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Abstract
In this article, the authors study analytic and numerical solutions of nonlinear
diffusion equations of Fisher’s type with the help of classical Lie symmetry method.
Lie symmetries are used to reduce the equations into ordinary differential equations
(ODEs). Lie group classification with respect to time dependent coefficient and
optimal system of one-dimensional sub-algebras is obtained. Then sub-algebras are
used to construct symmetry reduction and analytic solutions. Finally, numerical
solutions of nonlinear diffusion equations are obtained by using one of the
differential quadrature methods.
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1 Introduction
Consider the nonlinear diffusion equation

∂u
∂t

=D
∂u
∂x

+ g(u). ()

When g(u) = αu( – u), () stands for the Fisher equation, put forward by Fisher [] as a
model for the spatial and temporal propagation of a viral gene in an infinite medium. This
equation also expresses a one-dimensional reaction-diffusion model for the evolution of
the infected population. The equation is defined by

∂u
∂t

=
∂u
∂x

+ αu( – u) ()

in which α >  is a parameter. Kawahara andTanaka [] found an exact solution describing
the coalescence of two traveling wave fronts of (). Applications of traveling wave fronts
appear in biology, chemistry, and medicine []. Such wave fronts were studied by Fisher
for the first time in s by considering ().
The Fisher equation () appears in chemical kinetics [], in logistic population growth

models [], autocatalytic chemical reactions, branching Brownian motion processes,
flame propagation, and neurophysiology. The reaction-diffusion equation () also ex-
presses amodel equation for the evolution of a neutron population in a nuclear reactor []
and also arises in the study of chemical wave propagation []. This equation includes the
effects of linear diffusion via uxx and nonlinear local multiplication or reaction via u(–u).
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There is a large cycle of works on mathematical properties and discussion of the Fisher
equation in the literature. Larson [], Kawahara and Tanaka [], and Brazhnik and Tyson
[] provided excellent summaries of the Fisher equation. Ablowitz and Zepetella [] gave
the presentation of explicit solutions of the Fisher equation for a special wave speed. For
the generalized the Fisher equation, Wang [] presented the exact and explicit solitary
wave solutions. ThenWazwaz and Gorguis [] considered an analytic study of the Fisher
equation by using the Adomian decomposition method. But it was not before  when
numerical solutions of the Fisher equation were available in the literature. Gazdag and
Canosa [] were the first to study numerical solutions of the Fisher equation with a
pseudo-spectral approach. Afterwards, a lot of researchers have studied numerical so-
lutions on the Fisher equation. Hagstrom and Keller [] presented asymptotic boundary
conditions by using a centered finite-difference algorithm. Afterwards, Evans and Sahimi
[] used an alternating group explicit iterative method to solve () and obtained satisfac-
tory results, of a qualitatively similar nature. The numerical scheme considered in [] is
quite complicated and it causes unexpected high-frequency oscillations, which must be
filtered out at each time step. Next, Parekh and Puri [] and Twizell et al. [] developed
implicit and explicit finite differences algorithms for numerically solving the Fisher equa-
tion. Then Tang andWeber [] proposed a Galerkin finite element method. Mickens []
put forward a best finite-difference scheme for the Fisher equation. Afterwards, Garey and
Shen [] used a least-squares finite element method and Qiu and Sloan [] used a mov-
ingmeshmethod for numerical solution of the Fisher equation. Rizwan [] compared the
nodal integral method and non-standard finite-difference schemes, and Khaled [] pro-
posed the Sinc collocation method. Daniel et al. [] proposed a pseudo-spectral method
for the numerical solution of the Fisher equation.Mittal andKumar [] studied the Fisher
equation by applying wavelet Galerkin method, while Jiwari et al. [–] studied nu-
merical solutions of some nonlinear evolution equations by using differential quadrature
method. Finally, for numerical solutions of the nonlinear Fisher reaction-diffusion equa-
tion, Mittal and Jain [] proposed a numerical method, based on collocation of modified
cubic B-splines over finite elements.
The purpose of this paper is to present analytic and numerical solutions via symmetry

reductions of nonlinear diffusion equations of Fisher’s type defined as:
F: Fisher’s equation

ut – uxx – αu( – u) = ; ()

F: Fisher’s type equation

ut. – uxx – u( – u) = ; ()

F: Fisher’s type equation

ut. – uxx – u(u – a)( – u) =  ()

in which a is a parameter.
Lie symmetries are used to reduce the equations to ordinary differential equations

(ODEs). In the next section, lie group classification with respect to time dependent co-
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efficient and optimal system of one-dimensional sub-algebras is obtained. Then, in Sec-
tion , sub-algebras are used to construct symmetry reduction and analytic solutions. In
Section , numerical solutions of nonlinear diffusion equations are obtained by using poly-
nomial differential quadrature method. Finally, in Section , absolute, root mean square
(RMS), and L∞ errors are calculated.

2 Method of Lie symmetries
In this section, we recall the general procedure for determining symmetries for any system
of partial differential equation. To begin, let us consider that the general case of a nonlin-
ear system of partial differential equations of order n in p-independent and q-dependent
variables is given as a system of equations,

�v
(
x,u(n)

)
= , v = , . . . , l. ()

This entails x = (x, . . . ,xp), u = (u, . . . ,uq), and the derivatives of u with respect to x up
to n, where u(n) expresses all the derivatives of u of all orders from  to n. We consider a
one-parameter Lie group of infinitesimal transformation acting on the independent and
dependent variables of the system ()

(x∗)i = xi + sξ i(x,u) +O
(
s

)
, i = , . . . ,p,

(u∗)j = uj + sηj(x,u) +O
(
s

)
, j = , . . . ,q,

()

where s is the parameter of transformation and ξ i, ηj are infinitesimals of transformation
for the independent and dependent variables, respectively. The invariance of the system
() under the infinitesimal transformation leads to the invariance conditions

p(n)r
[
�v

(
x,u(n)

)]
= , v = , . . . , l whenever �v

(
x,u(n)

)
= , ()

where p(n)r is called the nth-order prolongation of infinitesimal generator given by

p(n)r = v +
q∑

α=

∑
φj

α

(
x,u(n)

)
∂uα

j , ()

where j = (j, . . . , jk),  ≤ jk ≤ p,  ≤ k ≤ n, and the sum is over all orders of j. If j = k the
coefficients φα

j of ∂uα
j will only depend on kth- and lower-order derivatives of u;

φj
α

(
x,u(n)

)
=Dj

(
φα –

p∑
i=

ξ iuα
i

)
+

p∑
i=

ξ iuα
j,i, ()

where uα
i =

∂uα

∂xi and uα
j,i =

∂uα
j

∂xi .
One of themost important properties of these infinitesimal symmetries is that they form

a Lie algebra under the usual Lie bracket.

3 Polynomial differential quadrature method
Differential quadrature method is a numerical technique to find the numerical solution of
differential equations. The technique is used for the discretization of the spatial deriva-
tives. The polynomial differential quadrature discretization of the first and the second
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derivatives at a point xi is given by the following equations:

ux(xi, t) =
N∑
j=

aiju(xj, t), uxx(xi, t) =
N∑
j=

biju(xj, t), ()

where aij and bij express the weighting coefficients [], i = , , . . . ,N . The following basis
functions are used to obtain the weighting coefficients:

gk(x) =
L(x)

(x – xk)L()(xk)
, k = , , . . . ,N , ()

where

L(x) = (x – x)(x – x) · · · (x – xN ), ()

L()(xi) =
N∏

k=,k �=i
(xi – xk) ()

when x �= xi and then

gk(x) = xk , k = , , . . . ,N ()

since both test functions given in () and () span the problem domain. The off-diagonal
weighting coefficients for the first-order derivative are determined by using the set of ba-
sis functions given in () and the off-diagonal weighting coefficients of the first-order
derivative are found as []

aij =
L()(xi)

(xi – xj)L()(xj)
, k = , , . . . ,N , i �= j. ()

The set of basis functions given in () are used to find the following diagonal weighting
coefficients:

aii = –
N∑

j=,j �=i
aij, i = , , . . . ,N . ()

In the same way the weighting coefficients of the second-order derivative are derived by
the same basis functions and the weighting coefficients are found as []

bij = aij
(
aii –


xi – xj

)
, i, j = , , . . . ,N , i �= j, ()

bii = –
N∑

j=,j �=i
bij, i = , , . . . ,N . ()

Similarly, Shu [] proposed the weighting coefficients of higher-order derivatives in the
explicit form

w(r)
ij = r

[
aijw(r–)

ii –
w(r–)
ii

xi – xj

]
, for i �= j, i, j = , , . . . ,N ; r = ,, . . . ,N – , ()
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w(r)
ii = –

N∑
j=,j �=i

w(r)
ij , for i = j, ()

where aij and w(r)
ij are the weighting coefficients of the first-order derivative and rth-order

derivative, respectively.

4 Lie classical analysis for nonlinear diffusion Fisher’s type equations
In this section, we study the infinitesimal transformations and reductions by one-
dimensional sub-algebras of ()-() by applying the classical Lie symmetry method []
one by one. Consider the one-parameter group of infinitesimal transformations in (x, t,u)
given by

x∗ = x + εξ (x, t,u) +O(ε),

t∗ = t + ετ (x, t,u) +O(ε),

u∗ = u + εη(x, t,u) +O(ε),

()

where ε is the group parameter. The functions ξ , τ , η are the infinitesimals of the trans-
formations for the variables x, t, and u, respectively. We shall denote the infinitesimals for
ut , uxx by ηx, ηxx. The infinitesimals are as follows:

ηx ≡ (η – ξux – τut)x + ξuxx + τutx,

ηxx ≡ (η – ξux – τut)xx + ξuxxx + τutxx.
()

Using these various extensions, the infinitesimal criterion for the invariance of ()-() un-
der the group () is given by

VH|H= ≡ , ()

whereH = (x∗, t∗, v∗, vx∗ , vt∗ , vx∗x∗ ) and v = θ (x∗, t∗) are also solutions of ()-(). In (), the
prolongation of the tangent vector field V is given by

V = ξ
∂

∂x
+ τ

∂

∂t
+ ηx ∂

∂ux
+ ηt ∂

∂ut
+ ηxx ∂

∂uxx
+ · · · . ()

Now, substitute () and () into (). Then we collect together the coefficients of u, ux,
ut , uxx, utt and set all of them to zero. Finally, we get a system of linear partial differential
equations from which we can find ξ , τ , and η in practice.
Next we will use the above method to find the Lie symmetry group of the Fisher type

equations ()-(). The prolongation of the tangent vector field of () is given by

V = ξ
∂

∂x
+ τ

∂

∂t
+ ηx ∂

∂ux
+ ηt ∂

∂ut
+ ηxx ∂

∂uxx
+ ηtt ∂

∂utt
. ()

After substituting () and () into (), we have

ηt – ηxx – η + uη = . ()
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Now, substituting () in (), we get a system of linear partial differential equations. We
set all the coefficients of u, ux, ut , uxx to zero. Then we obtain

ξ = a, τ = b, η = ,

where a and b are arbitrary constants. The associated vector fields for the one-parameter
Lie group of infinitesimal transformations are V and V as given by

V =
∂

∂x
, V =

∂

∂t
.

Firstly, we construct an optimal system to classify the group-invariant solutions of () and
the problem of finding an optimal subgroup is equivalent to that of finding an optimal
system of sub-algebras. Here, by using the method presented in [], we will construct
an optimal system of one-dimensional sub-algebras of (). The general one-parameter
group of symmetries can be obtained by considering the linear combination V = aV +
aV of given vector fields. But the explicit formulas for the above transformations are
very complicated. Factually, they can be expressed uniquely in the form

g = exp(εV) + exp(εV). ()

Our task is to simplify as many of the coefficients εi, i = ,  as possible though judicious
applications of adjoint maps to V . By taking a �= , a = , we have V + aV.

4.1 Reductions by one-dimensional sub-algebras
Case : Thusmaking use of this group transformation, the similarity variable and similarity
solution are given by

ζ = x – ct, u(x, t) = F(ζ ). ()

After substituting these similarity variables in (), the equation reduced into ordinary dif-
ferential equation (ODE) given by

–cF ′(ζ ) – F ′′(ζ ) – αF(ζ )
(
 – F(ζ )

)
= . ()

The exact solution corresponding to this ODE is given by

c = –

√

α√

, F(ζ ) =



–


tanh

(
–c +




√
αζ

)
+


tanh

(
–c +




√
αζ

)

, ()

where c is a constant.
Thus, the exact solution of Fisher equation () is given by

u(x, t) =


–


tanh

(
–c +




√
α(x – ct)

)
+


tanh

(
c +




√
α(x – ct)

)

. ()

In this similar way, we can apply the Lie classical method to () and () and can study the
exact solutions of these equations.
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Case : Now, by applying the Lie classical method to (), the following vector fields are
obtained:

V =
∂

∂x
, V =

∂

∂t
.

The optimal system of these vector fields is

(i) V + aV,

where a is an arbitrary constant.

(ii) V.

The similarity variable and similarity solution corresponding to the basic vector field V +
aV are given by

ζ = x – lt, u(x, t) = F(ζ ),

where l = 
a
, a �= . On using this similarity variable and similarity solution into (), this

equation reduces to

–lF ′(ζ ) – F ′′(ζ ) – F(ζ )
(
 – F(ζ )

)
= . ()

The solution of the above ODE is given by

l =
√

, F(ζ ) =



–


tanh

(
c +




√
ζ

)
. ()

Thus, the exact solution of the Fisher equation () is given by

u(x, t) =


–


tanh

(
c +




√

(
x –

√

t
))

, ()

where c is a constant.
Corresponding to the basic vector field V in the optimal system, we can obtain only a

constant solution.
Case : After utilizing the Lie classical method for (), the following vector fields are

obtained:

V =
∂

∂x
, V =

∂

∂t
.

The optimal systems of these vector fields contain the following sub-algebras:

(i) V + aV,

where a is an arbitrary constant.

(ii) V.
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For the sub-algebra, V + aV, the similarity variable and similarity solution are

ζ = x –mt, u(x, t) = F(ζ ), wherem =

a

,a �= .

Using these similarity variables in the nonlinear diffusion equation (), the reduced ODE
is

–mF ′(ζ ) – F ′′(ζ ) – F(ζ )
(
 – F(ζ )

)(
F(ζ ) – a

)
= . ()

The exact solution of the above ODE is given as

m =
√

( + a), F(ζ ) =



+


a +

(


–


a
)
tanh

(
c +




√
(– + a)ζ

)
, ()

where c is an arbitrary constant.
Now, the exact solution of the nonlinear diffusion equation () is given by

u(x, t) =


+


a +

(


–


a
)
tanh

(
c +




√
(– + a)(x –mt)

)
. ()

For the sub-algebra V, only a constant can be obtained.

5 Comparative study of exact and numerical solutions of Fisher’s type
equations

In this section, a comparative study of exact and numerical solutions is made by finding a
numerical solution of the equationswith the help of the polynomial differential quadrature
method. For this purpose, the exact solutions obtained in Section  are used for initial and
boundary conditions to find the numerical solution by polynomial differential quadrature
method (PDQM). Discretizing the spatial derivatives of equations ()-() by using PDQM
at the point xi, we have

dui
dt

=
N∑
j=

bijuj + αui( – ui), i = , , . . . ,N , ()

dui.
dt

=
N∑
j=

bijuj + ui ( – ui), i = , , . . . ,N , ()

dui.
dt

=
N∑
j=

bijuj + ui( – ui)(ui – a), i = , , . . . ,N , ()

where α, a are parameters, bij areweighting coefficients of the second-order partial deriva-
tive and ui = u(xi, t). Equations ()-() are systems of first-order nonlinear differential
equations. The initial and boundary conditions are taken from the analytic solutions ob-
tained by Lie symmetry method in Section . Finally, the systems of initial and boundary
value problems are solved by Pike and Roe’s fourth-stage RK [].
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5.1 Numerical experiments and discussion
In this subsection, three particular numerical examples are considered with fixed values
of the arbitrary constants occurring in the solutions of ()-() and numerical solutions are
obtained by using the polynomial differential quadraturemethod. Thewhole computation
work is done by the MATLAB and DEV C++ software. Absolute errors L∞, root mean
square error (RMS), and L are computed according to the following formulas:

L∞ – Error = max
≤i≤n

|ei|, RMS–Error =

( n∑
i=

ei
n

)/

, and

L – Error =

( n∑
i=

ei

)/

,

where ei = (ui –Ui), ui are approximated solutions and Ui are exact solutions.

Example  Consider () over the domain [, ] with the following initial conditions:

u(x, ) =


–


tanh

(
–c +




√
α(x)

)
+


tanh

(
c +




√
α(x)

)

and boundary conditions:

u(, t) =


–


tanh

(
–c +




√
α(–ct)

)
+


tanh

(
c +




√
α(–ct)

)

,

u(, t) =


–


tanh

(
–c +




√
α( – ct)

)
+


tanh

(
c +




√
α( – ct)

)

,

where c = –
√

α√


and c is an arbitrary constant.

The exact solution of the equation is taken from (). Numerical solutions in the form
of errors of the example are given in Table . The table shows that the errors are small
and negligible. Figure  compares the numerical and exact solutions in D form and it is
concluded that the solutions are very similar.

Example  In this example, we have considered the Fisher equation () over the domain
[, ] with the following initial conditions:

u(x, t) =


–


tanh

(
c +




√
(x)

)

Table 1 L∞, RMS, and L2 errors of Example 1 at different times t and for different constants

t c3 = 1 c3 = 3

L∞ RMS L2 L∞ RMS L2
0.2 5.659E–06 6.500E–06 1.578E–05 1.362E–07 3.685E–08 1.801E–05
0.5 6.306E–06 7.278E–06 1.547E–05 1.581E–07 4.278E–08 1.800E–05
1.0 7.457E–06 8.691E–06 1.489E–05 2.026E–07 5.485E–07 1.798E–05
3.0 1.175E–05 1.471E–05 1.165E–05 5.432E–07 1.472E–07 1.786E–05
5.0 1.175E–05 1.705E–05 7.666E–06 1.422E–06 3.870E–07 1.753E–05
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Figure 1 Numerical (left) and exact (right) solutions of Example 1 for c1 = α = 1 up to time t = 1.

Table 2 L∞, RMS, and L2 errors of Example 2 at different times t and for different constants

t α = 1, c1 = 1 α = 2, c1 = 1

L∞ RMS L2 L∞ RMS L2
0.2 2.105E–05 3.633E–03 4.475E–03 4.217E–05 1.903E–03 2.300E–03
0.5 1.736E–05 3.821E–03 4.444E–03 2.699E–05 1.401E–03 1.548E–03
1.0 1.103E–05 2.464E–03 2.690E–03 9.083E–06 4.226E–03 4.383E–03
3.0 3.788E–05 2.245E–05 2.277E–05 8.711E–05 9.755E–05 9.768E–05
5.0 2.777E–07 1.818E–07 1.823E–07 5.871E–06 3.486E–06 3.486E–06

Figure 2 Numerical (left) and exact (right) solutions of Example 2 for c2 = 1 up to time t = 1.

and boundary conditions:

u(, t) =


–


tanh

(
c +




√

(
–

√

t
))

,

u(, t) =


–


tanh

(
c +




√

(
 –

√

t
))

.

The exact solution of the equation is taken from (). Numerical solutions of the exam-
ple are given in Table  and Figure . Table  presents the errors at different times and
parameter values which are small and negligible. Figure  depicts a comparison of numer-
ical and exact solutions in D form and it is concluded that the solutions are very similar.
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Table 3 L∞, RMS, and L2 errors of Example 3 at different times t and for different constants

t a = 0.5, c3 = 1 a = 1.5, c3 = 1

L∞ RMS L2 L∞ RMS L2
0.2 2.412E–06 3.045E–06 7.903E–07 2.105E–05 5.726E–03 7.054E–03
0.5 2.227E–06 2.802E–06 7.225E–07 1.736E–05 5.340E–03 6.210E–03
1.0 1.936E–06 2.425E–06 6.193E–07 1.103E–05 3.055E–03 3.335E–03
3.0 1.039E–06 1.285E–06 3.196E–07 6.243E–05 3.717E–05 3.767E–05
5.0 5.228E–07 6.425E–07 1.577E–07 6.174E–07 3.750E–07 3.760E–07

Figure 3 Numerical (left) and exact (right) solutions of Example 3 for c3 = 1, a = 0.5 up to time t = 1.

Example  Consider the Fisher equation () over the domain [, ] with the following
initial and boundary conditions:

u(x, ) =


+


a +

(


–


a
)
tanh

(
c +




√
(– + a)(x)

)
,

u(, t) =


+


a +

(


–


a
)
tanh

(
c +




√
(– + a)(–mt)

)
,

u(, t) =


+


a +

(


–


a
)
tanh

(
c +




√
(– + a)( –mt)

)
.

In this example, the exact solution is taken from (). Table  and Figure  present the
numerical results of the example. Table  presents the errors at different times and param-
eter values which are small and negligible. Figure  depicts a comparison of the numerical
and exact solutions in D form and it is concluded that the solutions are very similar.

6 Conclusion
In this article, the authors studied analytic and numerical solutions of the Fisher type equa-
tions with the help of the classical Lie symmetry method and the polynomial differential
quadrature method. The Lie symmetry method is utilized to investigate the symmetries
and invariant solutions of the equations. By determining the transformation group un-
der which a given system is invariant, information about the invariants and symmetries of
that equation is obtained. This information, in turn, is used to determine similarity vari-
ables that reduce the number of independent variables. The vector fields of the optimal
system lead to a reduction of the nonlinear system of partial differential equations to or-
dinary differential equations. The infinitesimal generators in the optimal system are used
for reductions and exact solutions. Finally, the polynomial differential quadrature method

http://www.advancesindifferenceequations.com/content/2014/1/229
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is used to find the numerical solutions of the Fisher type equations with the help of ini-
tial and boundary conditions taken from the analytic solutions obtained by the classical
Lie symmetry method. It is concluded that the numerical solutions are in good agreement
with the analytical solutions. L∞, RMS, and L errors are calculated for each equationwith
particular values of arbitrary constants, which are small and negligible.
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