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Abstract
In this paper, the box differential equations under generalized Hukuhara derivatives
are considered. We study the existence and uniqueness results for box integral
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1 Introduction
The set-valued differential and integral equations are an important part of the theory of
set-valued analysis, and they have the high value for control theory and its application.
They were first studied in  by De Blasi and Iervolino []. Recently, set-valued differ-
ential equations have been studied by many scientists due to their applications in many
areas. For many results in the theory of set-valued differential and integral equations, the
readers are referred to the following books and papers [–] and references therein.
In many real-word problems, it is desirable to transforms the behavior of a special phe-

nomenon into a deterministic initial value problem of linear systems of differential equa-
tions, namely,

X ′(t) = AX(t) + F(t), X() = X, (.)

where A = (aij) ∈ Mn(R), X = (x,x, . . . ,xn),X = (x,x, . . . ,xn) ∈ R
n, t ∈ [,T], and

F = (f, f, . . . , fn) : [,T]→R
n. However, the model is not usually perfect due to the lack of

certain information of the initial valueX,matrixA or F , whichmust be estimated through
measurements. The analysis of measurements errors leads to the study of qualitative be-
havior of the solutions of (.). In such situations, interval-valued differential equations
(IDEs) are common tools if the underlying structure is not probabilistic. The interval-
valued analysis and interval-valued differential equations are special cases of set-valued
analysis and set-valued differential equations, respectively. In many cases, whenmodeling
real-world phenomena, information about the behavior of a dynamical system is uncer-
tain and one has to consider these uncertainties to gain better understanding of the full
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models. The interval-valued differential equations can be used to model dynamical sys-
tems subjected to uncertainties. The papers of Stefanini and Bede [, ], Malinowski
[, ], and An et al. [, ] are focused on the interval-valued differential equations.
These equations can be studied with a framework of the Hukuhara derivative []. How-
ever, because of this the solutions have increasing length of their values. Furthermore, we
notice that this definition of Hukuhara derivative is very restrictive; for instance we can
see that if X(t) = C · x(t), where C is an interval-valued constant and x : [a,b] → R+ is a
real-valued function with x′(t) < , then X(t) is not differentiable. Recently, to avoid this
difficulty, Stefanini and Bede [] proposed to consider a so-called generalized derivative
of interval-valued functions. The interval-valued differential equations with this deriva-
tive can have solutions with decreasing length of their values, but the uniqueness is lost.
The paper of Stefanini and Bede was the starting point for the topic of interval-valued
differential equations (see Malinowski [, ], An et al. []) and later also for fuzzy dif-
ferential equations. The connection between the fuzzy analysis and the interval analysis is
very well known (Moore and Lodwick []). Interval analysis and fuzzy analysis were in-
troduced as an attempt to handle interval uncertainty that appears in many mathematical
or computer models of some deterministic real-world phenomena. The main theoretical
and practical results in the fields of fuzzy analysis and the interval analysis can be found in
several works (Moore [], Alefeld and Mayer [], Kolev []). Furthermore, some very
important extensions of the interval-valued differential equations are the set-valued dif-
ferential equations [, , ], the fuzzy differential equations [–], the random fuzzy
differential equations [–], and fuzzy stochastic differential equations [–]; and
some methods for solving fuzzy differential equations are presented e.g. in [–].
Based on the extensions of (.) for the interval cases, in this paper, we study the initial

value problem of interval-valued nonlinear systems of differential equations under gener-
alized Hukuhara differentiability, i.e., box-valued differential equations of the form

DgHX(t) = F
(
t,X(t)

)
, X() = X ∈ I

n, t ∈ [,T], (.)

where X = (X,X, . . . ,Xn),X = (X,X, . . . ,Xn) ∈ I
n, t ∈ [,T] and F = (F,F, . . . ,Fn) :

[,T] × I
n → I

n (In = I× I× · · · × I︸ ︷︷ ︸
n times

, I is the space of interval-valued functions). In [,

–, –] the authors studied box-valued differential equations under generalized
Hukuhara differentiability for the case n = . The existence and uniqueness of an initial
value problem are then obtained under an assumption that the coefficients satisfy a condi-
tion with the Lipschitz constant (see []). The proof is based on the application of the Ba-
nach fixed point theorem. In [], under the generalized Lipschitz condition, Malinowski
obtained the existence and uniqueness of solutions to both kinds of IDEs. In this paper,
we study the existence and uniqueness of solutions of two forms of the box integral equa-
tions. We employ a the method of upper and lower solutions. The first one leads to the
solutions which possess the trajectories with nonincreasing diameter of their values. In
the second form the solutions have the trajectories with nondecreasing diameter of their
values. Moreover, the approach is applied to prove the existence of solutions for the box-
valued differential equations under generalized Hukuhara derivative (.).
This paper is organized as follows: In Section , we present some needed concepts about

differentiation and integration of box-valued functions. In Section , we study the exis-
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tence and uniqueness theorems of solutions for two general forms of box integral equa-
tions by the method of upper and lower solutions. We use these results in order to in-
vestigate the existence results of solutions for the initial value problem of box differential
equations. Finally, we give some examples being simple illustrations of the theory of box-
valued differential equations.

2 Preliminaries
Let us denote by I the set of any nonempty compact intervals of the real line R. The
addition and scalar multiplication in I, are defined as usual, i.e. for A,B ∈ I, A = [A,A],
B = [B,B], where A ≤ A, B ≤ B, and λ ≥ , then we have

A + B = [A + B,A + B], λA = [λA,λA]
(
–λA = [–λA, –λA]

)
.

Furthermore, let A ∈ I, λ,λ,λ,λ,∈ R and λλ ≥ , then we have λ(λA) = (λλ)A
and (λ + λ)A = λA + λA. Let A,B ∈ I as above, the Hausdorff metric H in I is defined
as follows:

H[A,B] =max
{|A – B|, |A – B|}. (.)

We notice that (I,H) is a complete, separable and locally compact metric space. The mag-
nitude and the length of A ∈ I are defined by

H
[
A, {}] = ‖A‖ =max

{|A|, |A|}, len(A) = A –A,

respectively, where {} is the zero element of I, which is regarded as one point.
The generalized Hukuhara difference (or gH-difference) of two intervals A = [A,A], B =

[B,B] is defined as follows:

A�gH B = [A,A]�gH [B,B] =
[
min{A – B,A – B},max{A – B,A – B}]. (.)

In the present paper, we introduce the so-called boxes and box-valued functions. Let
now I

n = I× I×· · ·× I (n times) (the Cartesian product) denote the family of axis-aligned
boxes (boxes for short) of theRn. An elementA ∈ I

n is of the formA = [A,A]× [A,A]×
· · · × [An,An] =

∏n
i=Ai, for short, where Ai = [Ai,Ai] ∈ I are real compact intervals.

If A =
∏n

i=[Ai,Ai], B =
∏n

i=[Bi,Bi] in I
n where Ai ≤ Ai, Bi ≤ Bi, then the operations on

the boxes are defined by

A + B =
n∏
i=

[Ai + Bi,Ai + Bi] and λA =

⎧⎪⎨
⎪⎩

∏n
i= [λAi,λAi], if λ > ,

{}, if λ = ,∏n
i= [λAi,λAi], if λ < .

The metric structure is given by the Hausdorff distance HB : In × I
n →R

+ ∪ {},

HB[A,B] =

( n∑
i=

H[Ai,Bi]

)/

=

( n∑
i=

{
max

[|Ai – Bi|, |Ai – Bi|
]})/

. (.)
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Based on the properties of (I,H), see [, ], we deduce that (In,HB) is a complete, sepa-
rable metric space. For the metric HB the following properties hold:

HB[A + B,C +D] ≤ HB[A,C] +HB[B,D],

HB[λA,λB] = |λ|HB[A,B]

for every A,B,C,D ∈ I
n, and every λ ∈R.

The gH-difference of two boxes A =
∏n

i=Ai, B =
∏n

i= Bi is defined as follows:

A�gH B =

{∏n
i= [Ai – Bi,Ai – Bi], if len(Ai) ≥ len(Bi),∀i,∏n
i= [Ai – Bi,Ai – Bi], if len(Ai) < len(Bi),∀i.

If A,B,C ∈ I
n then it is easy to see that

A�gH B = C ⇔
{
A = B +C, if len(Ai) ≥ len(Bi),∀i,
B = A + (–C), if len(Ai) < len(Bi),∀i.

Proposition . Let A =
∏n

i=Ai,B =
∏n

i= Bi ∈ I
n. The gH-difference A�gH B exists if and

only if one of the two conditions is satisfied:
(i) len(Ai) ≥ len(Bi), i = , , . . . ,n,

or
(ii) len(Ai) ≤ len(Bi), i = , , . . . ,n.

Based on the gH-difference and the gH-derivative of interval-valued functions (see [])
we propose the following.

Definition . Let t ∈ [a,b] and h be such that t + h ∈ [a,b], the gH-derivative of a
function X : [a,b]→ I

n at t is defined as

DgHX(t) = lim
h→


h
[
X(t + h)�gH X(t)

]
. (.)

IfDgHX(t) ∈ I
n satisfying (.) exists, we say thatX is generalizedHukuhara differentiable

(gH-differentiable for short) at t.

Let us remark that the gH-derivative exists at t if and only if the left and right derivatives
at t exist and they are equal. We say that X is gH-differentiable on [a,b] if DgHX(t) ∈ I

n

exists at each point t ∈ [a,b]. At the end points of [a,b] we consider only the one sided
gH-derivatives.

Definition . Let X : [a,b] → I
n be such that X(t) =

∏n
i=Xi(t) =

∏n
i=[Xi(t),Xi(t)] and

gH-differentiable at t ∈ [a,b]. We say that X is ((i)-gH)-differentiable at t if
(i)

DgHX(t) =
n∏
i=

[
d
dt

Xi(t),
d
dt

Xi(t)
]

(.)

and that X is ((ii)-gH)-differentiable at t if
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(ii)

DgHX(t) =
n∏
i=

[
d
dt

Xi(t),
d
dt

Xi(t)
]
. (.)

Definition . Let X : [a,b] → I
n be such that X(t) =

∏n
i=Xi(t) =

∏n
i=[Xi(t),Xi(t)] and

Xi(t), Xi(t), i ∈ {, , . . . ,n} are measurable and Lebesgue integrable on [a,b]. Then the
integral of box-valued function X is defined as usually:

∫ b

a
X(t)dt =

n∏
i=

[∫ b

a
Xi(t)dt,

∫ b

a
Xi(t)dt

]
.

We say that X is Lebesgue integrable on [a,b]. It is easy to show that the box-valued
functionX is integrable on [a,b] if and only ifX ismeasurable andHB[X(t), {}] is Lebesgue
integrable on [a,b].
In this paper, we use the following partial ordering (see []).

Definition . Suppose A =
∏n

i=[Ai,Ai], B =
∏n

i=[Bi,Bi]. We say that A≤ B if and only if
Ai ≤ Bi and Ai ≤ Bi, for i = , . . . ,n.

We can also define the interval [A,B] = {C ∈ I
n : A ≤ C ≤ B}. Moreover, letting X,Y ∈

C([a,b], In) be two box-valued functions, we say that X ≤ Y if X(t) ≤ Y (t) for t ∈ [a,b].We
define [X(t),Y (t)] = {Z ∈ C([a,b], In) : X(t) ≤ Z(t)≤ Y (t)}.
We recall some properties on the partial ordering ≤ the space of box-valued functions,

which are useful for our procedure.

Proposition . Let A,B,C,D ∈ I
n and c ∈R+,

(i) A = B if and only if A≤ B and A≥ B;
(ii) if A≤ B, then A +C ≤ B +C;
(iii) if A≤ B and C ≤ D, then A +C ≤ B +D;
(iv) if A≤ B, then cA ≤ cB.

Lemma . ([]) Let F ,G,H ∈ C([,T], In) and X ∈ I
n and also G ≤ H , then

(i)
∫ t
 G(s)ds≤ ∫ t

 H(s)ds, t ∈ [,T];
(ii) X � (–)

∫ t
 G(s)ds≤ X � (–)

∫ t
 H(s)ds, t ∈ [,T];

(iii) if G(t) ≤ F(t)≤ H(t), t ∈ [,T], then
∫ t
 F(s)ds is well defined on [,T].

The following theorem is similar to the result proved in [].

Theorem . Let X : [a,b] → I
n be ((i)-gH)-differentiable or ((ii)-gH)-differentiable on

[a,b], and assume that the derivative DgHX is integrable over [a,b].We have
(a) if X be ((i)-gH)-differentiable on [a,b], then

∫ b
a DgHX(t)dt = X(b)�X(a);

(b) if X be ((ii)-gH)-differentiable on [a,b], then
∫ b
a DgHX(t)dt = (–)(X(a)�X(b)).

3 Box differential equations
In the sequel, we study the existence and uniqueness theorems of solutions for two general
forms of box integral equations by the method of upper and lower solutions.We use these
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results in order to investigate the existence results of solutions for the initial value problem
of box differential equations.
We consider two forms of the following box integral equations:

X(t) = X +
∫ t


F
(
s,X(s)

)
ds, t ∈ [,T] (.)

and

Y (t) = Y � (–)
∫ t


F
(
s,Y (s)

)
ds, t ∈ [,T], (.)

where F ∈ C([,T]× I
n, In) and the integral of F is integral from Definition ..

The solutions of equations (.) and (.) have no crisp elements and different geomet-
rical properties.

Remark . If X : [,T] → I
n is a solution to (.), then the function t �→ diam(X(t)) is

nondecreasing, where diam(Z) denotes the diameter of the box Z.

Remark . If Y : [,T] → I
n is a solution to (.), then the function t �→ diam(Y (t)) is

nonincreasing.

Definition . Let XU,XL,YU,YL ∈ C([,T], In), and F(t,XU(t)), F(t,XL(t)), F(t,YU(t)),
F(t,YL(t)) are integrable on [,T], we say that

(i) XU, XL are upper and lower solutions for (.), respectively, if

XU(t) ≥ X +
∫ t


F
(
s,XU(s)

)
ds, t ∈ [,T]

and

XL(t)≤ X +
∫ t


F
(
s,XL(s)

)
ds, t ∈ [,T];

(ii) YU, YL are upper and lower solutions for (.), respectively, if

YU(t) ≥ Y � (–)
∫ t


F
(
s,YU(s)

)
ds, t ∈ [,T]

and

YL(t) ≤ Y � (–)
∫ t


F
(
s,YL(s)

)
ds, t ∈ [,T],

provided the involved Hukuhara differences are well defined.

Definition . Let XL, XU be lower and upper solutions for the box integral equations
(.), [XL,XU] = {X ∈ C([a,b], In) : XL ≤ X ≤ XU}. We say that X ∈ [XL,XU] is a solution
for equation (.), if X satisfies equation (.). Moreover, the solution Xmax ∈ [XL,XU] is a
maximal solution of equation (.), if

Xmax(t)≥ X(t), t ∈ [,T]

http://www.advancesindifferenceequations.com/content/2014/1/223
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for any solution X ∈ [XL,XU]. We define a minimal solution Xmin ∈ [XL,XU] as a function
satisfying the reverse inequalities.

Definition . Let YL, YU be lower and upper solutions for the set integral equations
(.), [YL,YU] = {Y ∈ C([a,b], In) : YL ≤ Y ≤ YU}. We say that Y ∈ [YL,YU] is a solution
for equation (.), if Y satisfies equation (.). Moreover, the solution Ymax ∈ [YL,YU] is a
maximal solution of equation (.), if

Ymax(t) ≥ Y (t), t ∈ [,T]

for any solution Y ∈ [YL,YU]. We define a minimal solution Ymin ∈ [YL,YU] as a function
satisfying the reverse inequalities.

Theorem . Assume that
(i) XL,XU ∈ C([,T], In) are coupled upper and lower solutions of the box integral

equations (.) such that XL ≤ XU, t ∈ [,T];
(ii) F ∈ C([,T]× I

n, In), F(t,X) is nondecreasing in X ∈ [XL,XU] for all t ∈ [,T].
Then there exist maximal and minimal solutions Xmax,Xmin ∈ [XL,XU] for equation (.).

Proof Let us construct two sequences by

Vn+(t) = X +
∫ t


F
(
s,Vn(s)

)
ds, V = XL, t ∈ [,T] (.)

and

Wn+(t) = X +
∫ t


F
(
s,Wn(s)

)
ds, W = XU, t ∈ [,T]. (.)

We claim that Vn andWn are well defined, and

XL(t) = V(t)≤ V(t) ≤ · · · ≤ Vn(t) ≤ · · · ≤Wn(t)≤ · · ·
≤ W(t) ≤W(t) = XU(t), t ∈ [,T]. (.)

Indeed, from equation (.) we get for n = 

V(t) = X +
∫ t


F
(
s,V(s)

)
ds.

According to the integrability of F , V is well defined. Since V = XL, by Definition ., we
get

V(t) ≤ V(t), t ∈ [,T].

Moreover, XL(t)≤ XU(t), F(t,X) is nondecreasing in X, we get V(t)≤ W(t).
As a result, we obtain

V(t) ≤ V(t)≤ W(t), t ∈ [,T].

http://www.advancesindifferenceequations.com/content/2014/1/223
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We assume inductively

Vn–(t) ≤ Vn(t) ≤ W(t), t ∈ [,T], (.)

and Vk are well defined for k ≤ n. From equation (.), we find

Vn+(t) = X +
∫ t


F
(
s,Vn(s)

)
ds

and

Vn(t) = X +
∫ t


F
(
s,Vn–(s)

)
ds.

Employing the nondecreasing property of function F , along with the relation in equation
(.), we get

F(t,XL) ≤ F(t,Vn) ≤ F(t,XU).

By Lemma ., Vn+ is well defined and we get

Vn(t) ≤ Vn+(t) ≤ W(t), t ∈ [,T].

Similarly, we can prove that V ≤ Wn+ ≤ Wn(t) ≤ W and Wk are well defined for k =
, , . . . . Next, we prove Vn ≤ Wn, ∀n ∈ N. Indeed, V = XL ≤ XU = W comes from the
assumption. Now, we suppose inductively

Vn(t) ≤ Wn(t), t ∈ [,T]. (.)

By equations (.), (.), and applying the fact that F is nondecreasing, equation (.), we
deduce that

Vn+(t) ≤ Wn+(t), t ∈ [,T].

Since the sequence of functions Vn(t) is monotone nondecreasing and bounded from
above, and the sequence of functionsWn(t) ismonotone nonincreasing and bounded from
below, the pointwise limits exist, and these limits are denoted by Xmin and Xmax such that
they satisfy

lim
n→∞Vn(t) = Xmin(t), lim

n→∞Wn(t) = Xmax(t), t ∈ [,T].

Next, taking the limits as n→ ∞ in equations (.), (.), using continuity and monotone
nondecreasing of F , we infer that

Xmin(t) = X +
∫ t


F
(
s,Xmin(s)

)
ds, t ∈ [,T]

http://www.advancesindifferenceequations.com/content/2014/1/223
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and

Xmax(t) = X +
∫ t


F
(
s,Xmax(s)

)
ds, t ∈ [,T].

Moreover, by equation (.), we get

V ≤ Xmin ≤ Xmax ≤ W, t ∈ [,T]. (.)

Now, we claim that Xmin, Xmax are minimal and maximal solutions of equation (.), that
is, if X(t) is any solution of equation (.) such that

V ≤ X(t) ≤ W, t ∈ [,T],

then

V ≤ Xmin ≤ X(t)≤ Xmax ≤ W, t ∈ [,T]. (.)

Suppose that for some n,

Vn ≤ X(t) ≤ Wn, t ∈ [,T].

By using the monotone nondecreasing property of F and Lemma ., we get

Vn+(t) = X +
∫ t


F
(
s,Vn(s)

)
ds≤ X +

∫ t


F
(
s,X(t)(s)

)
ds = X(t), t ∈ [,T].

Similarly Wn+ ≥ X(t), t ∈ [,T]. Hence, by induction, equation (.) is true for all n ∈ N.
Now, taking the limit as n → ∞, we get equation (.). The proof is complete. �

Corollary . If, in addition to the assumptions of Theorem ., F satisfies, whenever Y ≥
Z; Y ,Z ∈ I

n,

F(t,Y ) + LZ ≤ F(t,Z) + LY , L > , (.)

then Xmin = X = Xmax is the unique solution of equation (.).

Proof We have Xmin =
∏n

i=[Xi,min,Xi,min], Xmax =
∏n

i=[Xi,max,Xi,max].
Since Xmin ≤ Xmax, by Definition ., we get Xmax = Xmin + R, where R =

∏n
i=[Ri,Ri];

Ri,Ri ≥ , for i = , . . . ,n. By assumption (.), we have

n∏
i=

[
Xi,min(t),Xi,min(t)

]
+

n∏
i=

[
Ri(t),Ri(t)

]

=
n∏
i=

[
Xi,max(t),Xi,max(t)

]

=
n∏
i=

[Xi,Xi] +
n∏
i=

[∫ t


Fi

(
s,Xi,max(s)

)
ds,

∫ t


Fi

(
s,Xi,max(s)

)
ds

]

http://www.advancesindifferenceequations.com/content/2014/1/223
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≤
n∏
i=

[Xi,Xi] +
n∏
i=

[∫ t


Fi

(
s,Xi,min(s)

)
ds,

∫ t


Fi

(
s,Xi,min(s)

)
ds

]

+ L
n∏
i=

[∫ t


Ri(s)ds,

∫ t


Ri(s)ds

]

=
n∏
i=

[Xi,min,Xi,min] + L
n∏
i=

[∫ t


Ri(s)ds,

∫ t


Ri(s)ds

]
,

and hence

Ri(t) ≤ L
∫ t

t
Ri(s)ds, Ri(t) ≤ L

∫ t

t
Ri(s)ds, i = , . . . ,n.

The Gronwall inequality implies that Ri(t)≤ , Ri(t) ≤  and as a result, Ri(t) = , Ri(t) = 
for i = , . . . ,n. Therefore, Xmin = X = Xmax is the unique solution. �

Theorem . Assume that
(i) YU,YL ∈ C([,T], In) are coupled upper and lower solutions of the box integral

equations (.) such that YL ≤ YU, t ∈ [,T];
(ii) F ∈ C([,T]× I

n, In), F(t,Y ) is nondecreasing in Y ∈ [YL,YU] for all t ∈ [,T];
(iii) the sequences

V = YL, Vn+(t) = X � (–)
∫ t


F
(
s,Vn(s)

)
ds,

W = YU, Wn+(t) = X � (–)
∫ t


F
(
s,Wn(s)

)
ds

for all t ∈ [,T] are well defined.
Then there exist maximal and minimal solutions Ymax,Ymin ∈ [YL,YU] for equation (.).

Corollary . If, in addition to the assumptions of Theorem ., F satisfies, whenever Y ≥
Z, Y ,Z ∈ I

n,

F(t,Y )≤ F(t,Z) + L(Y � Z), L > ,

then Ymin = Y = Ymax is the unique solution of equation (.).

Proof The proof is similar Theorem . and Corollary . by employing Lemma .. �

In the sequel, we study the box-valued differential equations using the concept of gener-
alized Hukuhara differentiability. In this setting, we prove the existence of two solutions,
each one corresponding to a different type of differentiability.
We consider the following box-valued differential equation (BDE) with the initial con-

dition:

DgHX(t) = F
(
t,X(t)

)
, X() = X ∈ I

n, t ∈ [,T], (.)

where F : [,T] × I
n → I

n is continuous box-valued function and X ∈ I
n is a nontrivial

box. In this paper, we consider only ((i)-gH)-differentiable type and ((ii)-gH)-differentiable

http://www.advancesindifferenceequations.com/content/2014/1/223
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type solutions, i.e. such that there are no switching points in [,T]. Let us remark here that
the equation DgHX(t) = F(t,X(t)) is equivalent to DgHX(t) �gH F(t,X(t)) = {} and also
equivalent to F(t,X(t))�gHDgHX(t) = {}, but it is not equivalent to DgHX(t) –F(t,X(t)) =
{} (here the ‘–’ is in the usual interval arithmetic sense).
The following lemma is similar to the result proved in [].

Lemma . The box-valued differential equation (.) is equivalent to the following inte-
gral equation:

X(t)�gH X() =
∫ t


F
(
s,X(s)

)
ds, t ∈ [,T]. (.)

Two cases of existence of the gH-difference imply that the integral equation in Lemma.
is actually a unified formulation for one the integral equations

X(t)�X() =
∫ t


F
(
s,X(s)

)
ds and X()�X(t) = (–)

∫ t


F
(
s,X(s)

)
ds,

with � being the classical Hukuhara difference. Now, let X and Y be solutions of equation
(.) in ((i)-gH)-differentiable type and ((ii)-gH)-differentiable type, respectively, then by
using Lemma . and Theorem ., we have

X(t) = X +
∫ t


F
(
s,X(s)

)
ds, (.)

Y (t) = X � (–)
∫ t


F
(
s,Y (s)

)
ds. (.)

Definition . Let X : I → I
n be a box-valued function which is ((i)-gH)-differentiable. If

X and its derivative satisfy problem (.), we say that X is a (i)-solution of problem (.).

Definition . Let Y : I → I
n be a box-valued function which is ((ii)-gH)-differentiable. If

Y and its derivative satisfy problem (.), we say that Y is a (ii)-solution of problem (.).

In [] Malinowski proved the existence and uniqueness of solutions to interval-valued
differential equations by using generalized Lipschitz conditions. In [] authors proved the
existence and uniqueness of solutions to interval-valued differential equations by using
the Banach fixed point theorem. In the sequel, we study the existence and uniqueness
results for box integral and differential equations employing the method of upper and
lower solutions.

Theorem . Assume that
(i) XU,XL ∈ C([,T], In) are coupled upper and lower solutions of the box integral

equations (.) such that XL(t) ≤ XU(t), t ∈ [,T];
(ii) F ∈ C([,T]× I

n, In), F(t,X) is nondecreasing in X ∈ [XL,XU] for all t ∈ [,T].
Then there exists at least one solution X ∈ [XL,XU] for equation (.), which is ((i)-gH)-
differentiable.

Theorem . Assume that
(i) YU,YL ∈ C([,T], In) are coupled upper and lower solutions of the box integral

equations (.) such that YL(t) ≤ YU(t), t ∈ [,T];

http://www.advancesindifferenceequations.com/content/2014/1/223


Quang Advances in Difference Equations 2014, 2014:223 Page 12 of 17
http://www.advancesindifferenceequations.com/content/2014/1/223

(ii) F ∈ C([,T]× I
n, In), F(t,Y ) is nondecreasing in Y ∈ [YL,YU] for all t ∈ [,T];

(iii) the sequences

V = YL, Vn+(t) = Y � (–)
∫ t

t
F
(
s,Vn(s)

)
ds,

W = YU, Wn+(t) = Y � (–)
∫ t

t
F
(
s,Wn(s)

)
ds

for all t ∈ [,T] are well defined.
Then there exists at least one solution Y ∈ [YL,YU] for equation (.), which is ((ii)-gH)-

differentiable.

Proof Since all the conditions of Theorem . are fulfilled, there exists at least a solution,
say X, for the integral (.). We wish to show that X is a solution for equation (.).
For small h > , we have

X(t + h) + (–)
∫ t+h

t
F
(
s,X(s)

)
ds

=
∫ t+h


F
(
s,X(s)

)
ds + (–)

∫ t+h

t
F
(
s,X(s)

)
ds

=
∫ t


F
(
s,X(s)

)
ds +

∫ t+h

t
F
(
s,X(s)

)
ds + (–)

∫ t+h

t
F
(
s,X(s)

)
ds

=
∫ t


F
(
s,X(s)

)
ds = X(t).

Hence, we obtain

X(t)�X(t + h) = (–)
∫ t+h

t
F
(
s,X(s)

)
ds.

Moreover, we observe that

HB

[

h

∫ t+h

t
F
(
s,X(s)

)
ds,F

(
t,X(t)

)]
=HB

[

h

∫ t+h

t
F
(
s,X(s)

)
ds,


h

∫ t+h

t
F
(
t,X(t)

)]

≤ 
h

∫ t+h

t
HB

[
F
(
s,X(s)

)
,F

(
t,X(t)

)]
ds

≤ sup
|s–t|≤h

HB
[
F
(
s,X(s)

)
,F

(
t,X(t)

)]
and since F is continuous, for h↘  the last term ↘  which means that

lim
h↘

X(t)�X(t + h)
–h

= F
(
t,X(t)

)
.

Similarly,

lim
h↘

X(t – h)�X(t)
–h

= lim
h↘


h

∫ t

t–h
F
(
s,X(s)

)
ds = F

(
t,X(t)

)
.

It follows that X is ((ii)-gH)-differentiable and is a solution of equation (.). �
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Figure 1 Exact solution of Example 3.5, Case 1
(n = 1).

Example . Consider the box-valued differential equations with initial value:

DgHX(t) = ( + t)X(t), X() = [–, ] ∈ I
, t ∈ [, ]. (.)

Case : X is ((i)-gH)-differentiable, equation (.) is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X ′(t) = ( + t)X(t),
X ′(t) = ( + t)X(t),
X() = –,
X() = .

(.)

We get the lower solution XL(t) = [–et , et] and upper solution XU(t) = [–et , et] for the
integral equation (.) corresponding to problem (.), respectively. It is easy to see that
all the conditions of Theorem . are fulfilled and conclusion, there exists a solution for
this problem. By solving the above system, we obtain the following exact solution X(t) =
[–et(t+), et(t+)]. This solution is shown in Figure .
Case : X is ((ii)-gH)-differentiable, equation (.) is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X ′(t) = ( + t)X(t),
X ′(t) = ( + t)X(t),
X() = –,
X() = .

(.)

We get the lower solution XL(t) = [– cosh(t) + sinh(t), cosh(t) – sinh(t)] and upper solu-
tion XU(t) = [– cosh(t) + sinh(t), cosh(t) – sinh(t)] for the integral equation (.) cor-
responding to problem (.), respectively. It is easy to see that all the conditions of The-
orem . are fulfilled and conclusion, there exists a solution for this problem. By solving
the above system, we obtain the following exact solution: X(t) = [– cosh(t + t) + sinh(t +
t), cosh(t + t) – sinh(t + t)]. This solution is shown in Figure .

Example . Consider the box-valued differential equations with initial value:

DgHX(t) =
(
 + sin(t)

)
X(t), X() =

∏
i=

[
,  +


i

]
∈ I

, t ∈ [,π ]. (.)
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Figure 2 Exact solution of Example 3.5, Case 2
(n = 1).

Figure 3 Exact solution of Example 3.6, Case 1
(n = 2) (i = 1).

Figure 4 Exact solution of Example 3.6, Case 1
(n = 2) (i = 2).

Case : X is ((i)-gH)-differentiable, equation (.) is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X ′

i(t) = ( + sin(t))Xi(t), i ∈ {, },
X ′

i(t) = ( + sin(t))Xi(t), i ∈ {, },
Xi() = , i ∈ {, },
Xi() =  + 

i , i ∈ {, }.
(.)

Similarly as in Example . we get the lower solution XL(t) =
∏

i= [, ( +

i )e

t] and upper
solution XU(t) =

∏
i= [, ( +


i )e

t]. Moreover, the conditions of Theorem . are fulfilled
and conclusion, there exists a solution for this problem. By solving the above system, we
obtain the following exact solution: X(t) =

∏
i= [, ( +


i )e

t+–cos(t)]. This solution is shown
in Figures  and .
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Figure 5 Exact solution of Example 3.6, Case 2
(n = 2) (i = 1).

Figure 6 Exact solution of Example 3.6, Case 2
(n = 2) (i = 2).

Case : X is ((ii)-gH)-differentiable, equation (.) is equivalent to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X ′

i(t) = ( + sin(t))Xi(t), i ∈ {, },
X ′

i(t) = ( + sin(t))Xi(t), i ∈ {, },
Xi() = , i ∈ {, },
Xi() =  + 

i , i ∈ {, }.
(.)

By solving the above system, we obtain the following exact solution:

X(t) =
∏
i=

[(
 +


i

)
sinh

(
t +  – cos(t)

)
,
(
 +


i

)
cosh

(
t +  – cos(t)

)]
.

This solution is shown in Figures  and .

4 Conclusion
Using the method of upper and lower solutions, an existence result of solutions for box
integral and differential equations is studied. Also, the monotone iterative technique is
developed and the existence results for maximal and minimal solutions are obtained.
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