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Abstract
In this paper, we propose a new fractional Jacobi elliptic equation method to seek
exact solutions of fractional partial differential equations. Based on a traveling wave
transformation, certain fractional partial differential equation can be turned into
another fractional ordinary differential equation. Then the fractional Jacobi elliptic
equation is used as the auxiliary sub-equation to solve the fractional ordinary
differential equation. As for applications of this method, we apply it to seek exact
solutions for the space-time fractional Kortweg-de Vries (KdV) equation, the
space-time fractional Benjamin-Bona-Mahony (BBM) equation, and the space-time
fractional (2 + 1)-dimensional breaking soliton equations. With the aid of symbolic
computation program, a series of exact solutions expressed in the Jacobi elliptic
functions for the two equations are successfully found.
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1 Introduction
In recent decades, fractional differential equations have been paid an increasing attention
as they are widely used to describe various complex phenomena inmany fields such as the
fluid flow, signal processing, control theory, systems identification, biology, and other ar-
eas. In particular, fractional derivative is useful in describing the memory and hereditary
properties of materials and processes. Among the investigations for fractional differential
equations, finding numerical and exact solutions to fractional differential equations is a
hot topic. Many efficient methods have been proposed so far to obtain numerical solu-
tions and exact solutions of fractional differential equations. For example, these methods
include the fractional sub-equationmethod [–], the first integral method [], the (G′/G)
method [–], the variational iterative method [–], the Exp method [], the sim-
plest equation method [], the Adomian decomposition method [, ], the homotopy
perturbation method [–], the shifted Jacobi-Gauss-Lobatto collocation method [],
the shifted Legendre spectral method [], the generalized Laguerre spectral algorithms
[], the modified generalized Laguerre tau method combining with a new operational
matrix [] and so on.
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The Jacobi elliptic function method is an effective method for solving some fractional
differential equations, which have been investigated in detail in [, ]. In this paper, we
propose a new fractional Jacobi elliptic equation method to seek exact solutions of frac-
tional partial differential equations in the sense of themodified Riemann-Liouville deriva-
tive. First based on a traveling wave transformation, certain fractional partial differential
equation can be turned into another fractional ordinary differential equation, the exact
solutions of the latter are assumed to be expressed in a polynomial in (DαG

G ), where Dα

denotes the modified Riemann-Liouville derivative of α order, and G = G(ξ ) satisfies the
following fractional Jacobi elliptic equation:

(
Dα

ξG(ξ )
) = eG(ξ ) + eG(ξ ) + e,  < α ≤ , ()

where e, e, e are arbitrary constants. The degree of the polynomial can be determined
by the homogeneous balancing principle. By use of a fractional complex transformation,
the general solutions of () can be obtained, with which the exact solutions for the original
fractional partial differential equation can be deduced subsequently.
The definition and some important properties of the modified Riemann-Liouville

derivative [–, ] are listed as follows:

Dα
t f (t) =

{


�(–α)
d
dt

∫ t
 (t – ξ )–α(f (ξ ) – f ())dξ ,  < α < ,

(f (α–n)(t))(n), n≤ α < n + ,n≥ ,
()

Dα
t t

r =
�( + r)

�( + r – α)
tr–α , ()

Dα
t
(
f (t)g(t)

)
= g(t)Dα

t f (t) + f (t)Dα
t g(t), ()

Dα
t f

[
g(t)

]
= f ′

g
[
g(t)

]
Dα

t g(t), ()

Dα
t f

[
g(t)

]
=Dα

g f
[
g(t)

](
g ′(t)

)α . ()

The rest of this paper is organized as follows. In Section , we give the description of the
fractional Jacobi elliptic equation method for solving fractional partial differential equa-
tions. Then in Section  we apply this method to seek exact solutions for the space-time
fractional KdV equation, the space-time fractional BBM equation, and the space-time
fractional ( + )-dimensional breaking soliton equations. Some concluding comments
are presented at the end of this paper.

2 Summary of the fractional Jacobi elliptic equationmethod
In this section we give the description of the fractional Jacobi elliptic equation method for
solving fractional partial differential equations.
Suppose that a fractional partial differential equation, say in the independent variables

t, x,x, . . . ,xn, is given by

P
(
u, . . .uk ,Dα

t u, . . . ,D
α
t uk ,D

α
xu, . . . ,D

α
xuk , . . . ,D

α
xnu, . . . ,

Dα
xnuk ,D

α
t u, . . . ,Dα

t uk ,Dα
x u, . . .

)
= , ()

where ui = ui(t,x,x, . . . ,xn), i = , . . . ,k are unknown functions, P is a polynomial in ui
and their various partial derivatives including fractional derivatives.
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Step . Suppose

ui(t,x,x, . . . ,xn) =Ui(ξ ), i = , . . . ,k,

and a traveling wave transformation

ξ = ct + kx + kx + · · · + knxn + ξ. ()

Then by the property (), () can be turned into the following fractional ordinary differ-
ential equation with respect to the variable ξ :

P̃
(
U, . . . ,Uk , cαDα

ξU, . . . , cαDα
ξUk ,kα

 D
α
ξU, . . . ,kα

 D
α
ξUk , . . . ,kα

nD
α
ξU, . . . ,

kα
nD

α
ξUk , cαDα

ξ U, . . . , cαDα
ξ Uk ,kα Dα

ξ U, . . .
)
= . ()

Step . Suppose that the solution of () can be expressed by a polynomial in (
Dα

ξ G
G ) as

follows:

Uj(ξ ) =
mj∑

i=–mj

aj,i
(Dα

ξG
G

)i

, j = , , . . . ,k, ()

where aj,i, i = –mj, . . . , , , . . . ,mj, j = , , . . . ,k are constants to be determined later, the
positive integermj can be determined by considering the homogeneous balance between
the highest order derivatives and nonlinear terms appearing in (), G = G(ξ ) satisfies the
fractional Jacobi elliptic equation denoted by ().
Step . Substituting () into () and using (), collecting all terms with the same order

of (Dα
ξG)iGj together, the left-hand side of () is converted into another polynomial in

(Dα
ξG)iGj. Equating each coefficient of this polynomial to zero, yields a set of algebraic

equations for aj,i, i = –mj, . . . , , , . . . ,mj, j = , , . . . ,k.
Step . Solving the equations system in Step , and using the general solutions of (), we

can construct a variety of exact solutions for ().
In order to obtain the general expressions for (

Dα
ξ G
G ) in (), we suppose G(ξ ) =H(η), and

a nonlinear fractional complex transformation η = ξα

�(+α) . Then by the properties () and
(), we haveDα

ξG(ξ ) =Dα
ξH(η) =H ′(η)Dα

ξ η =H ′(η). So () can be turned into the following
ordinary differential equation:

(
H ′(η)

) = eH(η) + eH(η) + e. ()

By the general solutions of (), one has

(
H ′(η)
H(η)

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn(η)ds(η), e =m, e = –( +m), e = ,
–sn(η)dc(η), e = –m, e = m – , e =  –m,
–msn(η)cd(η), e = –, e =  –m, e =m – ,
–dc(η)ns(η), e = , e =  –m, e =  –m,
cs(η)nd(η), e =m(m – ), e = m – , e = ,
( –m)sd(η)nc(η), e = , e = –(m + ), e =m,

()
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where sn(η), cn(η), dn(η) denote the Jacobi elliptic sine function, Jacobi elliptic cosine func-
tion, and the Jacobi elliptic function of the third kind, respectively,m is the modulus, and

cs(η) =
cn(η)
sn(η)

, sd(η) =
sn(η)
dn(η)

, dc(η) =
dn(η)
cn(η)

,

sc(η) =


cs(η)
, ds(η) =


sd(η)

, cd(η) =


dc(η)
,

nd(η) =


dn(η)
, ns(η) =


sn(η)

, nc(η) =


cn(η)
.

Furthermore, one can obtain the following expressions for
Dα

ξ G(ξ )
G(ξ ) :

(Dα
ξG(ξ )
G(ξ )

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cn( ξα

�(+α) )ds(
ξα

�(+α) ), e =m, e = –( +m), e = ,
–sn( ξα

�(+α) )dc(
ξα

�(+α) ), e = –m, e = m – , e =  –m,
–msn( ξα

�(+α) )cd(
ξα

�(+α) ), e = –, e =  –m, e =m – ,
–dc( ξα

�(+α) )ns(
ξα

�(+α) ), e = , e =  –m, e =  –m,
cs( ξα

�(+α) )nd(
ξα

�(+α) ), e =m(m – ), e = m – , e = ,
( –m)sd( ξα

�(+α) )nc(
ξα

�(+α) ), e = , e = –(m + ), e =m.

()

Remark  For the sake of simplicity, other expressions for (
Dα

ξ G(ξ )
G(ξ ) ) with e, e, e taken

different values are omitted here.

3 Application of the fractional Jacobi elliptic equationmethod to some
fractional partial differential equations

3.1 Space-time fractional KdV equation
Consider the following space-time fractional KdV equation:

Dα
t u + uDα

x u + 
(
Dα

x u
)(
Dα

x u
)
+ uDα

x u +Dα
x u = ,  < α ≤ , ()

which is a variation of the following KdV equation []:

ut + uux + uxuxx + uuxxx + uxxxxx = . ()

In order to apply the fractional auxiliary sub-equation method described in Section ,
suppose u(x, t) =U(ξ ), where ξ = ct + kx + ξ, k, c, ξ are all constants with k, c �= . By use
of () and (), one has{

Dα
t u =Dα

t U(ξ ) =Dα
ξU(ξ )(ξ ′

t (t))α = cαDα
ξU(ξ ),

Dα
x u =Dα

xU(ξ ) =Dα
ξU(ξ )(ξ ′

x(x))α = kαDα
ξU(ξ ),

()

and then () can be turned into the following form:

cαDα
ξU + kαUDα

ξU + kα
(
Dα

ξU
)(
Dα

ξ U
)
+ kαUDα

ξ U + kαDα
ξ U = . ()
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Suppose that the solution of () can be expressed by

U(ξ ) =
m∑

i=–m

ai
(Dα

ξG
G

)i

, ()

where G = G(ξ ) satisfies (). By Balancing the order between the highest order derivative
term and nonlinear term in (), we can obtain m = . So we have

U(ξ ) = a + a
(Dα

ξG
G

)
+ a

(Dα
ξG
G

)

+ a–
(Dα

ξG
G

)–

+ a–
(Dα

ξG
G

)–

. ()

Substituting () into (), using (), and collecting all the terms with the same power
of (Dα

ξG)iGj together, equating each coefficient to zero, yields a set of algebraic equations.
Solving these equations with the aid of a symbolic computation program, yields the fol-
lowing results.
Case :

a– = kα
(
–e + ee

)
, a– = , a = , a = ,

a =
kαe ± √

–kαe – kαcα – kαee
kα

.

Case :

a– = , a– = , a = , a = –kα ,

a =
kαe ± √

–kαe – kαcα – kαee
kα

.

Substituting the results above into (), and combining with () we can obtain a series
of exact solutions in the forms of the Jacobi elliptic functions for (). For example, from
Case  we get the following exact solutions.
Family : when e =m, e = –( +m), e = ,

u(x, t) =
–kα( +m)± √

–kα( +m) – kαcα

kα

– kα
(
 +m)[cn(

ξα

�( + α)

)
ds

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e = –m, e = m – , e =  –m,

u(x, t) =
kα(m – )± √

–kα(m – ) – kαcα + kαm( –m)
kα

– kα
[
sn

(
ξα

�( + α)

)
dc

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
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Family : when e = –, e =  –m, e =m – ,

u(x, t) =
kα( –m)± √

–kα( –m) – kαcα + kα(m – )
kα

– kα
[
sn

(
ξα

�( + α)

)
cd

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e = , e =  –m, e =  –m,

u(x, t) =
kα( –m)± √

–kα( –m) – kαcα + kα(m – )
kα

– kαm
[
dc

(
ξα

�( + α)

)
ns

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e =m(m – ), e = m – , e = ,

u(x, t) =
kα(m – )± √

–kα(m – ) – kαcα – kαm(m – )
kα

– kα
[
cs

(
ξα

�( + α)

)
nd

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e = , e = –(m + ), e =m,

u(x, t) =
–kα(m + )± √

–kα(m + ) – kαcα – kαm

kα

– kα
[
sd

(
ξα

�( + α)

)
nc

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
From Case  we can also get some exact solutions expressed in the forms of the Jacobi

elliptic functions for (), which are omitted here.

3.2 Space-time fractional BBM equation
Consider the space-time fractional BBM equation

Dα
t u + uDα

x u +Dα
x u –μDα

t
(
Dα

x u
)
= ,  < α ≤ , ()

which is a variation of the following BBM equation of integer order []:

ut + uux + ux –μuxxt = . ()

Suppose u(x, t) =U(ξ ), where ξ = ct + kx+ ξ, k, c, ξ are all constants with k, c �= . Then
similar to the process of ()-(), () can be turned into the following form:

cαDα
ξU + kαUDα

ξU + kαDα
ξU –μcαkαDα

ξ U = . ()
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Suppose that the solution of () can be expressed by

U(ξ ) =
m∑

i=–m

ai
(Dα

ξG
G

)i

, ()

where G = G(ξ ) satisfies (). By Balancing the order between the highest order derivative
term and nonlinear term in (), we can obtain m = . So we have

U(ξ ) = a + a
(Dα

ξG
G

)
+ a

(Dα
ξG
G

)

+ a–
(Dα

ξG
G

)–

+ a–
(Dα

ξG
G

)–

. ()

Substituting () into (), using (), and collecting all the terms with the same power
of (Dα

ξG)iGj together, equating each coefficient to zero, yields a set of algebraic equations.
Solving these equations yields the following two groups of values.
Case :

a– = μcαkα
(
e – ee

)
, a– = ,

a = , a = , a = –
kα + μcαkαe + cα

kα
.

Case :

a– = , a– = , a = , a = μcαkα , a = –
kα + μcαkαe + cα

kα
.

Substituting the results above into (), and combining with () we can obtain a series
of exact solutions in the forms of the Jacobi elliptic functions for ().
From Case  we get the following exact solutions.
Family : when e =m, e = –( +m), e = ,

u(x, t) = –
kα – μcαkα( +m) + cα

kα

+ μcαkα
(
 +m)[cn(

ξα

�( + α)

)
ds

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e = –m, e = m – , e =  –m,

u(x, t) = –
kα + μcαkα(m – ) + cα

kα

+ μcαkα

[
sn

(
ξα

�( + α)

)
dc

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e = –, e =  –m, e =m – ,

u(x, t) = –
kα + μcαkα( –m) + cα

kα

+ μcαkα

[
sn

(
ξα

�( + α)

)
cd

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
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Family : when e = , e =  –m, e =  –m,

u(x, t) = –
kα + μcαkα( –m) + cα

kα

+ μcαkαm
[
dc

(
ξα

�( + α)

)
ns

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e =m(m – ), e = m – , e = ,

u(x, t) = –
kα + μcαkα(m – ) + cα

kα

+ μcαkα

[
cs

(
ξα

�( + α)

)
nd

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
Family : when e = , e = –(m + ), e =m,

u(x, t) = –
kα – μcαkα(m + ) + cα

kα

+ μcαkα

[
sd

(
ξα

�( + α)

)
nc

(
ξα

�( + α)

)]–

, ()

where ξ = ct + kx + ξ.
From Case  we can also get some Jacobi elliptic function solutions for (), which are

omitted here.

Remark  The Jacobi elliptic function solutions ()-() and ()-() are new exact
solutions for the space-time fractional KdV equation and the space-time fractional BBM
equation respectively to the best of our knowledge.

3.3 Space-time fractional (2 + 1)-dimensional breaking soliton equations
Consider the following space-time fractional ( + )-dimensional breaking soliton equa-
tions:{

∂αu
∂tα + a ∂αu

∂xαyα + au ∂αv
∂xα + a ∂αu

∂xα v = ,
∂αu
∂yα = ∂αv

∂xα ,
 < α ≤ ,a �= , ()

where the contained fractional derivative is the modified Riemann-Liouville derivative.
The corresponding integer order equation to () can be found in [, ]. Now we

will apply the described method in Section  to solve (). To begin with, we suppose
u(x, y, t) =U(ξ ), v(x, y, t) = V (ξ ), where ξ = ct + kx + ky + ξ, k, k, c, ξ are all constants
with k,k, c �= . Then similar to the process of ()-(), () can be turned into the fol-
lowing form:

{
cαDα

ξU + akα kα
Dα

ξ U + akα
 UDα

ξV + akα
 VDα

ξU = ,
kα
Dα

ξU = kα
 Dα

ξV .
()

http://www.advancesindifferenceequations.com/content/2014/1/228
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Suppose that the solution of () can be expressed by{
U(ξ ) =

∑m
i=–m

ai(G
′

G )i,
V (ξ ) =

∑m
i=–m

bi(G
′

G )i,
()

where G = G(ξ ) satisfies (). By balancing the order between the highest order derivative
term and nonlinear term in (), we can obtain m =m = . So we have⎧⎨⎩U(ξ ) = a + a(

Dα
ξ G
G ) + a(

Dα
ξ G
G ) + a–(

Dα
ξ G
G )– + a–(

Dα
ξ G
G )–,

V (ξ ) = b + b(G
′

G ) + b(G
′

G ) + b–(
Dα

ξ G
G )– + b–(

Dα
ξ G
G )–.

()

Substituting () into (), using (), and collecting all the terms with the same power
of (Dα

ξG)iGj together, equating each coefficient to zero, yields a set of algebraic equations.
Solving these equations yields

a = a, a = , a = –


kα , a– = , a– = ,

b = –
–akα kα

 e + cα + aakα


akα


, b = ,

b = –


kα
 k

α
 , b– = , b– = ,

where a is an arbitrary constant.
Substituting the results above into (), and combining with () we can obtain a series

of exact solutions in the forms of the Jacobi elliptic functions for ().
Family : when e =m, e = –( +m), e = ,⎧⎨⎩u(x, y, t) = a – 

k
α
 [cn( ξα

�(+α) )ds(
ξα

�(+α) )]
,

v(x, y, t) = –akα kα
 (+m

)+cα+aakα


akα


– 
k

α
 kα

 [cn(
ξα

�(+α) )ds(
ξα

�(+α) )]
,

()

where ξ = ct + kx + ky + ξ.
Family : when e = –m, e = m – , e =  –m,⎧⎨⎩u(x, y, t) = a – 

k
α
 [sn( ξα

�(+α) )dc(
ξα

�(+α) )]
,

v(x, y, t) = ––akα kα
 (m

–)+cα+aakα


akα


– 
k

α
 kα

 [sn(
ξα

�(+α) )dc(
ξα

�(+α) )]
,

()

where ξ = ct + kx + ky + ξ.
Family : when e = –, e =  –m, e =m – ,⎧⎨⎩u(x, y, t) = a – 

k
α
 m[sn( ξα

�(+α) )cd(
ξα

�(+α) )]
,

v(x, y, t) = ––akα kα
 (–m

)+cα+aakα


akα


– 
k

α
 kα

m[sn( ξα

�(+α) )cd(
ξα

�(+α) )]
,

()

where ξ = ct + kx + ky + ξ.
Family : when e = , e =  –m, e =  –m,⎧⎨⎩u(x, y, t) = a – 

k
α
 [dc( ξα

�(+α) )ns(
ξα

�(+α) )]
,

v(x, y, t) = ––akα kα
 (–m

)+cα+aakα


akα


– 
k

α
 kα

 [dc(
ξα

�(+α) )ns(
ξα

�(+α) )]
,

()

where ξ = ct + kx + ky + ξ.
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Family : when e =m(m – ), e = m – , e = ,

⎧⎨⎩u(x, y, t) = a – 
k

α
 [cs( ξα

�(+α) )nd(
ξα

�(+α) )]
,

v(x, y, t) = ––akα kα
 (m

–)+cα+aakα


akα


– 
k

α
 kα

 [cs(
ξα

�(+α) )nd(
ξα

�(+α) )]
,

()

where ξ = ct + kx + ky + ξ.
Family : when e = , e = –(m + ), e =m,

⎧⎨⎩u(x, y, t) = a – 
k

α
 ( –m)[sd( ξα

�(+α) )nc(
ξα

�(+α) )]
,

v(x, y, t) = –akα kα
 (m

+)+cα+aakα


akα


– 
k

α
 kα

 ( –m)[sd( ξα

�(+α) )nc(
ξα

�(+α) )]
,

()

where ξ = ct + kx + ky + ξ.

Remark  We note that the Jacobi elliptic function solutions established in ()-() for
the space-time fractional ( + )-dimensional breaking soliton equations are new exact
solutions so far in the literature.

Remark  Combining with other general solutions of the Jacobi elliptic equation ()
where e, e, e taken different values, one can obtain abundant different exact solutions
from those listed above for the space-time fractional KdV equation, the space-time frac-
tional BBM equation, and the space-time fractional ( + )-dimensional breaking soliton
equations, which are omitted here for the sake of simplicity.

4 Conclusions
In this paper, we have proposed a new approach for seek exact solutions of fractional par-
tial differential equations in the sense of themodified Riemann-Liouville derivative. Based
the fractional Jacobi elliptic equation, exact traveling wave solutions in the forms of the
Jacobi elliptic functions can be obtained for fractional partial differential equations. For
illustrating the validity of thismethod, we apply it to seek exact solutions for two fractional
equations: the space-time fractional KdV equation, the space-time fractional BBM equa-
tion, and the space-time fractional ( + )-dimensional breaking soliton equations. As a
result, a series of explicit solutions expressed in the Jacobi elliptic functions for them are
successfully foundwith the aid of symbolic computation program. Being concise and pow-
erful, we note that this method can also be applied to solve many other fractional partial
differential equations arising in mathematical physics.
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