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Abstract
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1 Introduction
During the past few years, many researchers have discussed the periodic solutions of a
Rayleigh type differential equation (see [–]). For example, in , Xiao and Liu []
studied the Rayleigh type p-Laplacian equation with a deviating argument of the form

(
φp

(
x′(t)

))′ + f
(
t,x′(t)

)
+ g

(
t,x

(
t – τ (t)

))
= e(t).

By using the coincidence degree theory, we establish new results on the existence of pe-
riodic solutions for the above equation. Afterward, Xiong and Shao [] used the coinci-
dence degree theory to establish new results on the existence and uniqueness of positive
T-periodic solutions for the Rayleigh type p-Laplacian equation of the form

(
φp

(
x′(t)

))′ + f
(
t,x′(t)

)
+ g

(
t,x(t)

)
= e(t).

In this paper, we consider the following Rayleigh type φ-Laplacian operator equation:

(
φ
(
x′(t)

))′ + f
(
t,x′(t)

)
+ g

(
t,x(t)

)
= e(t), (.)

where the function φ : R → R is continuous and φ() = . f , g ∈ Car(R × R,R) is an Lp-
Carathéodory function and p = m

m– ,m ≥ , which means it is measurable in the first vari-
able and continuous in the second variable. For every  < r < s, there exists hr,s ∈ Lp[,T]
such that |g(t,x(t))| ≤ hr,s for all x ∈ [r, s] and a.e. t ∈ [,T]; and f , g is a T-periodic func-
tion about t and f (t, ) = . e ∈ Lp([,T],R) and is T-periodic.
Here φ :R →R is a continuous function and φ() = , which satisfies
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(A) (φ(x) – φ(x))(x – x) >  for ∀x �= x, x,x ∈R;
(A) there exists a function α : [, +∞]→ [, +∞], α(s)→ +∞ as s → +∞, such that φ(x) ·

x ≥ α(|x|)|x| for ∀x ∈R.

It is easy to see that φ represents a large class of nonlinear operators, including φp :R →
R is a p-Laplacian, i.e., φp(x) = |x|p–x for x ∈R.
We know that the study on φ-Laplacian is relatively infrequent, the main difficulty

lies in the fact that the φ-Laplacian operator typically possesses more uncertainty than
the p-Laplacian operator. For example, the key step for φp to get a priori solutions,∫ T
 (φ′

p(x(t)))′x(t)dt = –
∫ T
 |x′(t)|p dt, is no longer available for general φ-Laplacian. So, we

need to find a new method to get over it.
By using the Manásevich-Mawhin continuation theorem and some analysis skills, we

establish some sufficient condition for the existence of positive T-periodic solutions of
(.). The results of this paper are new and they complement previous known results.

2 Main results
For convenience, define

C
T =

{
x ∈ C(R,R) : x is T-periodic

}
,

which is a Banach space endowed with the norm ‖ · ‖; define ‖x‖ =max{|x|, |x′|} for all
x, and

|x| = max
t∈[,T]

∣∣x(t)∣∣, ∣∣x′∣∣
 = max

t∈[,T]
∣∣x′(t)

∣∣.
For the T-periodic boundary value problem

(
φ
(
x′(t)

))′ = f̃
(
t,x,x′), (.)

here f̃ : [,T]×R×R →R is assumed to be Carathéodory.

Lemma . (Manásevich-Mawhin []) Let � be an open bounded set in C
T . If

(i) for each λ ∈ (, ), the problem

(
φ
(
x′))′ = λf̃

(
t,x,x′), x() = x(T), x′() = x′(T)

has no solution on ∂�;
(ii) the equation

F(a) :=

T

∫ T


f̃
(
t,x,x′)dt = 

has no solution on ∂� ∩R;
(iii) the Brouwer degree of F

deg{F ,� ∩R, } �= .

Then the periodic boundary value problem (.) has at least one periodic solution on �.

Lemma . If φ(x) is bounded, then x is also bounded.
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Proof Since φ(x) is bounded, then there exists a positive constant N such that |φ(x)| ≤ N .
From (A), we have α(|x|)|x| ≤ φ(x) · x ≤ |φ(x)| · |x| ≤ N |x|. Hence, we can get α(|x|) ≤ N
for all x ∈R. If x is not bounded, then from the definition of α, we get α(|x|) >N for some
x ∈R, which is a contradiction. So x is also bounded. �

Lemma . Suppose that the following condition holds:

(A) (x – x)(g(t,x) – g(t,x)) <  for all t, x,x ∈R, x �= x.

Then (.) has at most one T-periodic solution in C
T .

Proof Assume that x(t) and x(t) are two T-periodic solutions of (.). Then we obtain

(
φ
(
x′
(t)

)
– φ

(
x′
(t)

))′ + f
(
t,x′

(t)
)
– f

(
t,x′

(t)
)
+ g

(
t,x(t)

)
– g

(
t,x(t)

)
= . (.)

Set u(t) = x(t) – x(t). Now, we claim that

u(t) ≤  for all t ∈R.

In contrast, in view of x,x ∈ C[,T], for t ∈R, we obtain

max
t∈R

u(t) > .

Then there must exist t∗ ∈ R (for convenience, we can choose t∗ ∈ (,T)) such that

u
(
t∗

)
= max

t∈[,T]
u(t) =max

t∈R
u(t) > ,

which implies that

u′(t∗) = x′

(
t∗

)
– x′


(
t∗

)
= 

and

x
(
t∗

)
– x

(
t∗

)
> .

By hypothesis (A) and (.), we have

(
φ
(
x′

(
t∗

))
– φ

(
x′

(
t∗

)))′ = –
[
f
(
t∗,x′


(
t∗

))
– f

(
t∗,x′


(
t∗

))]
–

[
g
(
t∗,x

(
t∗

))
– g

(
t∗,x

(
t∗

))]
= –

[
g
(
t∗,x

(
t∗

))
– g

(
t∗,x

(
t∗

))]
> ,

and there exists ε >  such that (φ(x′
(t)) – φ(x′

(t)))′ >  for all t ∈ (t∗ – ε, t∗]. Therefore,
φ(x′

(t)) – φ(x′
(t)) is strictly increasing for t ∈ (t∗ – ε, t∗], which implies that

φ
(
x′
(t)

)
– φ

(
x′
(t)

)
< φ

(
x′

(
t∗

))
– φ

(
x′

(
t∗

))
=  for all t ∈ (

t∗ – ε, t∗
)
.

From (A) we get

u′(t) = x′
(t) – x′

(t) <  for all t ∈ (
t∗ – ε, t∗

)
.
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This contradicts the definition of t∗. Thus,

u(t) = x(t) – x(t) ≤  for all t ∈R.

By using a similar argument, we can also show that

x(t) – x(t) ≤ .

Therefore, we obtain

x(t) ≡ x(t) for all t ∈R.

Hence, (.) has at most one T-periodic solution in C
T . The proof of Lemma . is now

complete. �

For the sake of convenience, we list the following assumptions which will be used re-
peatedly in the sequel:

(H) there exists a positive constantD such that g(t,x)–e(t) <  for x >D and t ∈R, g(t,x)–
e(t) >  for x≤  and t ∈R;

(H) there exist constants σ >  andm ≥  such that f (t,u)u≥ σ |u|m for (t,u) ∈ [,T]×R;
(H) there exist positive constants ρ and γ such that |f (t,u)| ≤ ρ|u|m– + γ for (t,u) ∈

[,T]×R;
(H) there exist positive constants α, β , B such that

∣∣g(t,x)∣∣ ≤ α|x|m– + β for |x| ≥ B and t ∈R.

By using Lemmas .-., we obtain our main results.

Theorem . Assume that conditions (H)-(H) and (A) hold. Then (.) has a unique
positive T-periodic solution if σ – αTm–

m– > .

Proof Consider the homotopic equation of (.) as follows:

(
φ
(
x′(t)

))′ + λf
(
t,x′(t)

)
+ λg

(
t,x(t)

)
= λe(t). (.)

By Lemma ., it is easy to see that (.) has at most one T-periodic solution in C
T . Thus,

to prove Theorem ., it suffices to show that (.) has at least one T-periodic solution
in C

T . To do this, we are going to apply Lemmas . and .. Firstly, we will claim that the
set of all possible T-periodic solutions of (.) is bounded. Let x(t) ∈ C

T be an arbitrary
solution of (.) with period T . As x() = x(T), there exists t ∈ [,T] such that x′(t) = ,
while φ() = , we see

∣∣φ(
x′(t)

)∣∣ =
∣∣∣∣
∫ t

t

(
φ
(
x′(s)

))′ ds
∣∣∣∣

≤ λ

∫ T



∣∣f (t,x′(t)
)∣∣dt + λ

∫ T



∣∣g(t,x(t))∣∣dt + λ

∫ T



∣∣e(t)∣∣dt, (.)

where t ∈ [t, t + T].
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We claim that there is a constant ξ ∈R such that

∣∣x(ξ )∣∣ ≤D. (.)

Let t, t be, respectively, the global maximum point and the global minimum point of x(t)
on [,T]; then x′(t) = , and we claim that

(
φ
(
x′(t)

))′ ≤ . (.)

Assume, by way of contradiction, that (.) does not hold. Then (φ(x′(t)))′ >  and there
exists ε >  such that (φ(x′(t)))′ >  for t ∈ (t–ε, t+ε). Therefore φ(x′(t)) is strictly increas-
ing for t ∈ (t–ε, t+ε). From (A) we know that x′(t) is strictly increasing for t ∈ (t–ε, t+ε).
This contradicts the definition of t. Thus, (.) is true. From f (t, ) = , (.) and (.), we
have

g
(
t,x(t)

)
– e(t)≥ . (.)

Similarly, we get

g
(
t,x(t)

)
– e(t)≤ . (.)

In view of (H), (.) and (.) imply that

x(t) ≤D, x(t) > .

Case (): If x(t) ∈ (,D), define ξ = t, obviously, |x(ξ )| ≤ D.
Case (): If x(t) ≥D, from x(t) ≤D, we know x(t) = x(t). Define ξ = t, we have |x(ξ )| =D.

This proves (.).
Then we have

∣∣x(t)∣∣ =
∣∣∣∣x(ξ ) +

∫ t

ξ

x′(s)ds
∣∣∣∣ ≤D +

∫ t

ξ

∣∣x′(s)
∣∣ds, t ∈ [ξ , ξ + T]

and

∣∣x(t)∣∣ = ∣∣x(t – T)
∣∣ =

∣∣∣∣x(ξ ) –
∫ ξ

t–T
x′(s)ds

∣∣∣∣ ≤D +
∫ ξ

t–T

∣∣x′(s)
∣∣ds, t ∈ [ξ , ξ + T].

Combining the above two inequalities, we obtain

|x| = max
t∈[,T]

∣∣x(t)∣∣ = max
t∈[ξ ,ξ+T]

∣∣x(t)∣∣

≤ max
t∈[ξ ,ξ+T]

{
D +




(∫ t

ξ

∣∣x′(s)
∣∣ds +

∫ ξ

t–T

∣∣x′(s)
∣∣ds

)}

≤D +



∫ T



∣∣x′(s)
∣∣ds. (.)

http://www.advancesindifferenceequations.com/content/2014/1/225
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Since x′(t) is T-periodic, multiplying x′(t) and (.) and then integrating it from  to T ,
we have

 =
∫ T



(
φ
(
x′(t)

))′x′(t)dt

= –λ

∫ T


f
(
t,x′(t)

)
x′(t)dt – λ

∫ T


g
(
t,x(t)

)
x′(t)dt + λ

∫ T


e(t)x′(t)dt. (.)

In view of (.), we have

∣∣∣∣
∫ T


f
(
t,x′(t)

)
x′(t)dt

∣∣∣∣ =
∣∣∣∣–

∫ T


g
(
t,x(t)

)
x′(t)dt +

∫ T


e(t)x′(t)dt

∣∣∣∣.

From (H), we know

∣∣∣∣
∫ T


f
(
t,x′(t)

)
x′(t)dt

∣∣∣∣ ≥ σ

∫ T



∣∣x′(t)
∣∣m dt.

Set

E =
{
t ∈ [,T] | ∣∣x(t)∣∣ ≤ B

}
, E =

{
t ∈ [,T] | ∣∣x(t)∣∣ ≥ B

}
.

From (H), we have

σ

∫ T



∣∣x′(t)
∣∣m dt

≤
∫
E+E

∣∣g(t,x(t))∣∣∣∣x′(t)
∣∣dt +

∫ T



∣∣e(t)∣∣∣∣x′(t)
∣∣dt

≤
(∫

E

∣∣g(t,x(t))∣∣ m
m– dt

)m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+ α

∫ T



∣∣x(t)∣∣m–∣∣x′(t)
∣∣dt

+ β

∫ T



∣∣x′(t)
∣∣dt +

∫ T



∣∣e(t)∣∣∣∣x′(t)
∣∣dt

≤ |gB| m
m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+ α

(
D +




∫ T



∣∣x′(t)
∣∣dt

)m– ∫ T



∣∣x′(t)
∣∣dt

+ βT
m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+

(∫ T



∣∣e(t)∣∣ m
m–

)m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m

= |gB| m
m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+

α

m–

(
D∫ T

 |x′(t)|dt + 
)m–(∫ T



∣∣x′(t)
∣∣dt

)m

+ βT
m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+ |e| m

m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
, (.)

where gB =max|x|≤B |g(t,x(t))|, |gB| m
m–

= (
∫ T
 |gB| m

m– dt)m–
m .

For the constant δ > , which is only dependent on k > , we have

( + x)k ≤  + ( + k)x for x ∈ [, δ].

http://www.advancesindifferenceequations.com/content/2014/1/225
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So, from (.), we have

σ

∫ T



∣∣x′(t)
∣∣m dt

≤ |gB| m
m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+

α

m–

(
 +

Dm∫ T
 |x′(t)|dt

)(∫ T



∣∣x′(t)
∣∣dt

)m

+ βT
m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+ |e| m

m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m

= |gB| m
m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+

α

m–

(∫ T



∣∣x′(t)
∣∣dt

)m

+
αDm
m–

(∫ T



∣∣x′(t)
∣∣dt

)m–

+ βT
m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+ |e| m

m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m

≤ |gB| m
m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+

αTm–

m–

∫ T



∣∣x′(t)
∣∣m dt

+
αDmT

(m–)
m

m–

(∫ T



∣∣x′(t)
∣∣m dt

)m–
m

+ βT
m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m
+ |e| m

m–

(∫ T



∣∣x′(t)
∣∣m dt

) 
m

=
αTm–

m–

∫ T



∣∣x′(t)
∣∣m dt +

αDmT
(m–)

m

m–

(∫ T



∣∣x′(t)
∣∣m dt

)m–
m

+
(|gB| m

m–
+ βT

m–
m + |e| m

m–

)(∫ T



∣∣x′(t)
∣∣m dt

) 
m
.

Since σ – αTm–

m– > , so it is easy to see that there is a constant M′
 >  (independent of λ)

such that
∫ T



∣∣x′(t)
∣∣m dt ≤M′

.

By applying Hölder’s inequality and (.), we have

|x| ≤D+



∫ T



∣∣x′(s)
∣∣ds≤D+



T

m–
m

(∫ T



∣∣x′(t)
∣∣m dt

) 
m

≤D+


T

m–
m

(
M′


) 
m :=M.

In view of (.) and (H), we have

∣∣φ(
x′)∣∣

 = max
t∈[,T]

{∣∣φ(
x′(t)

)∣∣}

= max
t∈[t,t+T]

{∣∣∣∣
∫ t

t

(
φ
(
x′(s)

))′ ds
∣∣∣∣
}

≤
∫ T



∣∣f (t,x′(t)
)∣∣dt +

∫ T



∣∣g(t,x(t))∣∣dt +
∫ T



∣∣e(t)∣∣dt

≤ ρ

∫ T



∣∣x′(t)
∣∣m– dt + γT + T


m

(∫ T



∣∣g(t,x(t))∣∣ m
m– dt

)m–
m

http://www.advancesindifferenceequations.com/content/2014/1/225
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+ T

m

(∫ T



∣∣e(t)∣∣ m
m– dt

)m–
m

≤ ρT

m

(∫ T



∣∣x′(t)
∣∣m dt

)m–
m

+ γT + T

m

(∫ T



∣∣g(t,x(t))∣∣ m
m– dt

)m–
m

+ T

m

(∫ T



∣∣e(t)∣∣ m
m– dt

)m–
m

≤ ρT

m
(
M′


)m–

m + γT + T

m |gM |m–

m
+ T


m |e|m–

m
:=M′

,

where |gM | =max|x(t)|≤M |g(t,x(t))|.
Thus, from Lemma ., we know that there exists some positive constant M >M′

 + 
such that, for all t ∈R,

∣∣x′(t)
∣∣ ≤M.

SetM =
√
M

 +M
 + , we have

� =
{
x ∈ C

T (R,R) | |x| ≤M + ,
∣∣x′∣∣

 ≤M + 
}
,

we know that (.) has no solution on ∂� as λ ∈ (, ) and when x(t) ∈ ∂�∩R, x(t) =M+
or x(t) = –M – , from (.) we know thatM +  >D. So, from (H) we see that


T

∫ T



{
g(t,M + ) – e(t)

}
dt < ,


T

∫ T



{
g(t, –M – ) – e(t)

}
dt > .

So condition (ii) is also satisfied. Set

H(x,μ) = μx – ( –μ)

T

∫ T



{
g(t,x) – e(t)

}
dt,

where x ∈ ∂� ∩R, μ ∈ [, ], we have

xH(x,μ) = μx – ( –μ)x

T

∫ T



{
g(t,x) – e(t)

}
dt > ,

and thus H(x,μ) is a homotopic transformation and

deg{F ,� ∩R, } = deg

{
–

T

∫ T



{
g(t,x) – e(t)

}
dt,� ∩R, 

}

= deg{x,� ∩R, } �= .

So condition (iii) is satisfied. In view of Lemma ., there exists at least one solution with
period T .
Suppose that x(t) is the T-periodic solution of (.). We can easily show that (.) also

holds. Thus,

x(t)≥ min
t∈[,T]

x(t) = x(t) >  for all t ∈ R,

http://www.advancesindifferenceequations.com/content/2014/1/225
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which implies that (.) has a unique positive solution with period T . This completes the
proof. �

We illustrate our results with some examples.

Example . Consider the following second-order p-Laplacian-like Rayleigh equation:

(
φp

(
x′(t)

))′ +
(
 +  sin t

)
x′(t) –

(
x(t) + sin t – 

)
= ecos

 t , (.)

where φp(u) = |u|p–u.
Comparing (.) to (.), we see that g(t,x) = –x(t) – sin t + , f (t,u) = ( +  sin t)u,

e(t) = ecos t , T = π . Obviously, we know that φp is a homeomorphism from R to R sat-
isfying (A) and (A). Consider (x – x)(g(t,x) – g(t,x)) = –(x – x) <  for x �= x,
then (A) holds. Moreover, it is easily seen that there exists a constant D =  such that
(H) holds. Consider f (t,u)u = ( +  sin t)u ≥ u, here σ = , m = , and |f (t,u)| =
|( +  sin t)u| ≤ |u| + , here ρ = , γ = . So, we can get that conditions (H) and
(H) hold. Choose B > , we have |g(t,x)| ≤ |x| + , here α = , β = , then (H) holds
and σ – αT

 =  – π
 > . So, by Theorem ., we can get that (.) has a unique positive

periodic solution.

Example . Consider the following second-order p-Laplacian-like Rayleigh equation:

(
φ
(
x′(t)

))′ +
(
 +  cos t

)(
x′(t)

) – (
x(t) +  cos(t) – 

)
= esin

 t , (.)

where φ(u) = ue|u| .
Comparing (.) to (.), we see that g(t,x) = –x –  cos t + , f (t, v) = ( +

 cos t)v, e(t) = esin t , T = π . Obviously, we get

(
xe|x| – ye|y|)(x – y) ≥ (|x|e|x| – |y|e|y|)(|x| – |y|) ≥ 

and

φ(x) · x = |x|e|x| .

So, we know that (A) and (A) hold. Consider (x – x)(g(t,x) – g(t,x)) = –(x –
x)(x + xx + x) <  for x �= x, then (A) holds. Moreover, it is easily seen that there
exists a constantD =  such that (H) holds. Consider f (t, v)v = (+ cos t)v ≥ v,
here σ = , m = , and |f (t, v)| = |( +  cos t)v| ≤ |v| + , here ρ = , γ = .
So, we can get that conditions (H) and (H) hold. Choose B > , we have |g(t,x)| ≤
|x| + , here α = , β = , then (H) holds and σ – αTm–

m– =  – ×π

 > . There-
fore, by Theorem ., we know that (.) has a unique positive periodic solution.
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