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Abstract
Integrability and linearizability of a Lotka-Volterra system in a neighborhood of the
singular point with eigenvalues 3 and any negative integer –q are studied completely.
By computing the singular point quantities and generalized period constants, we
obtain, respectively, the integrable and linearizable necessary conditions for this class
of systems. Then we apply some effective ways to prove the sufficiency. Here the
algorithms of finding necessary conditions are all linear and readily done using
computer algebra system such as Mathematica or Maple, and these play an
important role in solving completely the integrability and linearizability for the 3 : –q
resonant case.
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1 Introduction
This paper is concerned with integrability and linearizability for the following systems
with linear part of p : –q resonant saddle point type:

dx
dt

= px + P(x, y),
dy
dt

= –qy +Q(x, y) ()

where p,q ∈ Z+, x, y, t ∈ R, P and Q are polynomials. After a time scaling t → pt, system
() can be also expressed into the following form:

dx
dt

= x + P(x, y),
dy
dt

= –λy +Q(x, y) ()

where λ = q
p ∈ Q+. For the above systems, most of the known work was focused on some

special resonant, yet for the general case there are few results. For the  : – resonant
saddle point of quadratic systems, by computing the saddle numbers to get the necessary
conditions, the authors completely solved the integrability problem in [, ], and further-
more in [], mainly by annihilating the coefficients of the normal form and finding the
Darboux factor, the authors obtained the necessary and sufficient conditions ( cases)
for the linearizable systems. For the  : –n resonant cases, integrability and linearizability
of Lotka-Volterra systems were solved, respectively, in [] and []. As for the general case
 : –p, the authors of [] fully discussed the two problems by generalizing and expanding
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two methods already known: the power expansion of the first integral and the transfor-
mation of the saddle into a node. For the general case of the p : –q resonance, the authors
of [] studied systematically the mechanisms which lead to the origin being linearizable,
integrable or normalizable. Recently the authors in [] gave the center variety for families
of p : –q resonant polynomial vector fields, and moreover derived an algorithm for com-
puting the focus quantities. Especially there followed, for cubic Lotka-Volterra systems,
some good results, obtained in [–]. However, one is far from finishing the investigation
of all Lotka-Volterra systems.
Here we investigate completely Lotka-Volterra systems with any  : –q resonance as fol-

lows:

ẋ = x( + ax + ay),

ẏ = –y(q + bx + by),
()

where q is an arbitrary positive integer, for which only several particular cases were con-
sidered in [, ]. Based on the developed algorithm of a singular point quantity in [,
] and the generalized algorithm of period constants in [], we find all integrable and
linearizable necessary conditions. Furthermore we apply some effective ways mainly from
the known results, for example, the theory of Darboux first integrals to show sufficiency.
Thus we consider the following more general complex polynomial differential systems
with a resonant singular point:

dz
dT

= pz +
∞∑
k=

Zk(z,w) = Z(z,w),

dw
dT

= –qw –
∞∑
k=

Wk(z,w) = –W (z,w),

()

and similarly, after a time scaling T → pT , the above system () can be also expressed into
the following form:

dz
dT

= z +
∞∑
k=

Zk(z,w) = Z(z,w),

dw
dT

= –λw –
∞∑
k=

Wk(z,w) = –W (z,w),

()

where z,w,T ∈C, p,q ∈ Z+, (p,q) = , λ = q
p and Zk(z,w),Wk(z,w) are homogeneous poly-

nomials in (z,w), i.e., Zk =
∑

α+β=k aαβzαwβ ,Wk =
∑

α+β=k bαβwαzβ .
Obviously, one can see that: (i) If z,w,T ∈ R and the coefficients are all real, we have

system (), that is, system (). (ii) If p = q =  and the coefficients of system () satisfy the
conjugate condition, i.e.,

aαβ = bαβ , α ≥ ,β ≥ ,α + β ≥ , ()

then by means of the transformation

z = x + yi, w = x – yi, T = it, i =
√
–,
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system () can be transformed into its concomitant system, i.e., the real planar differential
system

dx
dt

= –y + P(x, y),
dy
dt

= x +Q(x, y) ()

where x, y, t ∈R, P andQ are polynomials. For system (), many results concerning centers
and isochronous centers can be found in [–].
Let us first recall some basic definitions and results (also see [, ]).

Lemma . System () can be reduced to the normal form

dξ
dT

= pξ

(
 +

∞∑
i=

piUi

)
,

dη
dT

= –qη

(
 +

∞∑
j=

qiUi

)
, ()

where U = ξ qηp, by using a formal change of variables

ξ = z +
∞∑

k+j=

Akjzkwj, η = w +
∞∑

k+j=

Bkjwkzj, ()

where Aqi+,pi = Bpi+,qi = , i = , , . . . , p = q = , pi and qi are polynomials of aαβ , bαβ

with rational coefficients, and Akj, Bkj can be determined uniquely, for i, j = , , , . . . .

We write μ = τ = , μk = pk – qk , τk = ppk + qqk , k = , , , . . . .

Definition . For any positive integer k, μk is called the kth singular point quantity of
the origin of system (), and the origin of system () is called the generalized center, i.e.,
system () is integrable at the origin if μk = , i.e., pk = qk , k = , , , . . . .

Definition . For any positive integer k, τk are called the kth generalized period con-
stants of the origin of system (). And system () can be called linearizable at the origin if
τk = μk = , i.e., pk = qk = , k = , , , . . . .

Lemma . ([, ]) System () is linearizable at the origin if it is integrable at the origin and
there exists an analytic change of variables (), such that one of the two equations ξ̇ = pξ
and η̇ = –qη holds.

In the next section, we deduce a recursive formula to compute the singular point quan-
tities of system () and the integrable necessary conditions for system () are obtained. In
Section , we deduce also a recursive formula to compute generalized period constants of
the systems, and at the same time, all linearizable necessary conditions of the origin for
system () are obtained. In Section , the proofs of sufficient conditions are given com-
pletely.

2 Generalized center at the origin
First we discuss computational method of singular point quantities for system ().

http://www.advancesindifferenceequations.com/content/2014/1/23


Wang and Huang Advances in Difference Equations 2014, 2014:23 Page 4 of 15
http://www.advancesindifferenceequations.com/content/2014/1/23

Lemma . ([, ]) For system (), using the program of term by term calculations, we
can determine a formal power series,

F(z,w) = zqwp +
∞∑

α+β=p+q+

cαβzαwβ ()

where cqp = , cmq,mp =  for m = , , . . . , such that

dF
dT

∣∣∣∣
()

=
∞∑
m=

λm
(
zqwp)m+. ()

The relations between μi = pi – qi and λi (i = , , . . .) are as follows.

Lemma . Let p = q = , μ = λ = . If a positive integer l exists, such that

p = q, p = q, . . . , pl– = ql–, i.e. μ = μ = · · · = μl– = , ()

then

λ = λ = · · · = λl– = , λl = pqμl. ()

The converse case holds as well.

Remark  Similar to the proof procedure in [, ], we can obtain the above relation, thus
λl and pqμl are called algebraic equivalent, i.e., λl ∼ pqμl [, ]. Further, if z,w,T ∈ R

and the coefficients of system () are all real, namely it is just system (), for the p : –q
resonant focus number gk in [], then gk = λk , k = , , . . . . So we can apply directly the
above method to find the necessary conditions of integrability for solving the problem of
the generalized center.

Now we consider the real system ().

Theorem . For system (), using the program of term by term calculations, we can de-
termine a formal power series,

H(x, y) = xqy +
∞∑

α+β=q+

cαβxαyβ ()

such that

dH
dt

∣∣∣∣
()

=
∞∑
m=

λm
(
xqy

)m+ ()

where cq, = , cmq,m =  form = , , . . . , then ∀(α,β),when α 	= qβ (i.e., |α–(m+)q|+ |β–
(m + )| 	= ,m = , , . . .), cαβ is determined uniquely by the following recursive formula:

cαβ = –


α – qβ
[(
(α – )a – βb

)
cα–,β +

(
αa – (β – )b

)
cα,β–

]
()
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and for any positive integer m, λm is determined uniquely by the following recursive for-
mula:

λm =
[
(mq + q – )a – (m + )b

]
cmq+q–,m+

+
[
(m + )qa – (m + )b

]
cmq+q,m+; ()

in the above expressions, if α <  or β < , let cαβ = , and λm is the mth singular point
quantity of the origin of system ().

First we verify the integrability for Lotka-Volterra systems with the  : – and  : –
resonances, which have been studied in [, ], respectively.

Corollary . For q = , , the origin of system () is a generalized center if and only if the
following conditions are satisfied:

when q = ,

λ = –


a(a – b)(aa – ab – bb) = , ()

when q = ,

λ =


ab(a + b)(aa – ab – bb) = . ()

Proof By applying the recursive formulas, one can obtain the necessary conditions ()
and (). It is easily verified that the above conditions are identical to the corresponding
results in [, ]. The proof of these sufficient conditions will not be given any longer. �

Remark  For system (), according to Theorem ., we can get the recursive formulas
to compute the singular point quantities for investigating the generalized center for any
positive integer q. The integrability and linearizability for Lotka-Volterra systems with
 : –n or n : –, n ∈ N, resonances have been studied in [] completely, so we only need to
consider the case of q = K + , K +  (K = , , . . .).

For system (), we can compute the singular point quantities and obtain the following
result.

Theorem . The first  singular point quantities for the origin of system () are as fol-
lows:

when q = K + , K = , , . . . ,

λ = afqfK
K–∏
i=

[
(i – )a – b

] K–∏
i=

[
(i)a – b

]
,

λ = afqfK
K–∏
i=

[
(i – )a – b

] K–∏
i=

[
(i)a – b

]
, ()

λ = λ = · · · = λ = ,
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when q = K + , K = , , . . . ,

λ = afqfK
K–∏
i=

[
(i – )a – b

] K∏
i=

[
(i)a – b

]
,

λ = afqfK
K–∏
i=

[
(i – )a – b

] K∏
i=

[
(i)a – b

]
, ()

λ = λ = · · · = λ = ,

where

fq = qaa + (q – )ab – bb

and fK , fK , fK , fK are polynomials in a, a, b, b with the form as follows, respectively:

fK , fK �
K∑
i=

aib
K–i
 (αia + βib),

fK , fK �
K+q∑
i=

aib
K+q–i


(
γia + γiab + γiab


 + γiab


 + γib

)
,

where αi,βi,γij ∈ R, fK and fK are different for different αi, βi, similarly fK and fK for γij.
In the above expression of λl , we have already let λ = λ = · · · = λl– = , l = , , . . . , .

Then we have the following.

Theorem . (A) When q = K + , K = , , . . . , the origin of system () is a generalized
center if and only if one of the following conditions is satisfied:

(i) a = , ()

(ii)
K–∏
i=

[
(i – )a – b

]
= , ()

(iii)
K–∏
i=

[
(i)a – b

]
= , ()

(iv) fq = qaa + (q – )ab – bb = , ()

(v) fK = , fK = . ()

(B) When q = K + , K = , , . . . , the origin of system () is a generalized center if and
only if one of the following conditions is satisfied:

(I) a = , ()

(II)
K–∏
i=

[
(i – )a – b

]
= , ()

http://www.advancesindifferenceequations.com/content/2014/1/23
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(III)
K∏
i=

[
(i)a – b

]
= , ()

(IV) fq = qaa + (q – )ab – bb = , ()

(V) fK = , fK = . ()

Proof We have to find necessary conditions of the generalized center from the vanishing
of all first singular point quantities. We can let the first  singular point quantities in
equation () or () be zero. It is easy to obtain the above five necessary conditions.
Next, the sufficient conditions need to be proved. On the one hand, for the conditions

(), (), () and (), (), () will be proved sufficiency, respectively, in Section .
And furthermore, from Lemma ., the condition () or () is sufficient.
On the other hand, from equation (), i.e., fK = fK = , when ab =  holds, we can

get the two conditions

b = a =  or a = b = ,

however, the two conditions are included in condition () and (), (), respectively.
When ab 	=  holds, from fK = fK = , we can have the two constants r and s such
that b = ra and a = sb hold. And excluding the conditions which have been listed in
equations (), (), (), and (), we can get the only three groups of conditions

(ṽ) r = –


, s =

 – q
q

; or

r = –


, s = ; or r = K , s =


q + 

()

where q = K + , K = , , . . . .
By a similar discussion, from fK = fK = , we can get the only two groups of conditions

(Ṽ) r = –


, s =

 – q
q

; or r = –


, s = –




()

where q = K + , K = , , . . . .
However, the conditions (ṽ) and (Ṽ) will be proved sufficient, respectively, in Sec-

tion . �

Lemma . ([], Theorem C) System () is integrable if qa(a + b) = b(a + b).

3 Linearizability at the origin
Now, we discuss generalized isochronicity of the origin for system (), namely we figure
out all linearizable conditions of the system. First we introduce the algorithmof computing
the generalized period constants τi = ppi + qqi, i = , , . . . , which has been given in [].

Theorem . For system (), we can derive uniquely the following formal series:

f (x, y) = x +
∞∑

k+j=

ckjxkyj, g(x, y) = y +
∞∑

k+j=

dk,jykxj, ()

http://www.advancesindifferenceequations.com/content/2014/1/23
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where cqi+,i = di+,qi = , i = , , . . . , such that

df
dT

= f (x, y) +
∞∑
i=

p′
ix

qi+yi,
dg
dT

= –qg(x, y) –
∞∑
i=

qq′
iy

i+xqi ()

and when –k + jq 	=  (i.e., |k – qi– |+ |j–i| 	= , i = , , , . . .), ckj is determined by the
following recursive formula:

ckj =


 – k + jq
[(
(k – )a – jb

)
ck–,j +

(
ka – (j – )b

)
ck,j–

]
, ()

and when j + q – kq 	=  (i.e., |k – i – | + |j – qi| 	= , i = , , , . . .), dkj is determined by
the following recursive formula:

dkj =


j + q – kq
[(
(k – )b – ja

)
dk–,j +

(
kb – (j – )a

)
dk,j–

]
, ()

and for any positive integer i, p′
i and q′

i are determined by the following recursive formulas:

p′
i = i(qa – b)ciq,i +

[
(iq + )a – (i – )b

]
ciq+,i–, ()

q′
i = i(b – qa)di,iq +

[
(i + )b – (iq – )a

]
di+,iq–. ()

In the expressions (), (), (), and (), we have let c, = d, = , c, = d, = , and if
α <  or β < , we let aαβ = bαβ = cαβ = dαβ = .

The relations between pi, qi and p′
i, q′

i (i = , , . . .) are as follows.

Theorem . Let p = q = p′
 = q′

 = . If a positive integer l exists, such that

p = q = p = q = · · · = pl– = ql– = , ()

then

p′
 = q′

 = p′
 = q′

 = · · · = p′
l– = q′

l– = , pl = p′
l,ql = q′

l. ()

The converse also holds true.

The algorithm of Theorem . and Theorem . gives a method to determine lineariz-
able systems and find the necessary conditions for system (). By applying the recursive
formulas, the authors of [] verify the linearizable conditions for Lotka-Volterra systems
with the  : – and  : – resonance, which have been studied in [, ], respectively.
Now we consider the linearizability by investigating the two former cases of generalized

center conditions, respectively, for q = K +  or K + , K = , , . . . .
Case (a): Consider the generalized center condition in one the of Cases (i), (ii), (iii), (ṽ),

and (I), (II), (III), (Ṽ). In fact, for the case of q = K + , if equation () or () or () or
() holds, putting expression into the recursive formulas in Theorem ., respectively, we
can always obtain the first pairs of coefficients of the normal form for the saddle point are
zero, for example

p = q = p = q = · · · = p = q = , ()

http://www.advancesindifferenceequations.com/content/2014/1/23
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at the same time, for the case of q = K + , if equation () or () or () or () holds,
there exist similar results. Therefore the above ones are judged as linearizable conditions
at the origin.
Case (b): Consider the generalized center conditions in Case (iv) and (IV). When (iv) or

(IV) holds, obviously we may consider only the case of ab 	= , from fq = qa(a + b) –
b(b +a) = , we can also have two constants r and s such that b = ra and a = sb hold.
And furthermore from equation () or (), we can get the only condition, s = +r–q

q , and
then putting it into the recursive formulas in Theorem ., from Theorem . we have the
first  pairs of coefficients of the normal form for the saddle point, which are as follows:

when q = K + ,

p = q =


qKq!
aqb




q–∏
i=–

(i – r),

p = q = · · · = p = q = ,

()

when q = K + ,

p = q =


qK+q!
aqb




q–∏
i=–

(i – r),

p = q = · · · = p = q = .

()

Obviously, all the above coefficients vanish if and only if
∏q–

i=– (i – r) = . Then we can
get the conditions

r =
i

, s =

 + r – q
q

, i = –,–,–, , , , . . . ,q – .

However, some conditions are included in condition (), () or (), (), excluding the
conditions, so we can get the only following conditions:

when q = K + ,

r =
i

, s =

 + r – q
q

, i = –,–, , , . . . ,q – ︸ ︷︷ ︸
j–,j=,,...,K

,q – , ()

when q = K + ,

r =
i

, s =

 + r – q
q

, i = –,–, , , . . . ,q – ,q – ︸ ︷︷ ︸
j–,j=,,...,K+

. ()

Theorem . For the origin of system ():
(A) when q = K +  (K = , , . . .), it is linearizable at the origin if and only if one of the

conditions () (), (), (), and () is satisfied;
(B) when q = K +  (K = , , . . .), it is linearizable at the origin if and only if one of the

conditions () (), (), (), and () is satisfied.

The necessary conditions of Theorem . are obvious, the proof of sufficient conditions
will be given in Section .

http://www.advancesindifferenceequations.com/content/2014/1/23
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4 The proof of sufficient conditions
In the process of proving the sufficient conditions in Theorems . and ., we will apply
several well-known results.

Lemma . ([]) The real system

ẋ = x + cx + cxy + cy, ẏ = –λy + dy ()

for λ is always linearizable if /λ /∈N.

From a =  in condition (i) or (I), we can apply Lemma ., so system () is linearizable
and also integrable.

Lemma. ([], TheoremD) For the real system ()with λ = q
 ∈Q+ and (q, ) = , if λ ∈Q

and q/ – b
a

= n ∈ N,  ≤ n < q/ +  hold, for arbitrary parameter λ, it is linearizable at
the origin.

If the condition (ii) or (II), namely equation () or () holds, we can apply Lemma .,
thus it is linearizable at the origin of system ().

Lemma . ([], Theorem E) For the real system () with λ = q
 >  and b

a
= r ∈ N∗, it is

linearizable at the origin if one of the following conditions holds:

(E) λ ∈ R\Q,  ≤ r < q/,

(E) λ ∈Q,  ≤ r < q/ – ,

(E) λ ∈Q, q/ –  < r < q/, q/ 	= r +


,

(E) λ =
q

= r +



,

b
a

=
q

.

If the condition (iii) or (III), namely equation () or () holds, we can apply (E) and
(E) in Lemma . except for the case of b = , however, for the case of b = , we can
also apply Lemma .. Therefore, under the condition (iii) or (III), it is linearizable at the
origin of system ().
Furthermore, we have the following.

Theorem . If b = –a, b = –a holds, there exists a change of coordinates which trans-
forms system () into u̇ = u, v̇ = –qv, namely,

u = x(q – ay + qax)–,

v = y(q – ay + qax)–;

thus system () is linearizable.

Theorem. For system (), if b = ra, a = sb, r = (j–)/, q = K +, s = (r–q+)/q,
j = , , , . . . ,K , K = , , . . . hold, it is linearizable at the origin.

http://www.advancesindifferenceequations.com/content/2014/1/23
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Proof When the above conditions hold, system () is of the following form:

ẋ = x +
 – K + j
 + K

bxy + ax,

ẏ = –( + K )y –


a(– + j)xy – by.

()

And there exists a linear change of coordinates: (u, v) = (+ 
ax+


+K by, y), which trans-

forms system () into the following form:

u̇ = –u –
 + K
 + K

buv + u,

v̇ = –( + K – j)v + ( – j)uv –
 + K – j
 + K

bv.
()

We note that the origin is sent to a node and

	 =
 + K – j


/∈N,

which ensures that the node of system () is linearizable by an analytic change of coor-
dinates (the Poincaré theorem, also see []), in fact, there exist

U(u, v) = u +
∞∑

α+β=

aαβuαvβ , V (u, v) = v +
∞∑

α+β=

bαβvαuβ ()

such that U̇ = –U and V̇ = –( + K – j)V , and we find

ξ =
x
U
, η = VU (j–)/

such that ξ̇ = ξ and η̇ = –(K + )η; system () is therefore linearizable at the origin. �

Theorem. For system (), if b = ra, a = sb, r = (j–)/, q = K +, s = (r–q+)/q,
j = , , , . . . ,K , K = , , . . . hold, it is linearizable at the origin.

Proof When the above conditions hold, system () is of the following form:

ẋ = x –
 + K – j
 + K

bxy + ax,

ẏ = –( + K )y – by +
( – j)


axy.

()

And there exists a linear change of coordinates: (u, v) = (+ 
ax+


+K by, y), which trans-

forms system () into the following form:

u̇ = –u –
 + K
 + K

buv + u,

v̇ = –( + K – j)v + ( – j)uv –
 + K – j
 + K

bv.
()

http://www.advancesindifferenceequations.com/content/2014/1/23
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We note that the origin is sent to a node and

	 =
 + K – j


/∈N,

which ensures that the node of system () is linearizable, and similar to the proof proce-
dure in Theorem ., one can see that system () is also linearizable at the origin. �

From Theorems ., ., . and (E) in Lemma ., one can see that if condition ()
or () holds, it is linearizable at the origin of system ().
Furthermore, we have the following.

Theorem . For system (), if b = ra, a = sb, r = –/, s = –/, q = K +, K = , , . . .
hold, it is linearizable at the origin.

Proof When the above conditions hold, system () is of the following form:

ẋ = x –


bxy + ax,

ẏ = –( + K )y +


axy – by.

()

And there exists a linear change of coordinates: (u, v) = (x,  + 
–K ax +


+K by), which

transforms system () into the following form:

u̇ =
( + K )


u –

 + K


uv +
( + K )
( – K )

au,

v̇ = ( + K )v +
( + K)
( – K)

auv – ( + K )v –
( + K )
( – K )

au
.

()

We note that the origin is sent to a node and

	 =
( + K )
 + K

/∈N,

which ensures that the node of system () is linearizable, and similar to the proof proce-
dure in Theorem ., one can see that system () is also linearizable at the origin. �

Theorem . For system (), if b = +K
 a, b = Ka, q = K + , K = , , . . . hold, it is

linearizable at the origin.

Proof When the above conditions hold, system () is of the following form:

ẋ = x +


 + K
bxy + ax,

ẏ = –(K + )y –Kaxy – by.
()

And there exists a linear change of coordinates: (u, v) = (x,  – K (+K )
–K–K ax + 

+K by),
which transforms system () into the following form:

u̇ =
 + K
 + K

u +
( + K)
 + K

uv +
 – K – K

 – K – K au
,
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v̇ = ( + K )v –
K ( + K )( + K )
 – K – K auv ()

–
K ( + K )( + K)
( – K – K)

au
 – ( + K )v.

We note that the origin is sent to a node and

	 =
( + K)( + K )

 + K
/∈N,

which ensures that the node of system () is linearizable, and similar to the proof proce-
dure in Theorem ., one can see that system () is also linearizable at the origin. �

Theorem. If qa = (–q)b, b = –a or r = –/, s = (–q)/q hold, there exist a first
integral M and a change of coordinates which transform system () into v̇ = –qv, namely,

M = xαy–
(
q + aqx + bqy + by

)β , α = –
q + 


,β =
q – 


,

v =
y√

q + aqx + bqy + by
,

()

and moreover system () is linearizable.

Obviously, applying Lemma ., we can prove the above theorem easily.

Theorem . For system (), if b = ra, a = sb, r = –/, q = K + , s = , K = , , . . .
hold, it is linearizable at the origin.

Proof When the above conditions hold, system () is of the following form:

ẋ = x( + ax + by) = X,

ẏ = –y
(
K +  –



ax + by

)
= Y .

()

For system (), we find an analytic integral factor in a neighborhood of the origin,

M(x, y) = xKy +
∞∑
i=

ui(x)yi, ()

such that

∂M
∂x

X +
∂M
∂y

Y +
(

∂X
∂x

+
∂Y
∂y

)
M = ,

where u(x) = u(x) = ,

u(x) = –
xK

( + ax)K+

[
( + ax)K+ – K+],

u(x) =
xK

( + ax)K+

K+∑
i=

a[i]xi,

http://www.advancesindifferenceequations.com/content/2014/1/23
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ui(x) = x
(+i)(+K )

 –( + ax)–(K+)(i+)–

× b
(∫

x–
(+i)(+K )

 ( + ax)(+i)(+K)(iui–(x) – xu′
i–(x)

)
dx

)
, i = , , . . . ,

where all a[i] ∈ R and the integral constants are all set to zero, then we can prove by induc-
tion that

ui(x) = xK ( + ax)–(K+)(i+)–
(K+)(i–)∑

j=

Aij(ax)j, Aij ∈R, i = , , . . . .

Andmoreover the system is integrable at the origin with the above integral factorM; then
we have

ξ = x–/(q+)y–/(q+)M/(q+)

such that ξ̇ = ξ , and we can apply Lemma ., so the system is linearizable. �

From Theorems ., ., ., and ., one can see that if condition (ṽ) or (Ṽ), namely
equation () or () holds, it is linearizable at the origin of system ().
Thus, the proofs of Theorems . and . have been completed.

Remark  For system (), in fact, if K = , namely the case of q = , , the conclusions of
Theorems . and . still hold. Thus we solve completely the integrability and lineariz-
ability of system ().
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