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Abstract
In this paper, we obtain the existence and multiplicity of solutions for discrete
Neumann boundary value problem with singular φ-Laplacian operator
∇( �uk√

1–κ (�uk )2
) + rkuk + f (k,uk ,�uk) = 0, 2≤ k ≤ N – 1,�u1 = 0 =�uN–1 by using upper

and lower solutions method and Brouwer degree theory, where κ > 0 is a constant,
r = (r2, . . . , rN–1) ∈R

N–2, and f is a continuous function. We also give some examples to
illustrate the main results.
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1 Introduction
In this paper we present some existence andmultiplicity results for the discrete Neumann
boundary value problem with singular φ-Laplacian operator

∇
(

�uk√
 – κ(�uk)

)
+ rkuk + f (k,uk ,�uk) = , k ∈ [,N – ]Z,

�u =  = �uN–,

(.)

where κ >  is a constant, � is the forward difference operator defined by �uk = uk+ –uk ,
∇ is the backward difference operator defined by∇uk = uk –uk–, r = (r, . . . , rN–) ∈R

N–,
f : [,N – ]Z × R

 → R is a continuous function and [,N – ]Z := {, , . . . ,N – } with
N ≥  is an integer.
This problem originated from the study of hypersurfaces in the Lorentz-Minkowski

space with coordinates (x, . . . ,xN , t) and the metric
∑N

j=(dxj) – (dt) leads to partial dif-
ferential equations (PDE) of the type

div

( ∇v(x)√
 – |∇v(x)|

)
=H

(
x, v(x)

)
in �, (.)

where � is a domain in R
N (N ≥ ) and H : � × R → R is a nonlinearity prescribing the

mean curvature of the hypersurface. A first essential result concerning the above PDE was
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proved by Calabi [] in the case � = R
N and N ≤ . This was later extended to arbitrary

dimension by Cheng and Yau in []. On the other hand, if H ≡ c >  and � = R
N , then

Treibergs [] obtained an existence result about entire solutions for (.) in the presence
of a pair of well-ordered upper and lower solutions, and (.) coupled with the Neumann
boundary conditions has been considered by López [] and Bereanu et al. [–]. For exis-
tence and multiplicity results concerning (positive) solutions of the classical case (κ = ),
see for example [, ], and for other results concerning the Neumann boundary value
problems, see [] and their references.
This paper addresses a question of interest regarding the discrete Neumann problem

(.):
Under what conditions does the discrete Neumann problem (.) have at least one solu-

tion?
Particular significance in the above question lies in the fact that strange and interest-

ing distinctions can occur between the theory of differential equations and the theory of
difference equations. For example, properties such as existence, uniqueness, and multi-
plicity of solutions may not be shared between the theory of differential equations and the
theory of difference equations [, ], even though the right-hand side of the equations
under considerationmay be the same.Moreover, when investigating difference equations,
as opposed to differential equations, basic ideas fromcalculus are not necessarily available,
such as the intermediate value theorem, the mean value theorem, and the Rolle theorem.
Thus, one faces new challenges and innovation is required.
It is worth to point out that corresponding results for the discrete Neumann problem

(.) with rk ≡ r ≥  and κ =  have been proved in [, ]. The classical case has been
studied by [, ]. It is interesting to remark that, in contrast to the classical case, the
discrete Neumann problem with relativistic acceleration

∇
(

�uk√
 – (�uk)

)
+ ruk = ek , k ∈ [,N – ]Z, �u =  = �uN–,

has at least one solution for any r 	=  and any forcing term e (see [, Corollary  and
Remark ]).
In order to explain the main result, let us introduce some notation. For any x ∈ R, we

write x+ =max{x, } and x– =max{–x, }. For e = (e, . . . , eN–) ∈R
N–, we put E =

∑N–
k= ek ,

E± =
∑N–

k= e±
k , ē =


N–

∑N–
k= ek and note that E = E+ – E–.

Motivated by the above results from [–], we consider the discrete Neumann prob-
lem (.) under the nonlinearity satisfying some suitable conditions and obtain the exis-
tence and multiplicity of solutions of (.). We shall show that if r̄ 	=  and f is bounded,
then (.) has at least one solution; see Theorem .. Moreover, suppose that f does not
depend on �uk in (.) and r̄ > , then (.) has at least one solution if either f is superlin-
ear at zero and sublinear at infinity (Corollary .) or f is sublinear at zero and superlinear
at infinity and r >  (Corollary .).
On the other hand, Bereanu and Mawhin [] dealt with the Ambrosetti-Prodi type re-

sults for the problem (.) with r = , f (k,uk ,�uk) = g(k,uk ,�uk) – s, they obtain the result
that there exists s ∈R (s ∈R) such that problem (.) has zero, at least one or at least two
solutions according to s < s, s = s or s > s (s > s, s = s or s < s) if g(k,uk ,�uk) → +∞
(g(k,uk ,�uk) → –∞), as |uk| → ∞ uniformly for �uk ∈ (– √

κ
, √

κ
); see [, Theorem ,
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Theorem  and Remark ].We note that these results also hold for the problem (.) by the
same argument in [, Theorem , Theorem ]. Naturally we can ask: what would happen
if f is null at infinity? Theorem . will give the existence, multiplicity, and nonexistence
of solutions of (.) when f is null at infinity.
The rest of the paper is organized as follows. In Section , we introduce some notations,

auxiliary results and present themethod of lower and upper solutions. In addition, we also
introduce the method to construct lower and upper solutions. In Section  we give some
applications to deal with the discrete Neumann problem with various nonlinearities such
as the nonlinearity is bounded and super-sub linear perturbations, the nonlinearity is null
at infinity and the nonlinearity is singular. We also give some examples to illustrate the
main results.

2 Some notations and themethod of lower and upper solutions
In the sequel, let us introduce some notations. Let a,b ∈N with a < b, we denote [a,b]Z :=
{a,a + , . . . ,b}. In addition, we denote

∑b
s=a us =  with b < a and

∏b
s=a us =  with b < a.

For u = (u, . . . ,up) ∈ R
p, set ‖u‖∞ = max≤k≤p |uk|, ‖u‖ = ∑p

k= |uk|. If α,β ∈ R
p, we

write α ≤ β (resp. α < β) if αk ≤ βk (resp. αk < βk) for all  ≤ k ≤ p. The following assump-
tion upon φ (called singular) is made throughout the paper:

(Hφ) φ : (–a,a)→R ( < a < ∞) is an increasing homeomorphism with φ() = .

The model example is

φ(s) =
s√

 – κs
, s ∈

(
–

√
κ
,
√
κ

)
.

Let N ∈ N with N ≥  be fixed and u = (u,u, . . . ,uN ) ∈ R
N . Then we denote

�u = (�u, . . . ,�uN–) ∈R
N–

by �uk = uk+ – uk for k ∈ [,N – ]Z and if ‖�u‖∞ :=maxk∈[,N–]Z |�uk| < a, define

∇[
φ(�u)

]
=

(∇[
φ(�u)

]
, . . . ,∇[

φ(�uN–)
]) ∈R

N–

by ∇[φ(�uk)] = φ(�uk) – φ(�uk–) for k ∈ [,N – ]Z.
Let f : [,N – ]Z × R

 → R be a continuous function. Then its Nemytskii operator
Nf (u) :RN →R

N– is given by

Nf (u) =
(
f (,u,�u), . . . , f (N – ,uN–,�uN–)

)
.

It follows that Nf is continuous and takes bounded sets into bounded sets.
Let P, Q be the projectors defined by

Pu = u, ū =Qu =


N – 

N–∑
k=

uk for all u ∈R
N .

http://www.advancesindifferenceequations.com/content/2014/1/227
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If u ∈ R
N , we write ũ = u – ū and we shall consider the following closed subspaces of RN :

WN– =
{
u ∈R

N |�u =  = �uN–
}
,

W̃N– =
{
u ∈WN–|ū = 

}
.

Let the vector space WN– be endowed with the orientation of RN and the norm
‖u‖∞ =max≤k≤N |uk|. Its elements can be associated to the coordinates (u, . . . ,uN–) and
correspond to the elements of RN of the form

(u,u,u, . . . ,uN–,uN–).

For u ∈ WN–, we set B(u,ρ) := {u ∈ WN–|‖u‖∞ < ρ} (ρ > ) and, for brevity, we shall
write Bρ instead of B(,ρ).
Now, we recall the following technical result given as Proposition  and Proposition 

in [].

Lemma . Let F : RN → R
N– be a continuous operator which takes bounded sets into

bounded sets and consider the abstract discrete Neumann problem

∇(
φ(�u)

)
= F(u), �u =  = �uN–. (.)

A function u is a solution of (.) if and only if u ∈ WN– is a fixed point of the continu-
ous operator AF :WN– → WN– defined by AF (u) = v, where v = (v, v, . . . , vN ) ∈ WN–

satisfying

v = u +QNF (u), vk = u +QNF (u) +
k–∑
j=

φ–

( j∑
l=

F(uk)

)
, k ∈ [,N – ]Z.

Furthermore, ‖�(A(u))‖∞ < a for all u ∈ WN– and

‖ũ‖∞ < a(N – ) (.)

for any solution u of (.).

Let us consider the discrete Neumann problem

∇[
φ(�uk)

]
= f (k,uk ,�uk), k ∈ [,N – ]Z, �u =  =�uN–. (.)

Obviously, from Lemma ., the fixed point operator associated to (.) is

Af (u) = u.

Inwhat follows, we present themethod of lower and upper solutions for difference equa-
tions (see [, Theorem ]) to the Neumann boundary value problem (.).

http://www.advancesindifferenceequations.com/content/2014/1/227
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Definition . A function α = (α, . . . ,αN ) (resp. β = (β, . . . ,βN )) is called a lower solution
(resp. an upper solution) for (.) if ‖�α‖∞ < a (resp. ‖�β‖∞ < a) and

∇[
φ(�αk)

] ≥ f (k,αk ,�αk)(
resp. ∇[

φ(�βk)
] ≤ f (k,βk ,�βk)

)
, k ∈ [,N – ]Z,

�α ≥ , �αN– ≤  (resp. �β ≤ ,�βN– ≥ ).

(.)

Such a lower or an upper solution is called strict if the inequality (.) is strict.

We need the following result, which can be proved by the strategy of the proof of The-
orem  in []; see [, Remark ].

Lemma . If (.) has a lower solution α = (α,α, . . . ,αN ) and an upper solution β =
(β,β, . . . ,βN ) such that α ≤ β , then (.) has a solution u such that α ≤ u≤ β .Moreover,
if α and β are strict, then α < u < β , and

deg[I –Af ,�α,β ,] = –, (.)

where �α,β = {u ∈ WN–|α < u < β ,‖�u‖∞ < a}.

Notice that Lemma . proved that the problem (.) has at least one solution if it has
a lower solution α and an upper solution β with α ≤ β . In the following result we prove
some additional results concerning the location of the solution. In particular we have a
posteriori estimations which will be very useful in the sequel (Remark .).

Theorem . Assume that (.) has a lower solution α and an upper solution β such that

∃k	 ∈ [,N]Z : αk	 > βk	 . (.)

Then (.) has at least one solution u such that

min{αku ,βku} ≤ uku ≤max{αku ,βku} for some ku ∈ [,N]Z. (.)

Proof Let

u∗ = ‖α‖∞ + ‖β‖∞ + a(N – ),

m =max
{∣∣f (k,u, v)∣∣ + |(k,u, v) ∈ [,N – ]Z × [

–u∗ – ,u∗ + 
] × [–a,a]

}
,

and define the continuous function g : [,N – ]Z ×R
 →R by

g(k,u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–m – , u ≤ –u∗ – ,

f (k,u, v) + (u + u∗)(m +  + f (k,u, v)), –u∗ –  < u < –u∗,

f (k,u, v), –u∗ ≤ u≤ u∗,

f (k,u, v) + (u – u∗)m, u∗ < u < u∗ + ,

f (k,u, v) +m, u ≥ u∗ + .

http://www.advancesindifferenceequations.com/content/2014/1/227
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Let us consider the modified Neumann problem

∇[
φ(�uk)

]
= g(k,uk ,�uk), �u =  = �uN–, (.)

and letAg be the fixed point operator associated to (.).
It is not difficult to verify that α is a lower solution and β is an upper solution of the

problem (.). Moreover, by computation, α = –u∗ –  is a lower solution of (.) and
β = u∗ +  is an upper solution of (.). Notice that

α <min{α,β} ≤max{α,β} < β,

which, together with (.), implies that

�α,β ∪ �α,β ⊂ �α,β , �α,β ∩ �α,β = ∅.

So, we can consider the open bounded set

� =�α,β\[�α,β ∪ �α,β ].

It follows that

� =
{
u ∈ �α,β |uku > βku ,usu < αsu for some ku, su ∈ [,N]Z

}
and

∂� = ∂�α,β ∪ ∂�α,β ∪ ∂�α,β .

Clearly, any constant function between βk	 and αk	 is contained in �, so � 	= ∅.
Next, let us consider u ∈ ∂� such thatAf (u) = u and ‖u‖∞ = u∗ +. Notice that one has

‖�u‖∞ < a. This implies that there exists k ∈ [,N – ]Z such that uk =maxk∈[,N]Z uk =
u∗ +  or uk = mink∈[,N]Z uk = –u∗ – . In the first case we can assume that k ∈ [,N –
]Z, then �uk ≤ , �uk– ≥ . This, together with φ is an increasing homeomorphism,
implies ∇[φ(�uk )] ≤ . On the other hand, we have

∇[
φ(�uk )

]
= f (k,uk ,�uk ) +m > ,

which is a contradiction. Analogously, one can obtain a contradiction in the second case.
Consequently,

[
u ∈ ∂�,Ag(u) = u

] ⇒ ‖u‖∞ < u∗ + . (.)

Now, letu ∈ ∂� be such thatAg(u) = u. It follows from (.) that ‖u‖∞ < u∗+, ‖�u‖∞ <
a and u ∈ ∂�α,β ∪ ∂�α,β . We infer that there exists k ∈ [,N]Z such that uk = αk or
uk = βk , implying that |uk | ≤ ‖α‖∞ + ‖β‖∞. Then

|uk| ≤ |uk | +
N–∑
s=

|�us| < u∗ for all k ∈ [,N]Z,

http://www.advancesindifferenceequations.com/content/2014/1/227
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and, consequently,

[
u ∈ ∂�,Ag(u) = u

] ⇒ ‖u‖∞ < u∗. (.)

We have distinguished two cases to discuss.
Case . Assume that there exists u ∈ ∂� such that Ag(u) = u. Using (.), we deduce

that ‖u‖∞ < u∗, implying that u is a solution of (.) and (.) holds. Actually, in this case
there exists ku ∈ [,N]Z such that uku = αku or uku = βku .
Case . Assume that Ag(u) 	= u for all u ∈ ∂�. Then, from Lemma . applied to g , it

follows that

deg[I –Ag ,�α,β ,] = deg[I –Ag ,�α,β ,] = deg[I –Ag ,�α,β ,] = –.

This, together with the additivity property of the Brouwer degree, implies that

deg[I –Ag ,�,] = ,

which, together with the existence property of the Brouwer degree, implies that there ex-
ists u ∈ � such thatAg(u) = u. It follows that there exist k,k ∈ [,N]Z such that uk < αk
and uk > βk . Then, using once again that ‖�u‖∞ < a, it follows that ‖u‖∞ < u∗, and u is
a solution of (.). Moreover, from u ∈ � it follows that (.) is true. �

Remark . Assume that (.) has a lower solution α and an upper solution β . From
Lemma . and Theorem ., we deduce that (.) has at least one solution u satisfying
(.). In particular,

‖u‖∞ < ‖α‖∞ + ‖β‖∞ + a(N – ). (.)

Remark . The corresponding result for second-order continuous periodic problems
has been proved in Theorem  of [] by the proof using the same strategy as above.

The following result is a particular case of [, Lemma  and Remark ] for the discrete
Neumann boundary value problem.

Lemma . Let ũ = (ũ, ũ, . . . , ũN ) ∈ W̃N–. Then the discrete Neumann problem

∇[
φ(�ũk)

]
= f (k, l + ũk ,�ũk) –


N – 

N–∑
j=

f (k, l + ũj,�ũk), k ∈ [,N – ]Z,

�u =  = �uN–

(.)

has at least one solution for all l ∈R.

The next result is an elementary estimation of the function u ∈WN–.

Lemma . Let u ∈WN–. Then

max
k∈[,N]Z

uk – min
k∈[,N]Z

uk ≤ (N – )‖�u‖∞. (.)

http://www.advancesindifferenceequations.com/content/2014/1/227
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Proof Let k∗ ∈ [,N –]Z be such that uk∗ =mink∈[,N]Z uk and k
∗ ∈ [,N –]Z be such that

uk∗ =maxk∈[,N]Z uk . If k
∗ = k∗, then uk∗ – uk∗ =  ≤ (N – )‖�u‖∞. If k∗ > k∗, then

uk∗ – uk∗ =
k∗–∑
s=k∗

�us ≤ (N – )‖�u‖∞.

If k∗ < k∗, then

uk∗ – uk∗ =
k∗–∑
s=k∗

(–�us) ≤ (N – )‖�u‖∞.

Therefore, it follows that

uk∗ – uk∗ ≤ (N – )‖�u‖∞,

and the proof is completed. �

In the following, we give a method to construct the lower solution and upper solution
of the discrete Neumann problem

∇[
φ(�uk)

]
= g(k,uk) + ek , k ∈ [,N – ]Z, �u =  = �uN–, (.)

where g : [,N – ]Z × (,∞) → R is a continuous singular nonlinearity and e =
(e, . . . , eN–) ∈ R

N–.
The following result gives a method to construct a lower solution to (.), getting also

control over its localization.

Theorem . Suppose that there exist u >  and c = (c, . . . , cN–) ∈R
N– such that

g(k,u) ≤ ck , ∀(k,u) ∈ [,N – ]Z × [
u,u + a(N – )

]
. (.)

If

c̄ + ē≤ , (.)

then (.) has a lower solution α such that

u ≤ α < u + a(N – ). (.)

Proof Consider the function ψ = c + e. We have two cases.
Case . Assume that �+ = . Taking α ≡ u and, using c + e ≤ , it follows from (.)

that α is a lower solution of (.).
Case . Assume that �+ > . Let hk =ψ+

k �– –ψ–
k �+. Then using

N–∑
k=

hk =
N–∑
k=

[
ψ+

k �– –ψ–
k �+

]
= 

http://www.advancesindifferenceequations.com/content/2014/1/227
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and [, Proposition ], it follows that there exists w ∈WN– such that

∇[
φ(�wk)

]
= hk , �w =  = �wN–.

Let us take u = /�+ and j =min{,φ–(
∑j

l= u
hl)} for j = , . . . ,N – . Then we define

α = u – min
k∈[,N–]Z

k–∑
j=

j,

αk = u +
k–∑
j=

φ–

( j∑
l=

uhl

)
– min

k∈[,N–]Z

k–∑
j=

j, k ∈ [,N – ]Z.

Let α = α, αN = αN–, then �α =  = �αN–. On the other hand, we have

�αk = φ–

( k∑
l=

uhl

)
, ≤ k ≤N – .

Since mink∈[,N–]Z
∑k–

j= j ≤ , Lemma . implies (.). Now, using (.), it follows
that �+ ≤ �–, implying that

∇[
φ(�αk)

]
= uhk = u

[
ψ+

k �– –ψ–
k �+

] ≥ ψk , k ∈ [,N – ]Z.

From (.) and (.), we deduce that

g(k,αk) + ek ≤ ψk , ∀k ∈ [,N – ]Z.

Consequently,

∇[
φ(�αk)

] ≥ g(k,αk) + ek , ∀k ∈ [,N – ]Z. �

By a similar argument, it is easy to prove the following theorem.

Theorem . Suppose that there exist u >  and d = (d, . . . ,dN–) ∈R
N– such that

g(k,u) ≥ dk , for any (k,u) ∈ [,N – ]Z × [
u,u + a(N – )

]
. (.)

If

d̄ + ē≥ , (.)

then (.) has an upper solution β such that

u ≤ β < u + a(N – ).

http://www.advancesindifferenceequations.com/content/2014/1/227
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3 Some applications
3.1 Bounded and super-sub linear perturbations
In this section we will study the discrete Neumann problem

∇[
φ(�uk)

]
+ rkuk = f (k,uk ,�uk), �u =  = �uN–, (.)

where r = (r, . . . , rN–) ∈R
N– and f : [,N – ]Z ×R

 →R is a continuous function.
In the following theorem we prove that if r̄ 	=  and f is bounded on [,N – ]Z × R ×

(–a,a), then (.) has at least one solution. So, resonance occurs only when r̄ = .

Theorem . If r̄ 	=  and f is bounded on [,N – ]Z ×R× (–a,a), then (.) has at least
one solution.

Proof Let p >  be a constant such that

∣∣f (k,u, v)∣∣ ≤ p for all (k,u, v) ∈ [,N – ]Z ×R× (–a,a).

For any λ ∈ [, ], let us consider the discrete Neumann problem

∇[
φ(�uk)

]
= λ

[
Nf (u) – rkuk

]
+ ( – λ)

[
QNf (u) –Q(ru)

]
,

�u =  = �uN–.
(.)

Let A(λ, ·) :WN– → WN– be the fixed point operator associated to (.) by Lemma ..
Notice that if u ∈ WN– is such that u =A(λ,u), then (.) is satisfied and

QNf (u) =Q(ru),

implying that

ū =

r̄
Q

[
Nf (u) – rũ

]
.

So, one has

|ū| < p + a(N – )‖r‖∞
r̄

.

Then, for any ρ >  sufficiently large, one has

u 	=A(λ,u) for all (λ,u) ∈ [, ]× ∂Bρ .

The invariance under homotopy of the Brouwer degree implies that

deg
(
I –A(, ·),Bρ ,

)
= deg

(
I –A(, ·),Bρ ,

)
.

Notice that from Q =Q it follows that

A(,u) = Pu +Q
[
Nf (u) – ru

]
, u ∈WN–.

http://www.advancesindifferenceequations.com/content/2014/1/227
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So, the range of the operatorA(λ, ·) is contained in the space of constant functions which
is isomorphic toR. Hence, using the reduction property of the Brouwer degree we deduce
that, for ρ sufficiently large,

deg
(
I –A(, ·),Bρ ,

)
= deg

(
I –A(, ·)|R, (–ρ,ρ), 

)
,

which, together with the fact that f is bounded and

[
I –A(, ·)|R

]
(u) = r̄u –


N – 

N–∑
k=

f (k,u, ), u ∈R,

implies that

deg
(
I –A(, ·),Bρ ,

)
= sign r̄.

We infer that

deg
(
I –A(, ·),Bρ ,

) 	= ,

and the existence property of the Brouwer degree implies thatA(, ·) has at least one fixed
point u which is also a solution of (.). �

Example . Consider the discrete Neumann problem with attractive singularity

∇
(

�uk√
 – κ(�uk)

)
+ g(�uk) + rkuk = ek , k ∈ [,N – ]Z,

�u =  = �uN–,

(.)

where κ >  is a constant, r = (r, . . . , rN–), e = (e, . . . , eN–) ∈ R
N– and g : R → R is a

continuous function. If r̄ 	= , then the above problem has at least one solution. In fact, let
φ(s) = s√

–κs
, f (k,uk ,�uk) = ek – g(�uk). Then

∣∣f (k,uk ,�uk)
∣∣ ≤ ‖e‖∞ + max

�uk∈[– √
κ
, √

κ
]
g(�uk) =: ρ.

So, the result follows from Theorem ..

In the following theoremwe assume that f is superlinear at zero and sublinear at infinity
and we prove that (.) has at least one nontrivial solution if r̄ > .

Theorem . Assume that f does not depends on �uk in (.). If one has r̄ >  and

lim inf
u→+

f (k,u)
u

> max
k∈[,N–]Z

rk ≥ r̄ > lim sup
u→+∞

f (k,u)
u

uniformly for k ∈ [,N – ]Z, (.)

then (.) has at least one nontrivial solution.
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Proof First of all, our assumption implies that there exists β >  such that

rkβ ≤ f (k,β) for all k ∈ [,N – ]Z.

This means that β is an upper solution of (.).
On the other hand, from (.), there exist ε >  and u >max{ a(N–)r+

ε
,β} such that

f (k,uk) ≤ (r̄ – ε)uk , k ∈ [,N – ]Z,uk ≥ u.

We will apply Theorem . with g(k,uk) = f (k,uk) – rkuk and

ck = –rku + a(N – )r–k + max
uk∈[u,u+a(N–)]

f (k,uk), ∀k ∈ [,N – ]Z.

Notice that

–rkuk = r–k uk – r+k uk ≤ r–k
(
u + a(N – )

)
– r+k u



= –rku + a(N – )r–k , ∀(k,uk) ∈ [,N – ]Z × [
u,u + a(N – )

]
,

implying that (.) holds. Next, we have

c̄ ≤ –ur̄ + a(N – )r– + (r̄ – ε)
(
u + a(N – )

) ≤ .

Hence, from Theorem . we deduce that (.) has a lower solution α such that u ≤ α <
u + a(N – ). In particular β ≤ α, and using Theorem ., we infer that (.) has at least
one solution u such that β ≤ uku , for some ku ∈ [,N]Z, which is also a nontrivial solution.

�

Corollary . If r̄ >  and

lim
u→+

f (k,u)
u

=∞, lim
u→+∞

f (k,u)
u

= , uniformly for k ∈ [,N – ]Z,

then (.) has at least one nontrivial solution.

Example . Consider the discrete Neumann problem with attractive singularity

∇
(

�uk√
 – κ(�uk)

)
+ rkuk = |uk|λ, k ∈ [,N – ]Z, �u =  = �uN–,

where κ >  is a constant, r = (r, . . . , rN–) ∈ R
N– and λ > . If r̄ >  and λ ∈ (, ), then

the above problem has at least one solution.

The following dual result also holds, that is, f is superlinear at infinity and sublinear at
zero and we prove that (.) has at least one nontrivial solution if r > .
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Theorem . Assume that f does not depend on �uk in (.). If one has r̄ >  and

lim inf
u→+∞

f (k,u)
u

> r̄≥ min
k∈[,N–]Z

rk > lim sup
u→+

f (k,u)
u

uniformly for k ∈ [,N – ]Z, (.)

then (.) has at least one nontrivial solution.

Proof Obviously, the assumption (.) implies that there exists α >  such that

f (k,α)≤ rkα for all k ∈ [,N – ]Z.

This means that α is an upper solution of (.).
On the other hand, it follows from (.) that there exist ε >  and u >max{ a(N–)r+

ε
,α}

such that

f (k,uk) ≥ (r̄ + ε)uk , k ∈ [,N – ]Z,uk ≥ u.

We will apply Theorem . with g(k,uk) = f (k,uk) – rkuk and

dk = –rku – a(N – )r+k + min
uk∈[u,u+a(N–)]

f (k,uk), ∀k ∈ [,N – ]Z.

Notice that

–rkuk = r–k uk – r+k uk ≥ r–k u
 – r+k

(
u + a(N – )

)
= –rku – a(N – )r+k , ∀(k,uk) ∈ [,N – ]Z × [

u,u + a(N – )
]
,

implying that (.) holds. Next, we have

d̄≥ –ur̄ – a(N – )r+ + (r̄ + ε)u ≥ .

Hence, from Theorem . we deduce that (.) has an upper solution β such that u ≤ β <
u + a(N – ). In particular α ≤ β , and, using Lemma ., we infer that (.) has at least
one solution u such that α ≤ u ≤ β , which is also a nontrivial solution. �

Corollary . If r >  and

lim
u→+

f (k,u)
u

= , lim
u→+∞

f (k,u)
u

=∞, uniformly for k ∈ [,N – ]Z,

then (.) has at least one nontrivial solution.

Example . Consider the discrete Neumann problem with attractive singularity

∇
(

�uk√
 – κ(�uk)

)
+ rkuk = |uk|λ, k ∈ [,N – ]Z, �u =  = �uN–,

where κ >  is a constant, r = (r, . . . , rN–) ∈ R
N– and λ > . If r >  and λ > , then the

above problem has at least one solution.
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3.2 Nonlinearities null at infinity
In this section, we deal with nonlinearities null at infinity. This type of nonlinearities has
been introduced in [] and studied in [, ]. We consider the discrete Neumann prob-
lem

∇[
φ(�uk)

]
+ f (k,uk) = s + ẽk , k ∈ [,N – ]Z, �u =  = �uN–, (.)

where f : [,N – ]Z × R → R is a continuous function, ẽ = (ẽ, . . . , ẽN–) ∈ R
N– with∑N–

k= ẽk =  and s ∈ R is a parameter. We have the following theorem.

Theorem . Assume that

f (k,u)→  if |u| → ∞ uniformly with k ∈ [,N – ]Z, (.)

and there exists ν = (ν, . . . ,νN–) ∈R
N– with ν̄ = 

N–
∑N–

k= νk >  such that

lim inf|u|→∞ uf (k,u) > ν uniformly with k ∈ [,N – ]Z. (.)

Then there exist ε <  < ε such that (.) has no solutions if s /∈ [ε, ε] and at least one
solution if s ∈ [ε, ε].Moreover, if s ∈ (ε, ε) and s 	= , then (.) has at least two solutions.

Proof For any fixed integer n ∈ Z, let us consider the discrete Neumann problem

∇[
φ(�ũk)

]
+ f (k,n + ũk) – ẽk =


N – 

N–∑
j=

f (j,n + ũj), k ∈ [,N – ]Z,

�u =  = �uN–.

(.)

Then, taking into account that
∑N–

k= ẽk = , it follows from Lemma . that (.) has at
least one solution, ũ(n) = (ũ(n) , ũ(n) , . . . , ũ(n)N–, ũ

(n)
N ) ∈ W̃N–. Notice that u(n) := n + ũ(n) is a

solution of (.) for s = 
N–

∑N–
j= f (j,n + ũ(n)j ). So, in particular, there exists at least one

s ∈R such that (.) has at least one solution.
Next, let us define

Sj =
{
s ∈R|(.) has at least j solutions} (j = , )

and ε = infS, ε = supS. Using that f is boundedon [,N–]Z×R and 
N–

∑N–
j= f (j,uj) =

s for any solution u of (.), we infer that ε, ε are finite.
Now, we will prove that ε <  < ε. It suffices to prove that there exists δ >  such that

[–δ, δ] ⊂ S. One has

∃n ≥ ,∀s≤ ν̄

n
:


N – 

N–∑
j=

f
(
j,u(n)j

) ≥ s. (.)

Suppose on the contrary that

∀n≥ ,∃sn ≤ ν̄

n
:


N – 

N–∑
j=

f
(
j,u(n)j

)
< sn.

http://www.advancesindifferenceequations.com/content/2014/1/227
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Using (.), (.), and the fact that ‖ũ(n)‖∞ < a(N – ) for all n ∈ Z, it follows that there
exists X ≥  such that


N – 

N–∑
j=

f
(
j,u(n)j

)
u(n)j ≥ ν̄

and


N – 

N–∑
j=

f
(
j,u(n)j

)
ũ(n)j ≤ ν̄



for all n ≥ X. It follows that

 >
n

N – 

N–∑
j=

f
(
j,u(n)j

)
– nsn

=


N – 

N–∑
j=

f
(
j,u(n)j

)
u(n)j –


N – 

N–∑
j=

f
(
j,u(n)j

)
ũ(n)j – nsn

≥ ν̄


, for all n≥ X,

which is a contradiction with the assumption ν̄ > . So, (.) holds true. This implies that
u(n) is a lower solution of (.) for all s ≤ ν̄

n
. Analogously, it follows that there exists

n ≤ – such that u(n) is an upper solution of (.) for all s ≥ ν̄
n

. Then [–δ, δ] ⊂ S, just
taking δ sufficiently small and applying Theorem  and Remark  of [].
Next, let us prove that (, ε) ⊂ S. Consider s ∈ (, ε). It follows that there exists ŝ > s

such that ŝ ∈ S, so, (.) has at least one solution α for s = ŝ. Then α is a strict lower
solution of (.). Using once again (.) and the fact that ‖ũ(n)‖∞ < a(N – ) for all n ∈ Z,
it follows that there exists n ≥  sufficiently large such that u(–n) < α < u(n) and


N – 

N–∑
j=

f
(
j,u(l)j

)
< s (l = –n,n).

It follows that u(–n), u(n) are strict upper solution for (.). Then from Lemma . we infer
that (.) has a solution v such that α < v < u(n). On the other hand, from Theorem .,
it follows that (.) has a solution v such that u(–n)k ≤ vk ≤ αk for some k ∈ [,N]Z. Hence,
v 	= v and s ∈ S. Consider a sequence sn in (, ε) converging to ε and u(n) a solution of
(.) with s = sn. Notice that


N – 

N–∑
j=

f
(
j,u(n)j

)
= sn (n ∈ N),

which, together with ‖ũ(n)‖∞ < a(N –) for all n ∈N, ε >  and (.), implies that {ū(n)} is
a bounded sequence. Consequently, {u(n)} is a bounded sequence inWN–. Subsequently,
there exists a subsequence of {u(n)} converging uniformly to some u ∈ WN– which is a
solution of (.) with s = ε. Analogously, one has ε ∈ S. �
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Example . Consider the discrete Neumann problem

∇
(

�uk√
 – κ(�uk)

)
+

uk
 + (uk)

= ek + s, k ∈ [,N – ]Z,

�u =  = �uN–,

(.)

where κ >  is a constant, e = (e, . . . , eN–) ∈ R
N– and s ∈ R is a parameter. From Theo-

rem ., there exist ε <  < ε such that (.) has no solutions if s /∈ [ε, ε] and at least
one solution if s ∈ [ε, ε]. Moreover, if s ∈ (ε, ε) and s 	= , then (.) has at least two
solutions.

Remark . It is interesting to note that in [], the authors deal with nonlinearities f →
∞ at infinity for the discrete periodic problem, see [, Theorem  and Theorem ], which
also hold for the discrete Neumann problem ([, Remark ]).

3.3 Singular perturbations problem
In the following we will apply Theorem . to study the singular Neumann problem

∇[
φ(�uk)

]
+ rkuk –

mk

(uk)λ
= ek , k ∈ [,N – ]Z, �u =  = �uN–, (.)

where r = (r, . . . , rN–),m = (m, . . . ,mN–),e = (e, . . . , eN–) ∈R
N– and λ > .

Theorem . Assume that r̄ > ,m ≥  withm 	=  and

ē > a(N – )r+ – m̄
[
a(N – )

]–λ. (.)

Then (.) has at least one positive solution.

Proof Let us define the auxiliary increasing functions

�(u) = a(N – )r+ –
m̄
uλ

, �(u) = ur+ –
m̄
uλ

, u > .

From (.) it follows that ē > �(a(N – )), and there exists ε >  such that

ē > �
(
a(N – ) + ε

)
. (.)

Now, consider the continuous function g : [,N – ]Z ×R→R given by

g(k,u) =

⎧⎨
⎩

mk
uλ , (k,u) ∈ [,N – ]Z × [ε,∞),
mk
ελ , (k,u) ∈ [,N – ]Z × (–∞, ε),

and consider the modified Neumann problem

∇[
φ(�uk)

]
+ rkuk – g(k,uk) = ek , �u =  = �uN–. (.)

Using that g is bounded and r̄ 	= , it follows from Theorem . that (.) has a solution
u 	= .

http://www.advancesindifferenceequations.com/content/2014/1/227
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We will show that mink∈[,N]Z uk > ε. Summing (.) from k =  to k =N –  we deduce
that

E =
N–∑
k=

r+k uk –
N–∑
k=

r–k uk –
N–∑
k=

g(k,uk), (.)

which, together with Lemma ., implies that

ē≤ a(N – )r+ + r̄ min
k∈[,N]Z

uk –


N – 

N–∑
k=

g(k,uk). (.)

On the other hand, using m≥ , one has

�
(
a(N – ) + ε

) ≥ a(N – )r+ + εr̄ –
m̄
ελ

. (.)

Let us assume that maxk∈[,N]Z uk ≤ ε. Then, using (.) and r̄ > , we infer that

ē≤ a(N – )r+ + εr̄ –
m̄
ελ

,

contradicting (.) and (.). So, maxk∈[,N]Z uk > ε.
Next, using (.), (.), Lemma ., andm ≥ , it follows that

 ≤ �

(
max

k∈[,N]Z
uk

)
– ē + r̄ min

k∈[,N]Z
uk

< �

(
max

k∈[,N]Z
uk

)
–�

(
a(N – )

)
+ r̄ min

k∈[,N]Z
uk

< �

(
min

k∈[,N]Z
uk + a(N – )

)
–�

(
a(N – )

)
+ r̄ min

k∈[,N]Z
uk ,

which, together with r̄ > , implies that mink∈[,N]Z uk > .
From this, together with (.) and (.), we deduce that

�
(
a(N – ) + ε

)
< ē≤ �

(
max

k∈[,N]Z
uk

)
,

implying that a(N – ) + ε < maxk∈[,N]Z uk . This, together with Lemma ., implies that
mink∈[,N]Z uk > ε, and our claim is proved. Consequently, u is also a solution of (.).

�

Remark . It is not difficult to show that the results proved in this paper also hold for
the discrete periodic boundary value problem.

Example . Consider the discrete Neumann problem with attractive singularity

∇
(

�uk√
 – κ(�uk)

)
+ buk =


uλ

, k ∈ [,N – ]Z, �u =  = �uN–,

where κ >  is a constant, b >  and λ ∈ (, ). By using Theorem ., the above problem
has at least one solution if b < (

√
κ

N– )
+λ.
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