RESEARCH

Advances in Difference Equations a SpringerOpen Journal

Open Access

Existence and uniqueness of a positive periodic solution for Rayleigh type ϕ -Laplacian equation

Yun Xin^{1*} and Zhibo Cheng²

*Correspondence: xy_1982@126.com ¹College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454000, China Full list of author information is available at the end of the article

Abstract

By using the Manásevich-Mawhin continuation theorem and some analysis skills, we establish some sufficient condition for the existence and uniqueness of positive *T*-periodic solutions for a generalized Rayleigh type ϕ -Laplacian operator equation. The results of this paper are new and they complement previous known results. **MSC:** 34K13; 34C25

Keywords: positive periodic solution; uniqueness; ϕ -Laplacian; Rayleigh equation

1 Introduction

During the past few years, many researchers have discussed the periodic solutions of a Rayleigh type differential equation (see [1-10]). For example, in 2009, Xiao and Liu [7] studied the Rayleigh type *p*-Laplacian equation with a deviating argument of the form

$$(\phi_p(x'(t)))' + f(t, x'(t)) + g(t, x(t - \tau(t))) = e(t).$$

By using the coincidence degree theory, we establish new results on the existence of periodic solutions for the above equation. Afterward, Xiong and Shao [9] used the coincidence degree theory to establish new results on the existence and uniqueness of positive T-periodic solutions for the Rayleigh type p-Laplacian equation of the form

$$(\phi_p(x'(t)))' + f(t,x'(t)) + g(t,x(t)) = e(t).$$

In this paper, we consider the following Rayleigh type ϕ -Laplacian operator equation:

$$\left(\phi(x'(t))\right)' + f(t, x'(t)) + g(t, x(t)) = e(t), \tag{1.1}$$

where the function $\phi : \mathbb{R} \to \mathbb{R}$ is continuous and $\phi(0) = 0$. $f, g \in Car(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ is an L^p -Carathéodory function and $p = \frac{m}{m-1}$, $m \ge 2$, which means it is measurable in the first variable and continuous in the second variable. For every 0 < r < s, there exists $h_{r,s} \in L^p[0, T]$ such that $|g(t, x(t))| \le h_{r,s}$ for all $x \in [r, s]$ and a.e. $t \in [0, T]$; and f, g is a T-periodic function about t and f(t, 0) = 0. $e \in L^p([0, T], \mathbb{R})$ and is T-periodic.

Here $\phi : \mathbb{R} \to \mathbb{R}$ is a continuous function and $\phi(0) = 0$, which satisfies

©2014 Xin and Cheng; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons. Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

- (A₁) $(\phi(x_1) \phi(x_2))(x_1 x_2) > 0$ for $\forall x_1 \neq x_2, x_1, x_2 \in \mathbb{R}$;
- (A₂) there exists a function $\alpha : [0, +\infty] \to [0, +\infty], \alpha(s) \to +\infty$ as $s \to +\infty$, such that $\phi(x) \cdot x \ge \alpha(|x|)|x|$ for $\forall x \in \mathbb{R}$.

It is easy to see that ϕ represents a large class of nonlinear operators, including $\phi_p : \mathbb{R} \to \mathbb{R}$ is a *p*-Laplacian, *i.e.*, $\phi_p(x) = |x|^{p-2}x$ for $x \in \mathbb{R}$.

We know that the study on ϕ -Laplacian is relatively infrequent, the main difficulty lies in the fact that the ϕ -Laplacian operator typically possesses more uncertainty than the *p*-Laplacian operator. For example, the key step for ϕ_p to get *a priori* solutions, $\int_0^T (\phi'_p(x(t)))'x(t) dt = -\int_0^T |x'(t)|^p dt$, is no longer available for general ϕ -Laplacian. So, we need to find a new method to get over it.

By using the Manásevich-Mawhin continuation theorem and some analysis skills, we establish some sufficient condition for the existence of positive T-periodic solutions of (1.1). The results of this paper are new and they complement previous known results.

2 Main results

For convenience, define

$$C_T^1 = \{ x \in C^1(\mathbb{R}, \mathbb{R}) : x \text{ is } T \text{-periodic} \},\$$

which is a Banach space endowed with the norm $\|\cdot\|$; define $\|x\| = \max\{|x|_0, |x'|_0\}$ for all x, and

$$|x|_0 = \max_{t \in [0,T]} |x(t)|, \qquad |x'|_0 = \max_{t \in [0,T]} |x'(t)|.$$

For the *T*-periodic boundary value problem

$$\left(\phi\left(x'(t)\right)\right)' = \tilde{f}\left(t, x, x'\right),\tag{2.1}$$

here $\tilde{f}: [0, T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is assumed to be Carathéodory.

Lemma 2.1 (Manásevich-Mawhin [11]) Let Ω be an open bounded set in C_T^1 . If

(i) for each $\lambda \in (0, 1)$, the problem

$$\left(\phi(x')\right)' = \lambda \tilde{f}(t,x,x'), \qquad x(0) = x(T), \qquad x'(0) = x'(T)$$

has no solution on $\partial \Omega$;

(ii) the equation

$$F(a) := \frac{1}{T} \int_0^T \tilde{f}(t, x, x') dt = 0$$

has no solution on $\partial \Omega \cap \mathbb{R}$ *;*

(iii) the Brouwer degree of F

 $\deg\{F, \Omega \cap \mathbb{R}, 0\} \neq 0.$

Then the periodic boundary value problem (2.1) has at least one periodic solution on $\overline{\Omega}$.

Lemma 2.2 If $\phi(x)$ is bounded, then x is also bounded.

Proof Since $\phi(x)$ is bounded, then there exists a positive constant N such that $|\phi(x)| \le N$. From (A₂), we have $\alpha(|x|)|x| \le \phi(x) \cdot x \le |\phi(x)| \cdot |x| \le N|x|$. Hence, we can get $\alpha(|x|) \le N$ for all $x \in \mathbb{R}$. If x is not bounded, then from the definition of α , we get $\alpha(|x|) > N$ for some $x \in \mathbb{R}$, which is a contradiction. So x is also bounded.

Lemma 2.3 Suppose that the following condition holds:

 $(\mathsf{A}_3) \ (x_1-x_2)(g(t,x_1)-g(t,x_2)) < 0 \ for \ all \ t, x_1, x_2 \in \mathbb{R}, \, x_1 \neq x_2.$

Then (1.1) has at most one T-periodic solution in C_T^1 .

Proof Assume that $x_1(t)$ and $x_2(t)$ are two *T*-periodic solutions of (1.1). Then we obtain

$$\left(\phi\left(x_{1}'(t)\right) - \phi\left(x_{2}'(t)\right)\right)' + f\left(t, x_{1}'(t)\right) - f\left(t, x_{2}'(t)\right) + g\left(t, x_{1}(t)\right) - g\left(t, x_{2}(t)\right) = 0.$$
(2.2)

Set $u(t) = x_1(t) - x_2(t)$. Now, we claim that

$$u(t) \leq 0$$
 for all $t \in \mathbb{R}$.

In contrast, in view of $x_1, x_2 \in C^1[0, T]$, for $t \in \mathbb{R}$, we obtain

$$\max_{t\in\mathbb{R}}u(t)>0.$$

Then there must exist $t^* \in \mathbb{R}$ (for convenience, we can choose $t^* \in (0, T)$) such that

$$u(t^*) = \max_{t \in [0,T]} u(t) = \max_{t \in \mathbb{R}} u(t) > 0,$$

which implies that

$$u'(t^*) = x_1'(t^*) - x_2'(t^*) = 0$$

and

$$x_1(t^*) - x_2(t^*) > 0.$$

By hypothesis (A_3) and (2.2), we have

$$\begin{aligned} \left(\phi(x_1'(t^*)) - \phi(x_2'(t^*))\right)' &= -\left[f(t^*, x_1'(t^*)) - f(t^*, x_2'(t^*))\right] \\ &- \left[g(t^*, x_1(t^*)) - g(t^*, x_2(t^*))\right] \\ &= -\left[g(t^*, x_1(t^*)) - g(t^*, x_2(t^*))\right] > 0, \end{aligned}$$

and there exists $\varepsilon > 0$ such that $(\phi(x'_1(t)) - \phi(x'_2(t)))' > 0$ for all $t \in (t^* - \varepsilon, t^*]$. Therefore, $\phi(x'_1(t)) - \phi(x'_2(t))$ is strictly increasing for $t \in (t^* - \varepsilon, t^*]$, which implies that

$$\phi\bigl(x_1'(t)\bigr)-\phi\bigl(x_2'(t)\bigr)<\phi\bigl(x_1'\bigl(t^*\bigr)\bigr)-\phi\bigl(x_2'\bigl(t^*\bigr)\bigr)=0\quad\text{for all }t\in\bigl(t^*-\varepsilon,t^*\bigr).$$

From (A_1) we get

$$u'(t)=x_1'(t)-x_2'(t)<0\quad\text{for all }t\in \left(t^*-\varepsilon,t^*\right).$$

This contradicts the definition of t^* . Thus,

$$u(t) = x_1(t) - x_2(t) \le 0$$
 for all $t \in \mathbb{R}$.

By using a similar argument, we can also show that

$$x_2(t) - x_1(t) \le 0.$$

Therefore, we obtain

$$x_1(t) \equiv x_2(t)$$
 for all $t \in \mathbb{R}$.

Hence, (1.1) has at most one T-periodic solution in C_T^1 . The proof of Lemma 2.3 is now complete.

For the sake of convenience, we list the following assumptions which will be used repeatedly in the sequel:

- (H₁) there exists a positive constant *D* such that g(t, x) e(t) < 0 for x > D and $t \in \mathbb{R}$, g(t, x) e(t) < 0 for x > D and $t \in \mathbb{R}$, g(t, x) e(t) < 0 for x > D and $t \in \mathbb{R}$, g(t, x) e(t) < 0 for x > D and $t \in \mathbb{R}$, g(t, x) e(t) < 0 for x > D and $t \in \mathbb{R}$, g(t, x) e(t) < 0 for x > D and $t \in \mathbb{R}$. e(t) > 0 for x < 0 and $t \in \mathbb{R}$;
- (H₂) there exist constants $\sigma > 0$ and $m \ge 2$ such that $f(t, u)u \ge \sigma |u|^m$ for $(t, u) \in [0, T] \times \mathbb{R}$;
- (H₃) there exist positive constants ρ and γ such that $|f(t,u)| \leq \rho |u|^{m-1} + \gamma$ for $(t,u) \in$ $[0,T] \times \mathbb{R};$
- (H₄) there exist positive constants α , β , *B* such that

 $|g(t,x)| \le \alpha |x|^{m-1} + \beta$ for $|x| \ge B$ and $t \in \mathbb{R}$.

By using Lemmas 2.1-2.3, we obtain our main results.

Theorem 2.1 Assume that conditions (H_1) - (H_4) and (A_3) hold. Then (1.1) has a unique positive *T*-periodic solution if $\sigma - \frac{\alpha T^{m-1}}{2^{m-1}} > 0$.

Proof Consider the homotopic equation of (1.1) as follows:

$$\left(\phi(x'(t))\right)' + \lambda f(t, x'(t)) + \lambda g(t, x(t)) = \lambda e(t).$$
(2.3)

By Lemma 2.3, it is easy to see that (1.1) has at most one *T*-periodic solution in C_T^1 . Thus, to prove Theorem 2.1, it suffices to show that (1.1) has at least one T-periodic solution in C_T^1 . To do this, we are going to apply Lemmas 2.1 and 2.2. Firstly, we will claim that the set of all possible *T*-periodic solutions of (2.3) is bounded. Let $x(t) \in C_T^1$ be an arbitrary solution of (2.3) with period *T*. As x(0) = x(T), there exists $t_0 \in [0, T]$ such that $x'(t_0) = 0$, while $\phi(0) = 0$, we see

$$\begin{aligned} \left|\phi(x'(t))\right| &= \left|\int_{t_0}^t \left(\phi(x'(s))\right)' ds\right| \\ &\leq \lambda \int_0^T \left|f(t, x'(t))\right| dt + \lambda \int_0^T \left|g(t, x(t))\right| dt + \lambda \int_0^T \left|e(t)\right| dt, \end{aligned}$$
(2.4)

where $t \in [t_0, t_0 + T]$.

,

We claim that there is a constant $\xi \in \mathbb{R}$ such that

$$\left| x(\xi) \right| \le D. \tag{2.5}$$

Let \overline{t} , \underline{t} be, respectively, the global maximum point and the global minimum point of x(t) on [0, T]; then $x'(\overline{t}) = 0$, and we claim that

$$\left(\phi\left(x'(\bar{t})\right)\right)' \le 0. \tag{2.6}$$

Assume, by way of contradiction, that (2.6) does not hold. Then $(\phi(x'(\bar{t})))' > 0$ and there exists $\varepsilon > 0$ such that $(\phi(x'(t)))' > 0$ for $t \in (\bar{t} - \varepsilon, \bar{t} + \varepsilon)$. Therefore $\phi(x'(t))$ is strictly increasing for $t \in (\bar{t} - \varepsilon, \bar{t} + \varepsilon)$. From (A₁) we know that x'(t) is strictly increasing for $t \in (\bar{t} - \varepsilon, \bar{t} + \varepsilon)$. This contradicts the definition of \bar{t} . Thus, (2.6) is true. From f(t, 0) = 0, (2.3) and (2.6), we have

$$g(\overline{t}, x(\overline{t})) - e(\overline{t}) \ge 0.$$
(2.7)

Similarly, we get

$$g(\underline{t}, x(\underline{t})) - e(\underline{t}) \le 0.$$
(2.8)

In view of (H_1) , (2.7) and (2.8) imply that

$$x(\overline{t}) \leq D, \qquad x(\underline{t}) > 0.$$

Case (1): If $x(\underline{t}) \in (0, D)$, define $\xi = \overline{t}$, obviously, $|x(\xi)| \le D$. Case (2): If $x(\underline{t}) \ge D$, from $x(\overline{t}) \le D$, we know $x(\overline{t}) = x(\underline{t})$. Define $\xi = \overline{t}$, we have $|x(\xi)| = D$. This proves (2.5).

Then we have

$$|x(t)| = |x(\xi) + \int_{\xi}^{t} x'(s) \, ds| \le D + \int_{\xi}^{t} |x'(s)| \, ds, \quad t \in [\xi, \xi + T]$$

and

$$|x(t)| = |x(t-T)| = |x(\xi) - \int_{t-T}^{\xi} x'(s) \, ds| \le D + \int_{t-T}^{\xi} |x'(s)| \, ds, \quad t \in [\xi, \xi+T].$$

Combining the above two inequalities, we obtain

$$|x|_{0} = \max_{t \in [0,T]} |x(t)| = \max_{t \in [\xi,\xi+T]} |x(t)|$$

$$\leq \max_{t \in [\xi,\xi+T]} \left\{ D + \frac{1}{2} \left(\int_{\xi}^{t} |x'(s)| \, ds + \int_{t-T}^{\xi} |x'(s)| \, ds \right) \right\}$$

$$\leq D + \frac{1}{2} \int_{0}^{T} |x'(s)| \, ds.$$
(2.9)

Since x'(t) is *T*-periodic, multiplying x'(t) and (2.3) and then integrating it from 0 to *T*, we have

$$0 = \int_0^T (\phi(x'(t)))'x'(t) dt$$

= $-\lambda \int_0^T f(t, x'(t))x'(t) dt - \lambda \int_0^T g(t, x(t))x'(t) dt + \lambda \int_0^T e(t)x'(t) dt.$ (2.10)

In view of (2.10), we have

$$\left|\int_{0}^{T} f(t, x'(t)) x'(t) dt\right| = \left|-\int_{0}^{T} g(t, x(t)) x'(t) dt + \int_{0}^{T} e(t) x'(t) dt\right|.$$

From (H₂), we know

$$\left|\int_0^T f(t, x'(t)) x'(t) dt\right| \ge \sigma \int_0^T \left|x'(t)\right|^m dt.$$

Set

$$E_1 = \{t \in [0, T] \mid |x(t)| \le B\}, \qquad E_2 = \{t \in [0, T] \mid |x(t)| \ge B\}.$$

From (H_4) , we have

$$\begin{aligned} \sigma \int_{0}^{T} |x'(t)|^{m} dt \\ &\leq \int_{E_{1}+E_{2}} |g(t,x(t))| |x'(t)| dt + \int_{0}^{T} |e(t)| |x'(t)| dt \\ &\leq \left(\int_{E_{1}} |g(t,x(t))|^{\frac{m}{m-1}} dt\right)^{\frac{m-1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} dt\right)^{\frac{1}{m}} + \alpha \int_{0}^{T} |x(t)|^{m-1} |x'(t)| dt \\ &+ \beta \int_{0}^{T} |x'(t)| dt + \int_{0}^{T} |e(t)| |x'(t)| dt \\ &\leq |g_{B}|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt\right)^{\frac{1}{m}} + \alpha \left(D + \frac{1}{2} \int_{0}^{T} |x'(t)| dt\right)^{m-1} \int_{0}^{T} |x'(t)| dt \\ &+ \beta T^{\frac{m-1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} dt\right)^{\frac{1}{m}} + \left(\int_{0}^{T} |e(t)|^{\frac{m-1}{m-1}}\right)^{\frac{m-1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} dt\right)^{\frac{1}{m}} \\ &= |g_{B}|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt\right)^{\frac{1}{m}} + \frac{\alpha}{2^{m-1}} \left(\frac{2D}{\int_{0}^{T} |x'(t)|^{m} dt}\right)^{\frac{1}{m}} \\ &+ \beta T^{\frac{m-1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} dt\right)^{\frac{1}{m}} + |e|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt\right)^{\frac{1}{m}}, \tag{2.11} \end{aligned}$$

where $g_B = \max_{|x| \le B} |g(t, x(t))|$, $|g_B|_{\frac{m}{m-1}} = (\int_0^T |g_B|^{\frac{m}{m-1}} dt)^{\frac{m-1}{m}}$. For the constant $\delta > 0$, which is only dependent on k > 0, we have

$$(1+x)^k \le 1 + (1+k)x \text{ for } x \in [0,\delta].$$

So, from
$$(2.11)$$
, we have

$$\begin{aligned} \sigma \int_{0}^{T} |x'(t)|^{m} dt \\ &\leq |g_{B}|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} + \frac{\alpha}{2^{m-1}} \left(1 + \frac{2Dm}{\int_{0}^{T} |x'(t)| dt} \right) \left(\int_{0}^{T} |x'(t)| dt \right)^{m} \\ &+ \beta T^{\frac{m-1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} + |e|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} \\ &= |g_{B}|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} + \frac{\alpha}{2^{m-1}} \left(\int_{0}^{T} |x'(t)| dt \right)^{m} + \frac{\alpha Dm}{2^{m-2}} \left(\int_{0}^{T} |x'(t)| dt \right)^{m-1} \\ &+ \beta T^{\frac{m-1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} + |e|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} \\ &\leq |g_{B}|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} + \frac{\alpha T^{m-1}}{2^{m-1}} \int_{0}^{T} |x'(t)|^{m} dt \\ &+ \frac{\alpha DmT^{\frac{(m-1)^{2}}{m}}}{2^{m-2}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} + |e|_{\frac{m}{m-1}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} \\ &= \frac{\alpha T^{m-1}}{2^{m-1}} \int_{0}^{T} |x'(t)|^{m} dt + \frac{\alpha DmT^{\frac{(m-1)^{2}}{m}}}{2^{m-2}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}} \\ &+ \left(|g_{B}|_{\frac{m}{m-1}} + \beta T^{\frac{m-1}{m}} + |e|_{\frac{m}{m-1}} \right) \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{1}{m}}. \end{aligned}$$

Since $\sigma - \frac{\alpha T^{m-1}}{2^{m-1}} > 0$, so it is easy to see that there is a constant $M'_1 > 0$ (independent of λ) such that

$$\int_0^T \left| x'(t) \right|^m dt \le M_1'.$$

By applying Hölder's inequality and (2.9), we have

$$|x|_{0} \leq D + \frac{1}{2} \int_{0}^{T} |x'(s)| \, ds \leq D + \frac{1}{2} T^{\frac{m-1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} \, dt \right)^{\frac{1}{m}} \leq D + \frac{1}{2} T^{\frac{m-1}{m}} \left(M_{1}' \right)^{\frac{1}{m}} := M_{1}.$$

In view of (2.4) and (H_3), we have

$$\begin{split} \phi(x')|_{0} &= \max_{t \in [0,T]} \left\{ \left| \phi(x'(t)) \right| \right\} \\ &= \max_{t \in [t_{0},t_{0}+T]} \left\{ \left| \int_{t_{0}}^{t} (\phi(x'(s)))' \, ds \right| \right\} \\ &\leq \int_{0}^{T} \left| f(t,x'(t)) \right| \, dt + \int_{0}^{T} \left| g(t,x(t)) \right| \, dt + \int_{0}^{T} \left| e(t) \right| \, dt \\ &\leq \rho \int_{0}^{T} \left| x'(t) \right|^{m-1} \, dt + \gamma \, T + T^{\frac{1}{m}} \left(\int_{0}^{T} \left| g(t,x(t)) \right|^{\frac{m}{m-1}} \, dt \right)^{\frac{m-1}{m}} \end{split}$$

$$+ T^{\frac{1}{m}} \left(\int_{0}^{T} |e(t)|^{\frac{m}{m-1}} dt \right)^{\frac{m-1}{m}}$$

$$\leq \rho T^{\frac{1}{m}} \left(\int_{0}^{T} |x'(t)|^{m} dt \right)^{\frac{m-1}{m}} + \gamma T + T^{\frac{1}{m}} \left(\int_{0}^{T} |g(t, x(t))|^{\frac{m}{m-1}} dt \right)^{\frac{m-1}{m}}$$

$$+ T^{\frac{1}{m}} \left(\int_{0}^{T} |e(t)|^{\frac{m}{m-1}} dt \right)^{\frac{m-1}{m}}$$

$$\leq \rho T^{\frac{1}{m}} (M'_{1})^{\frac{m-1}{m}} + \gamma T + T^{\frac{1}{m}} |g_{M_{1}}|_{\frac{m-1}{m}} + T^{\frac{1}{m}} |e|_{\frac{m-1}{m}} := M'_{2},$$

where $|g_{M_1}| = \max_{|x(t)| \le M_1} |g(t, x(t))|$.

Thus, from Lemma 2.2, we know that there exists some positive constant $M_2 > M'_2 + 1$ such that, for all $t \in \mathbb{R}$,

$$\left|x'(t)\right| \leq M_2.$$

Set $M = \sqrt{M_1^2 + M_2^2} + 1$, we have

$$\Omega = \left\{ x \in C^1_T(\mathbb{R}, \mathbb{R}) \mid |x|_0 \le M + 1, \left| x' \right|_0 \le M + 1 \right\},$$

we know that (2.4) has no solution on $\partial \Omega$ as $\lambda \in (0, 1)$ and when $x(t) \in \partial \Omega \cap \mathbb{R}$, x(t) = M + 1 or x(t) = -M - 1, from (2.11) we know that M + 1 > D. So, from (H₁) we see that

$$\begin{split} & \frac{1}{T} \int_0^T \left\{ g(t, M+1) - e(t) \right\} dt < 0, \\ & \frac{1}{T} \int_0^T \left\{ g(t, -M-1) - e(t) \right\} dt > 0. \end{split}$$

So condition (ii) is also satisfied. Set

$$H(x,\mu) = \mu x - (1-\mu)\frac{1}{T}\int_0^T \{g(t,x) - e(t)\} dt,$$

where $x \in \partial \Omega \cap \mathbb{R}$, $\mu \in [0, 1]$, we have

$$xH(x,\mu) = \mu x^2 - (1-\mu)x\frac{1}{T}\int_0^T \left\{g(t,x) - e(t)\right\}dt > 0,$$

and thus $H(x, \mu)$ is a homotopic transformation and

$$\deg\{F, \Omega \cap \mathbb{R}, 0\} = \deg\left\{-\frac{1}{T}\int_0^T \left\{g(t, x) - e(t)\right\} dt, \Omega \cap \mathbb{R}, 0\right\}$$
$$= \deg\{x, \Omega \cap \mathbb{R}, 0\} \neq 0.$$

So condition (iii) is satisfied. In view of Lemma 2.1, there exists at least one solution with period T.

Suppose that x(t) is the *T*-periodic solution of (1.1). We can easily show that (2.8) also holds. Thus,

$$x(t) \ge \min_{t \in [0,T]} x(t) = x(\underline{t}) > 0$$
 for all $t \in \mathbb{R}$,

which implies that (1.1) has a unique positive solution with period T. This completes the proof.

We illustrate our results with some examples.

Example 2.1 Consider the following second-order *p*-Laplacian-like Rayleigh equation:

$$\left(\phi_p(x'(t))\right)' + \left(10 + 5\sin^2 t\right)x'(t) - \left(5x(t) + \sin^2 t - 8\right) = e^{\cos^2 t},\tag{2.12}$$

where $\phi_p(u) = |u|^{p-2}u$.

Comparing (2.12) to (1.1), we see that $g(t,x) = -5x(t) - \sin^2 t + 8$, $f(t,u) = (10 + 5\sin^2 t)u$, $e(t) = e^{\cos^2 t}$, $T = \pi$. Obviously, we know that ϕ_p is a homeomorphism from \mathbb{R} to \mathbb{R} satisfying (A₁) and (A₂). Consider $(x_1 - x_2)(g(t,x_1) - g(t,x_2)) = -5(x_1 - x_2)^2 < 0$ for $x_1 \neq x_2$, then (A₃) holds. Moreover, it is easily seen that there exists a constant D = 2 such that (H₁) holds. Consider $f(t, u)u = (10 + 5\sin^2 t)u^2 \ge 10u^2$, here $\sigma = 10$, m = 2, and $|f(t, u)| = |(10 + 5\sin^2 t)u| \le 15|u| + 1$, here $\rho = 15$, $\gamma = 1$. So, we can get that conditions (H₂) and (H₃) hold. Choose B > 0, we have $|g(t,x)| \le 5|x| + 9$, here $\alpha = 5$, $\beta = 9$, then (H₄) holds and $\sigma - \frac{\alpha T}{2} = 10 - \frac{5\pi}{2} > 0$. So, by Theorem 2.1, we can get that (2.12) has a unique positive periodic solution.

Example 2.2 Consider the following second-order *p*-Laplacian-like Rayleigh equation:

$$\left(\phi\left(x'(t)\right)\right)' + \left(200 + 16\cos^2 t\right)\left(x'(t)\right)^3 - \left(20x^3(t) + 10\cos^2(t) - 15\right) = e^{\sin^2 t},\tag{2.13}$$

where $\phi(u) = ue^{|u|^2}$.

Comparing (2.13) to (1.1), we see that $g(t,x) = -20x^3 - 10\cos^2 t + 15$, $f(t,v) = (200 + 16\cos^2 t)v^3$, $e(t) = e^{\sin^2 t}$, $T = \pi$. Obviously, we get

$$(xe^{|x|^2} - ye^{|y|^2})(x - y) \ge (|x|e^{|x|^2} - |y|e^{|y|^2})(|x| - |y|) \ge 0$$

and

$$\phi(x) \cdot x = |x|^2 e^{|x|^2}.$$

So, we know that (A₁) and (A₂) hold. Consider $(x_1 - x_2)(g(t, x_1) - g(t, x_2)) = -20(x_1 - x_2)^2(x_1^2 + x_1x_2 + x_2^2) < 0$ for $x_1 \neq x_2$, then (A₃) holds. Moreover, it is easily seen that there exists a constant D = 1 such that (H₁) holds. Consider $f(t, v)v = (200 + 16\cos^2 t)v^4 \ge 200v^4$, here $\sigma = 200$, m = 4, and $|f(t, v)| = |(200 + 16\cos^2 t)v^3| \le 216|v|^3 + 5$, here $\rho = 216$, $\gamma = 5$. So, we can get that conditions (H₂) and (H₃) hold. Choose B > 0, we have $|g(t, x)| \le 20|x|^3 + 25$, here $\alpha = 20$, $\beta = 25$, then (H₄) holds and $\sigma - \frac{\alpha T^{m-1}}{2^{m-1}} = 200 - \frac{20 \times \pi^3}{2^3} > 0$. Therefore, by Theorem 2.1, we know that (2.13) has a unique positive periodic solution.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

YX and ZBC worked together in the derivation of the mathematical results. All authors read and approved the final manuscript.

Author details

¹College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454000, China. ²School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000, China.

Acknowledgements

Research is supported by the National Natural Science Foundation of China (Nos. 11326124, 11271339).

Received: 31 March 2014 Accepted: 30 June 2014 Published: 15 Aug 2014

References

- 1. Cheung, WS, Ren, JL: Periodic solutions for p-Laplacian Rayleigh equations. Nonlinear Anal. TMA 65, 2003-2012 (2006)
- Cheng, ZB, Ren, JL: Periodic solutions for a fourth-order Rayleigh type *p*-Laplacian delay equation. Nonlinear Anal. TMA 70, 516-523 (2009)
- 3. Feng, L, Guo, LX, Lu, SP: New results of periodic solutions for Rayleigh type *p*-Laplacian equation with a variable coefficient ahead of the nonlinear term. Nonlinear Anal. TMA **70**, 2072-2077 (2009)
- 4. Ma, TT: Periodic solutions of Rayleigh equations via time-maps. Nonlinear Anal. TMA 75, 4137-4144 (2012)
- 5. Lu, SP, Gui, ZJ: On the existence of periodic solutions to *p*-Laplacian Rayleigh differential equation with a delay. J. Math. Anal. Appl. **325**, 685-702 (2007)
- Liang, RX: Existence and uniqueness of periodic solution for forced Rayleigh type equations. J. Appl. Math. Comput. 40, 415-425 (2012)
- Xiao, B, Liu, W: Periodic solutions for Rayleigh type p-Laplacian equation with a deviating argument. Nonlinear Anal., Real World Appl. 10, 16-22 (2009)
- Wang, LJ, Shao, JY: New results of periodic solutions for a kind of forced Rayleigh-type equation. Nonlinear Anal., Real World Appl. 11, 99-105 (2010)
- Xiong, WM, Shao, JY: Existence and uniqueness of positive periodic solutions for Rayleigh type *p*-Laplacian equation. Nonlinear Anal., Real World Appl. 10, 275-280 (2009)
- Zong, MG, Liang, HZ: Periodic solutions for Rayleigh type *p*-Laplacian equation with deviating arguments. Appl. Math. Lett. 20, 43-47 (2007)
- Manásevich, R, Mawhin, J: Periodic solutions for nonlinear systems with *p*-Laplacian-like operator. J. Differ. Equ. 145, 367-393 (1998)

10.1186/1687-1847-2014-225

Cite this article as: Xin and Cheng: Existence and uniqueness of a positive periodic solution for Rayleigh type ϕ -Laplacian equation. Advances in Difference Equations 2014, 2014:225

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com