕ.Moreover, EA(H) is a π -core for (K ,D(K)).

We split the proof in several steps. In Proposition . we will prove Theorem . in the
case F = , then Corollary . will show that (K ,D(K)) is an extension of K and Kϕ = Kϕ

for any ϕ ∈ EA(H). Finally, Proposition . will complete the proof by the proper approxi-
mation sequence of F and G.
Firstly, we need the following approximation result, proved in [, Proposition .].

Proposition . For any ϕ ∈ Cb(H), there exist m ∈ N and an m-indexed sequence
{ϕn,...,nm}n,...,nm∈N ⊂ EA(H) such that

lim
n→∞· · · lim

nm→∞ϕn,...,nm
π= ϕ. (.)

Moreover, if ϕ ∈ C
b(H), we can choose the sequence in such a way that (.) holds and

lim
n→∞· · · lim

nm→∞〈Dϕn,...,nm ,h〉 π= 〈Dϕ,h〉, ∀h ∈H .

3.1 The case F = 0
If F = , we consider the transition semigroup associated to the stochastic differential
equation in H

⎧⎨
⎩dZ(t) = AZ(t)dt +G(Z(t))dW (t), t ≥ ,

Z() = x ∈H .
(.)

We recall that the mild solution is given by the process

Z(t,x) = etAx +WA(t), (.)

whereWA(t) =
∫ t
 e

(t–s)AG(Z(s,x))dW (s), and the semigroup {Rt}t≥ is defined by setting

Rtϕ(x) = E
[
ϕ
(
Z(t,x)

)]
, ϕ ∈ Cb,(H), t ≥ ,x ∈H . (.)

We define the infinitesimal generator L : D(L) → Cb,(H) of the semigroup {Rt}t≥ in
Cb,(H) as in (.), with L replacing by K and Rt replacing Pt .

Proposition . Assuming that the conditions of Theorem . hold, for any ϕ ∈ EA(H) we
have ϕ ∈ D(L) and

Lϕ(x) =


Tr

[
G(x)G(x)∗Dϕ(x)

]
+

〈
x,A∗Dϕ(x)

〉
, x ∈ H . (.)

The set EA(H) is a π -core for (L,D(L)), and for any ϕ ∈D(L)∩C
b(H) there exist m ∈N and

an m-indexed sequence {ϕn,...,nm}n∈N,...,nm∈N ⊂ EA(H) such that

lim
n→∞· · · lim

nm→∞
ϕn,...,nm
 + | · |

π=
ϕ

 + | · | (.)

http://www.advancesindifferenceequations.com/content/2014/1/222
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and

lim
n→∞· · · lim

nm→∞


 Tr[G(·)G(·)∗Dϕn,...,nm ] + 〈·,A∗Dϕn,...,nm〉

 + | · |
π=

Lϕ

 + | · | . (.)

Moreover, if ϕ ∈ D(L) ∩ C
b(H) we can choose the sequence in such a way that (.), (.)

hold and

lim
n→∞· · · lim

nm→∞〈Dϕn,...,nm ,h〉 π= 〈Dϕ,h〉 (.)

for any h ∈ H .

Proof By the mean value theorem, for any ϕ ∈ EA(H)

ϕ
(
etAx + y

)
= ϕ

(
etAx

)
+

〈
Dxϕ

(
etAx

)
, y

〉
+


〈
D

xϕ
(
etAx + σt(y)y

)
y, y

〉
, (.)

where σt(y) is a Borel function from H into [, ]. Therefore

Rtϕ(x) = E
[
ϕ
(
etAx +WA(t)

)]
= E

[
ϕ
(
etAx

)
+


〈
D

xϕ
(
etAx + σt

(
WA(t)

)
WA(t)

)
WA(t),WA(t)

〉]
,

then

Rtϕ(x) – ϕ(x)
t

–
ϕ(etAx) – ϕ(x)

t

=


E

[

t
〈
D

xϕ
(
etAx + σt

(
WA(t)

)
WA(t)

)
WA(t),WA(t)

〉]
. (.)

We first show that

ϕ(etAx) – ϕ(x)
t

→ 〈
x,A∗Dϕ(x)

〉
, as t ↓ . (.)

Again, by the mean value theorem,

ϕ
(
etAx

)
– ϕ(x) =

〈
Dϕ

(
x + ξt ·

(
etAx – x

))
, etAx – x

〉
,

where ξt ∈ [, ]. However, for arbitrary x ∈H

etAx – x = A
∫ t


esAxds

and

ϕ(etAx) – ϕ(x)
t

=

t

〈
Dϕ

(
x + ξt ·

(
etAx – x

))
,A

∫ t


esAxds

〉

=
〈
A∗Dϕ

(
x + ξt ·

(
etAx – x

))
,

t

∫ t


esAxds

〉
.

Since etAx – x → , 
t
∫ t
 e

sAxds→ x as t → , the relation (.) holds.

http://www.advancesindifferenceequations.com/content/2014/1/222
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• Assertion. For any x ∈H , let I(t) denote the right-hand side of (.), and set

I ′(t) =


E

[

t
〈
D

xϕ(x)WA(t),WA(t)
〉]
, (.)

we have

lim
t→

∣∣I(t) – I ′(t)
∣∣ = . (.)

For any x ∈H , set y =WA(t) =
∫ t
 e

(t–s)AG(Z(s,x))dW (s), then

∣∣I(t) – I ′(t)
∣∣ = 

t
E

[∣∣〈[D
xϕ

(
etAx + σt(y)y

)
–D

xϕ(x)
]
y, y

〉∣∣]
≤ 

t
E

[∥∥D
xϕ

(
etAx + σt(y)y

)
–D

xϕ(x)
∥∥ · |y|]

≤ 
t

(
E

[∥∥D
xϕ

(
etAx + σt(y)y

)
–D

xϕ(x)
∥∥]) 

 · (E[|y|]) 
 .

We shall use the following Burkholder estimate, see []; for a constant c > , we have

E

[∣∣∣∣
∫ t


e(t–s)AG

(
Z(s,x)

)
dW (s)

∣∣∣∣
]

≤ cE
[(∫ t



∥∥e(t–s)AG(
Z(s,x)

)∥∥
L(H) ds

)]
. (.)

By the Minkowski inequality, on account of hypothesis (H) and (.), it renders


t
(
E

[|y|]) 
 ≤ c

t

∫ t



(
E

[∥∥e(t–s)AG(
Z(s,x)

)∥∥
L(H)

]) 
 ds

≤ c
(
 + |x|) 

 
t

∫ t


κ(t – s) ds,

and due to κ(t) ≤ Meωt , for any T > , there exists a constant c >  such that


t

∫ t


κ(t – s) ds≤ M

 (eωt – )
ωt

≤ c, t ∈ (,T]. (.)

Moreover, E[‖D
xϕ(etAx + σt(y)y) –D

xϕ(x)‖] → , as t ↓ , therefore, taking into account
(.), |I(t) – I ′(t)| → , as t ↓  uniformly with respect to x ∈ H .
On the other side, from the Fubini theorem and the properties of the stochastic integral

for cylindrical Winner processes (see, for instance, []), it follows that

E
[〈
D

xϕ(x)WA(t),WA(t)
〉]
= E

[∫ t


Tr

[
e(t–s)AG

(
Z(s,x)

)
G

(
Z(s,x)

)∗e(t–s)A
∗
D

xϕ(x)
]
ds

]
,

then

I ′(t) =


E

[

t

∫ t


Tr

[
e(t–s)AG

(
Z(s,x)

)
G

(
Z(s,x)

)∗e(t–s)A
∗
D

xϕ(x)
]
ds

]

=


E

[

t

∫ t



∞∑
k=

〈
e(t–s)AG

(
Z(s,x)

)
G

(
Z(s,x)

)∗e(t–s)A
∗
D

xϕ(x)ek , ek
〉
ds

]

=


E

[ ∞∑
k=

〈

t

∫ t


e(t–s)AG

(
Z(s,x)

)
G

(
Z(s,x)

)∗e(t–s)A
∗
D

xϕ(x)ek ds, ek
〉]

,
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where the sequence {ek}k∈N is an orthonormal basis in H , by hypotheses (H), (H), and
(.), for any x ∈H it follows that

lim
t→


t

∫ t


e(t–s)AG

(
Z(s,x)

)
G

(
Z(s,x)

)∗e(t–s)A
∗
ds =G(x)G(x)∗.

Therefore

lim
t→

I ′(t) =


E

[ ∞∑
k=

〈
G(x)G(x)∗D

xϕ(x)ek , ek
〉]

=


Tr

[
G(x)G(x)∗D

xϕ(x)
]

and

lim
t→

Rtϕ(x) – ϕ(x)
t

=


Tr

[
G(x)G(x)∗Dϕ(x)

]
+

〈
x,A∗Dϕ(x)

〉
.

Moreover, in view of (.), we have

∣∣∣∣Rtϕ(x) – ϕ(x)
t

∣∣∣∣ ≤
∣∣∣∣ϕ(etAx) – ϕ(x)

t

∣∣∣∣
+



∣∣∣∣E
[

t
〈
D

xϕ
(
etAx + σt

(
WA(t)

)
WA(t)

)
WA(t),WA(t)

〉]∣∣∣∣
≤

∣∣∣∣
〈
A∗Dϕ

(
x + ξt ·

(
etAx – x

))
,

t

∫ t


esAxds

〉∣∣∣∣
+


∥∥Dϕ

∥∥
E

[

t

∫ t



∥∥e(t–s)AG(
Z(s,x)

)∥∥
L(H) ds

]
,

considering hypotheses (H), (H), and (.), it yields

∣∣∣∣Rtϕ(x) – ϕ(x)
t

∣∣∣∣ ≤
∣∣∣∣
〈
A∗Dϕ

(
x + ξt ·

(
etAx – x

))
,

t

∫ t


esAxds

〉∣∣∣∣
+
c


∥∥Dϕ
∥∥


(
 + |x|)

t

∫ t


κ(t – s) ds.

On account of (.) and limt→+

t
∫ t
 κ(t – s) ds≤ M

 , this implies

sup
t∈(,]


t
∥∥Rtϕ(x) – ϕ(x)

∥∥
, < ∞,

thus, ϕ ∈D(L) and (.) holds.
Similar to the proof given in [], nowwe prove that the set EA(H) is a π-core for (L,D(L)).

Let ϕ ∈ D(L), for any n ∈ N, set ϕn (x) = nϕ(x)/(n + |x|). Clearly, ϕn ∈ Cb(H) and ( +
|x|)–ϕn

π→ ( + |x|)–ϕ as n → ∞. By Proposition ., for any n ∈ N we fix a sequence
ϕn,n ⊂ EA(H) (for the sake of simplicity we assume that the sequence has only one index)
such that ϕn,n

π→ ϕn as n → ∞. Set

ϕn,n,n,n (x) =

n

n∑
k=

R k
nn

ϕn,n (x) (.)

http://www.advancesindifferenceequations.com/content/2014/1/222
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for any n,n,n,n ∈ N, so we can show that the sequence (ϕn,n,n,n ) fulfills (.) by
a straightforward computation because of the continuity of the function R

+ → R, t →
Rtϕ(x), for any ϕ ∈ Cb,(H).
And likewise, for any x ∈H we have

lim
n→∞· · · lim

n→∞


 Tr[G(·)G(·)∗Dϕn,...,n (x)] + 〈x,A∗Dϕn,...,n (x)〉

 + |x|
= lim

n→∞· · · lim
n→∞

Lϕn,...,n (x)
 + |x|

= lim
n→∞ lim

n→∞ lim
n→∞

n
∫ /n
 LRtϕn,n (x)dt

 + |x|

= lim
n→∞ lim

n→∞ lim
n→∞

n(R 
n

ϕn,n (x) – ϕn,n (x))

 + |x|

= lim
n→∞

n(R 
n

ϕ(x) – ϕ(x))

 + |x| =
Lϕ(x)
 + |x| ,

where we have used the continuity of t �→ LRtϕn,n (x) and the fact that LRtϕn,n (x) =
(d/dt)Rtϕn,n (x) (cf. Lemmas . and .). In fact that any limit above is equibounded in
Cb,(H) with respect to the corresponding index by the construction of ϕn,n,n,n (x), thus
(.) holds.
If ϕ ∈D(L)∩C

b(H), (.) can be proved by Proposition .. �

Theorem. Assume that the conditions of Theorem . hold, let {Pt}t≥ be the semigroup
(.) and {Rt}t≥ be the semigroup (.),we denote by (K ,D(K)), (L,D(L)) the corresponding
infinitesimal generators in Cb,(H). Then we have D(L)∩C

b(H) =D(K)∩C
b(H) and

Kϕ = Lϕ + 〈Dϕ,F〉 (.)

for any ϕ ∈D(L)∩C
b(H).

Proof Let X(t,x) be the mild solution of (.) and Z(t,x) be the mild solution of (.), for
any ϕ ∈D(L)∩C

b(H), taking into account that

X(t,x) = Z(t,x) +
∫ t


e(t–s)AF

(
X(s,x)

)
ds

+
∫ t


e(t–s)A

(
G

(
X(s,x)

)
–G

(
Z(s,x)

))
dW (s),

by the Taylor formula we have P-a.s.

ϕ
(
Z(t,x)

)
= ϕ

(
X(t,x)

)
+ ϕ

(
Z(t,x)

)
– ϕ

(
X(t,x)

)
= ϕ

(
X(t,x)

)
–

∫ 



〈
Dϕ

(
ξZ(t,x) + ( – ξ )X(t,x)

)
,
∫ t


e(t–s)AF

(
X(s,x)

)
ds

+
∫ t


e(t–s)A

(
G

(
X(s,x)

)
–G

(
Z(s,x)

))
dW (s)

〉
dξ .
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Then we get

Rtϕ(x) – ϕ(x) = E
[
ϕ
(
Z(t,x)

)]
– ϕ(x)

= Ptϕ(x) – ϕ(x) –E

[∫ 



〈
Dϕ

(
ξZ(t,x) + ( – ξ )X(t,x)

)
,

∫ t


e(t–s)AF

(
X(s,x)

)
ds

〉
dξ

]

for any x ∈H , with the help of Luigi Manca’s result (see [], Theorem .), we have

lim
t→+


t
E

[∫ 



〈
Dϕ

(
ξZ(t,x) + ( – ξ )X(t,x)

)
,
∫ t


e(t–s)AF

(
X(s,x)

)
ds

〉
dξ

]

=
〈
Dϕ(x),F(x)

〉
,

so

lim
t→+

Ptϕ(x) – ϕ(x)
t

= Lϕ(x) +
〈
Dϕ(x),F(x)

〉
.

As is easily seen, (Lϕ(x) + 〈Dϕ(x),F(x)〉) ∈ Cb,(H). Moreover,

∣∣∣∣Ptϕ(x) – ϕ(x)
t

∣∣∣∣ ≤
∣∣∣∣Rtϕ(x) – ϕ(x)

t

∣∣∣∣ + 
t
E

[∣∣∣∣
∫ 



〈
Dϕ

(
ξZ(t,x) + ( – ξ )X(t,x)

)
,

∫ t


e(t–s)AF

(
X(s,x)

)
ds

〉
dξ

∣∣∣∣
]

≤
∣∣∣∣Rtϕ(x) – ϕ(x)

t

∣∣∣∣ + ‖Dϕ‖ · 
t
E

[∫ t



∣∣e(t–s)AF(
X(s,x)

)∣∣ds],
taking into account hypothesis (H) and (.), it yields

∣∣∣∣Ptϕ(x) – ϕ(x)
t

∣∣∣∣ ≤
∣∣∣∣Rtϕ(x) – ϕ(x)

t

∣∣∣∣ + ‖Dϕ‖ · 
t

∫ t


κ(t – s)

(
 +E

[∣∣X(s,x)∣∣])ds
≤

∣∣∣∣Rtϕ(x) – ϕ(x)
t

∣∣∣∣ + c‖Dϕ‖
(
 + |x|) · 

t

∫ t


κ(s)ds,

and due to κ(t) ≤ Meωt , for any T > , there exists a constant c >  such that


t

∫ t


κ(s)ds≤ M(eωt – )

ωt
≤ c, t ∈ (,T].

This implies

sup
t∈(,]

∥∥∥∥Ptϕ(x) – ϕ(x)
t

∥∥∥∥
,

<∞,

hence, ϕ ∈D(K)∩C
b(H) and Kϕ = Lϕ + 〈Dϕ,F〉.

In the same way, for any ϕ ∈ D(K)∩C
b(H), we can prove that ϕ ∈ D(L)∩C

b(H), so this
completes the proof. �
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By Proposition . and Theorem . we have the following.

Corollary . (K ,D(K)) is an extension of K and for any ϕ ∈ E (A) we have ϕ ∈D(K) and
Kϕ = Kϕ.

3.2 The case F ∈ C2
b(H;H)

The following lemma is proved in [, Chapter ].

Lemma . Let us assume Hypothesis . and that F ∈ C
b(H ;H), G ∈ C

b(H ;L(H)). Then
the semigroup {Pt}t≥ defined in (.)maps C

b(H) into C
b(H), and for any f ∈ C

b(H), h ∈ H
we have

〈
DPtf (x),h

〉
= E

[〈
Df

(
X(t,x)

)
,ηh(t,x)

〉]
, (.)

where ηh(t,x) is the mild solution of the equation in H

⎧⎪⎪⎨
⎪⎪⎩
dηh(t,x) = (Aηh(t,x) +DF(X(t,x)) · ηh(t,x))dt

+DG(X(t,x)) · ηh(t,x)dW (t), t > ,

ηh(,x) = h.

(.)

Proposition . Under the conditions of Lemma ., we assume that the function κ in
hypothesis (H) satisfies κ(t) ≤ Meωt , t ≥ , for two constants M >  and ω ∈ R, let
(K ,D(K)) be the infinitesimal generator of {Pt}t≥. Then there exist two constants λ > 
and M̄ >  such that for any λ > λ, the resolvent R(λ,K) of K at λ maps C

b(H) into C
b(H)

and we have

∥∥DR(λ,K)f
∥∥
Cb(H;H) ≤

M̄‖Df ‖Cb(H;H)

λ – λ
, f ∈ C

b(H). (.)

Proof Let f ∈ C
b(H), for any t ≥ , Ptf ∈ C

b(H) and for any x,h ∈H we have

〈
DPtf (x),h

〉
= E

[〈
Df

(
X(t,x)

)
,ηh(t,x)

〉]
, (.)

where ηh(t,x) is the mild solution of (.), that is,

ηh(t,x) = etAh +
∫ t


e(t–s)ADF

(
X(s,x)

)
ηh(s,x)ds

+
∫ t


e(t–s)ADG

(
X(s,x)

)
ηh(s,x)dW (s), (.)

then

E
[∣∣ηh(t,x)

∣∣] ≤ 
(∣∣etAh∣∣ +E

[∣∣∣∣
∫ t


e(t–s)ADF

(
X(s,x)

)
ηh(s,x)ds

∣∣∣∣
]

+E

[∣∣∣∣
∫ t


e(t–s)ADG

(
X(s,x)

)
ηh(s,x)dW (s)

∣∣∣∣
])

,
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applying the Minkowski inequality and the generalization of maximal inequality of mar-
tingales to stochastic convolution, see [, Lemma . and Proposition .], it follows that

E
[∣∣ηh(t,x)

∣∣] ≤ 
(∣∣etAh∣∣ +E

[(∫ t



∣∣e(t–s)ADF(
X(s,x)

)
ηh(s,x)

∣∣ds)]

+ cE
[∫ t



∥∥e(t–s)ADG(
X(s,x)

)
ηh(s,x)

∥∥
L(H) ds

])
,

where c is a given positive constant. By Hypothesis . and F ∈ C
b(H ;H),G ∈ C

b (H ;L(H)),
we have

etADF ∈ Cb
(
H ;L(H)

)
, etADG ∈ Cb

(
H ;L

(
H ;L(H)

))
(.)

and

∣∣etADF(x)y∣∣ ≤ κ(t)|y|, ∥∥etADG(x)y∥∥L(H) ≤ κ(t)|y| (.)

for any x, y ∈H , considering that κ(t) ≤ Meωt , we obtain

E
[∣∣ηh(t,x)

∣∣] ≤ 
(
Meωt|h| +E

[(∫ t


κ(t – s)

∣∣ηh(s,x)
∣∣ds)]

+ cE
[∫ t


κ(t – s)

∣∣ηh(s,x)
∣∣ ds])

≤ 
(
Meωt|h| +M

E

[(∫ t


eω(t–s)

∣∣ηh(s,x)
∣∣ds)]

+ cM


∫ t


eω(t–s)E

[∣∣ηh(s,x)
∣∣]ds).

By the Hölder inequality, one can obtain

E

[(∫ t


eω(t–s)

∣∣ηh(s,x)
∣∣ds)]

≤ E

[(∫ t


e–(t–s) ds

)(∫ t


e(ω+)(t–s)

∣∣ηh(s,x)
∣∣ ds)]

≤
∫ t


e(ω+)(t–s)E

[∣∣ηh(s,x)
∣∣]ds,

then

E
[∣∣ηh(t,x)

∣∣] ≤ 
(
Meωt|h| +M



∫ t


e(ω+)(t–s)E

[∣∣ηh(s,x)
∣∣]ds

+ cM


∫ t


eω(t–s)E

[∣∣ηh(s,x)
∣∣]ds). (.)

Let ω̄ = max{ω,ω + 
 , }, multiplying (.) by e–ω̄t and taking into account eω(t–s) ≤

e(ω+)(t–s) ≤ eω̄(t–s), for t > s, yields

e–ω̄tE
[∣∣ηh(t,x)

∣∣] ≤ M|h| + M
 ( + c)

∫ t


e–ω̄sE

[∣∣ηh(s,x)
∣∣]ds.
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Now from the Gronwall inequality it follows that

E
[∣∣ηh(t,x)

∣∣] ≤ M̄eλt|h|, (.)

where the constants M̄ =
√
M, λ =

M
 (+c)
 + ω̄, thus

E
[∣∣ηh(t,x)

∣∣] ≤ M̄eλt|h|.

By (iii) of Lemma ., we have

∣∣〈DR(λ,K)f (x),h
〉∣∣ = ∣∣∣∣

∫ ∞


e–λt

E
[〈
Df

(
X(t,x)

)
,ηh(t,x)

〉]
dt

∣∣∣∣
≤ M̄‖Df ‖Cb(H;H)

∫ ∞


e–λteλt|h|dt

=
M̄‖Df ‖Cb(H;H)

λ – λ
|h|

for any h ∈ H . Therefore, (.) follows. �

3.3 The general case and the proof of Theorem 3.1
From the above argument it remains to prove that EA(H) is a π-core for (K ,D(K)) for the
proof of Theorem .. For this we introduce the following approximation result (see []).
We take a sequence of nonnegative twice differentiable functions {ρn}n∈N such that

supp(ρn) ⊆
{
ξ ∈R

n, |ξ |Rn ≤ 
n

}
and

∫
Rn

ρn(ξ )dξ = . (.)

Let Qn be the orthonormal projection of H onto span{e, . . . , en}, {en}n∈N be the orthonor-
mal basis in H . We will identify R

n with span{e, . . . , en}, the mappings Fn : H → H and
Gn :H → L(H) are defined by

Fn(x) =
∫
Rn

ρn(ξ –Qnx)F

( n∑
i=

ξiei

)
dξ , (.)

Gn(x) =
∫
Rn

ρn(ξ –Qnx)G

( n∑
i=

ξiei

)
dξ . (.)

It is easy to check that Fn ∈ C
b (H ;H), Gn ∈ C

b(H ;L(H)) for any n ∈N. Moreover, Fn(x) →
F(x),Gn(x)→G(x) as n→ ∞ for all x ∈H , and Fn,Gn, n ∈N satisfy (H)-(H) in Hypoth-
esis ..
Let Pn

t be the semigroup

Pn
t ϕ(x) = E

[
ϕ
(
Xn(t,x)

)]
, ϕ ∈ Cb,(H), (.)

where Xn(t,x) is the mild solution of (.) with Fn, Gn replacing F , G. Clearly, we have

lim
n→∞E

[∣∣Xn(t,x) –X(t,x)
∣∣] = , t ≥ ,x ∈H , (.)
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and for any T > , there exists a constant c >  such that

sup
t∈[,T]

E
[∣∣Xn(t,x)

∣∣] ≤ c
(
 + |x|), x ∈H . (.)

This implies

lim
n→∞

Pn
t ϕ

 + | · |
π=

Ptϕ

 + | · | (.)

for any t ≥ , ϕ ∈ Cb,(H). We denote (Kn,D(Kn)) the infinitesimal generator of the semi-
group Pn

t in Cb,(H), defined as in (.) with Kn, Pn
t replacing K , Pt . Also all the statements

of Lemmas . and . hold for Pn
t and (Kn,D(Kn)). Combining (.), it is straightforward

to see that the resolvent of (Kn,D(Kn)) satisfy

lim
n→∞

R(λ,Kn)ϕ
 + | · |

π=
R(λ,K)ϕ
 + | · | (.)

for any ϕ ∈ Cb,(H), λ > ω.

Proposition . The set EA(H) is a π -core for (K ,D(K)), and for any ϕ ∈D(K) there exist
m ∈N and an m-indexed sequence {ϕn,...,nm}n,...,nm∈N ⊂ EA(H) such that

lim
n→∞· · · lim

nm→∞
ϕn,...,nm
 + | · |

π=
ϕ

 + | · | , (.)

lim
n→∞· · · lim

nm→∞
Kϕn,...,nm
 + | · |

π=
Kϕ

 + | · | . (.)

Proof The proof goes along the same lines as that of Lemma . in [], with some im-
portant changes. Namely, instead of Propositions . and . in [], we have to use the
modifications which correspond to Propositions . and . above. �

4 Fokker-Planck equation for Kolmogorov operator
This section is devoted to studying the following Fokker-Planck equation for the Kol-
mogorov operator K:

⎧⎨
⎩

d
dt

∫
H ϕ(x)μt(dx) =

∫
H Kϕ(x)μt(dx), t ≥ ,ϕ ∈ EA(H),

μ = μ ∈M(H),
(.)

where the Kolmogorov operator K is defined by (.).
To give a precise meaning of this problem, we introduce the notion of solution of (.).

Definition . Given μ ∈ M(H), we say that a family of measures {μt}t≥ is a solution
of the Fokker-Planck equation (.) if the following are fulfilled:

(i) the total variation of the measure μt satisfies

∫ T



∫
H

(
 + |x|)|μt|(dx)dt < ∞, ∀T > ; (.)

http://www.advancesindifferenceequations.com/content/2014/1/222
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(ii) for any ϕ ∈ EA(H) and any t ≥ , it holds

∫
H

ϕ(x)μt(dx) –
∫
H

ϕ(x)μ(dx) =
∫ t



(∫
H
Kϕ(x)μs(dx)

)
ds. (.)

FromTheorem . we know the relationships between the Kolmogorov operator K and
the infinitesimal generator (K ,D(K)) of the transition semigroup {Pt}t≥, defined by (.).
Then we firstly study the measure value equation

⎧⎨
⎩

d
dt

∫
H ϕ(x)μt(dx) =

∫
H Kϕ(x)μt(dx), t ≥ ,ϕ ∈ D(K),

μ = μ ∈M(H).
(.)

Theorem. Assume that the conditions of Theorem . hold, let {Pt}t≥ be the semigroup
associated to the SPDE (.) defined by (.) and (K ,D(K)) be its infinitesimal generator
defined by (.). Then the formula

〈
ϕ,P∗

t f
〉
σ (Cb,(H),Cb,(H)∗) = 〈Ptϕ, f 〉σ (Cb,(H),Cb,(H)∗) (.)

defines a semigroup {P∗
t }t≥ of linear and continuous operators on Cb,(H)∗ that maps

M(H) intoM(H).Moreover, for any μ ∈M(H) there exist a unique family of measures
{μt}t≥ ⊂M(H) such that

∫ T



∫
H

(
 + |x|)|μt|(dx)dt < ∞, ∀T > 

and

∫
H

ϕ(x)μt(dx) –
∫
H

ϕ(x)μ(dx) =
∫ t



(∫
H
Kϕ(x)μs(dx)

)
ds

for any t ≥ , ϕ ∈D(K). Finally, the solution of (.) is given by P∗
t μ, t ≥ .

Proof In order to proof our result, we can follow almost the same arguments as in the
proof of Theorem . in [] by Luigi Manca. We omit the details here. �

As a consequence we get the second main result.

Theorem . Assume that the conditions of Theorem . hold, for any μ ∈ M(H) there
exists a unique solution of measures {μt}t≥ ⊂M(H) of (.), and this solution is given by
P∗
t μ.

Proof Let (K ,D(K)) be the infinitesimal generator defined by (.), by Theorem . we find
that EA(H) is a π-core for (K ,D(K)), and that Kϕ = Kϕ, for any ϕ ∈ EA(H). So combining
Theorem . it is easy to show that {P∗

t μ}t≥ is a solution of the Fokker-Planck equation
(.) for any μ ∈M(H).
To prove the uniqueness of the solution, we assume that {μt}t≥ is a solution of (.).

For any t ≥  and ϕ ∈ D(K), there exists a sequence (ϕn)n∈N ⊂ EA(H) (for simplicity we
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assume that this sequence has only one index) such that

lim
n→∞

ϕn

 + | · |
π=

ϕ

 + | · | , lim
n→∞

Kϕn

 + | · |
π=

Kϕ

 + | · | , (.)

and we have

∫
H

ϕ(x)μt(dx) –
∫
H

ϕ(x)μ(dx) = lim
n→∞

(∫
H

ϕn(x)μt(dx) –
∫
H

ϕn(x)μ(dx)
)

= lim
n→∞

∫ t



(∫
H
Kϕn(x)μs(dx)

)
ds. (.)

Now observe that supn∈N |Kϕn| ≤ c( + |x|) for some c >  and μs ∈ M(H) for any s ≥ ,
so

lim
n→∞

∫
H
Kϕn(x)μs(dx) =

∫
H
Kϕ(x)μs(dx) (.)

and

sup
n∈N

∣∣∣∣
∫
H
Kϕn(x)μs(dx)

∣∣∣∣ ≤ c
∫
H

(
 + |x|)|μs|(dx). (.)

Taking into account (.) and applying the dominated convergence theorem, it yields

lim
n→∞

∫ t



(∫
H
Kϕn(x)μs(dx)

)
ds =

∫ t



(∫
H
Kϕ(x)μs(dx)

)
ds, (.)

this implies that {μt}t≥ is a solution of themeasure equation (.). On the other hand such
a solution is unique and is given by {P∗

t μ}t≥ by Theorem ., that is, for any ϕ ∈ EA(H)
we have

∫
H

ϕ(x)P∗
t μ(dx) =

∫
H

ϕ(x)μt(dx). (.)

By Proposition ., (.) still holds for any ϕ ∈ Cb(H), this implies μt = P∗
t μ, ∀t ≥ . This

concludes the proof. �
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