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Abstract
In the case where nonlinearities are superquadratic at infinity, we study the existence
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1 Introduction andmain result
We shall study the existence of ground state homoclinic orbits for the following damped
vibration system:

ü(t) +Mu̇(t) – L(t)u(t) +Hu
(
t,u(t)

)
= , t ∈R, (.)

where M is an antisymmetric N × N constant matrix, L(t) ∈ C(R,RN×N ) is a symmetric
matrix, H(t,u) ∈ C(R × R

N ,R) and Hu(t,u) denotes its gradient with respect to the u
variable.We say that a solution u(t) of (.) is homoclinic (to ) ifu(t) ∈ C(R,RN ) such that
u(t) →  and u̇(t) →  as |t| → ∞. If u(t) �≡ , then u(t) is called a nontrivial homoclinic
solution.
If M =  (zero matrix), then (.) reduces to the following second order Hamiltonian

system:

ü(t) – L(t)u(t) +Hu
(
t,u(t)

)
= , t ∈R. (.)

This is a classical equation which can describe many mechanic systems, such as a pen-
dulum. In the past decades, the existence and multiplicity of periodic solutions and ho-
moclinic orbits for (.) have been studied by many authors via variational methods; see
[–] and the references therein.
The periodicity assumption is very important in the study of homoclinic orbits for (.)

since periodicity is used to control the lack of compactness due to the fact that (.) is set
on all R. However, non-periodic problems are quite different from the ones described in
periodic cases. Rabinowitz and Tanaka [] introduced a type of coercive condition on the
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matrix L(t):

l(t) := inf|u|=
(
L(t)u,u

) → +∞ as |t| → ∞ (.)

and obtained the existence of homoclinic orbit for non-periodic (.) under the
Ambrosetti-Rabinowitz (AR) superquadratic condition:

 < μH(t,u) ≤ (
Hu(t,u),u

)
, ∀t ∈R,∀u ∈R

N\{},

whereμ >  is a constant, (·, ·) denotes the standard inner product inRN and the associated
norm is denoted by | · |.
We should mention that the case where M �= , i.e., the damped vibration system (.),

only a few authors have studied homoclinic orbits of (.); see [–]. Zhu [] considered
the periodic case of (.) (i.e., L(t) andH(t,u) are T-periodic in t with T > ) and obtained
the existence of nontrivial homoclinic solutions of (.). The authors [–] considered
the non-periodic case of (.): Zhang and Yuan [] obtained the existence of at least one
homoclinic orbit for (.) when H satisfies the subquadratic condition at infinity by using
a standard minimizing argument; By a symmetric mountain pass theorem and a general-
ized mountain pass theorem, Wu and Zhang [] obtained the existence and multiplicity
of homoclinic orbits for (.) when H satisfies the local (AR) superquadratic growth con-
dition:

 < μH(t,u) ≤ (
Hu(t,u),u

)
, ∀t ∈R,∀|u| ≥ r, (.)

whereμ >  and r >  are two constants. Notice that the authors [, ] all used the condi-
tion (.). Recently, Chen [, ] obtained infinitelymany homoclinic orbits for (.) when
H satisfies the subquadratic [] and asymptotically quadratic [] condition at infinity by
the following weaker conditions than (.):

(L) There is a constant β >  such that

meas
{
t ∈R : |t|–βL(t) < bIN

}
< +∞, ∀b > .

(L) There is a constant γ ≥  such that

l(t) := inf|u|=
(
L(t)u,u

) ≥ –γ , ∀t ∈R,

which were firstly used in []. It is not hard to check that the matrix-valued function
L(t) := (t sin t + )IN satisfying (L) and (L), but not satisfying (.).

We define an operator J :H(R,RN )→H(R,RN ) by

(Ju, v) :=
∫
R

(
Mu(t), v̇(t)

)
dt, ∀u, v ∈H(

R,RN)
.

SinceM is an antisymmetric N ×N constant matrix, J is self-adjoint on H(R,RN ). Let χ

denote the self-adjoint extension of the operator – d
dt + L(t) + J . We are interested in the

indefinite case:

(J) sup(σ (χ )∩ (–∞, )) <  < inf(σ (χ )∩ (,∞)).
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Let H̃(t,u) := 
 (Hu(t,u),u) –H(t,u). We assume the following.

(H) H(t,u) ∈ C(R×R
N ,R) and |Hu(t,u)| = o(|u|) as |u| →  uniformly in t.

(H) H(t,u)
|u| → +∞ as |u| → +∞ uniformly in t, and H(t,u) ≥ , ∀(t,u) ∈R×R

N .
(H) H̃(t,u) >  if u �= , and for any a,b >  we have

inf

{
H̃(t,u)
|u| : t ∈ R and u ∈ R

N with a≤ |u| < b
}
> .

(H) There are constants c, r >  and σ >  such that

|Hu(t,u)|σ
|u|σ ≤ cH̃(t,u) if |u| ≥ r,∀t ∈ R.

Now, our main result reads as follows.

Theorem . If (J), (L)-(L), and (H)-(H) hold, then (.) has a ground state homoclinic
orbit.

Remark . Although the authors [] have studied the superquadratic case of (.), it is
not hard to check that our superquadratic condition (H) is weaker than the condition (.)
(see Example .). Moreover, we obtain the existence of ground state homoclinic orbits of
(.), i.e., nontrivial homoclinic orbits with least energy of the action functional of (.).

Example . Let

H(t,u) = g(t)
(|u|p + (p – )|u|p–ε sin

(|u|ε/ε)),
where p > ,  < ε < p–  and g(t) >  is continuous. It is not hard to check that H satisfies
(H)-(H) but does not satisfy (.).

The following abstract critical point theorem plays an important role in proving our
main result. Let W be a Hilbert space with norm ‖ · ‖ and have an orthogonal decom-
position W = N ⊕ N⊥, N ⊂ W is a closed and separable subspace. There exists a norm
|V |ω that satisfies |v|ω ≤ ‖v‖ for all v ∈ N and induces a topology equivalent to the weak
topology of N on bounded subset of N . For u = v + z ∈ W =N ⊕N⊥ with v ∈ N , z ∈ N⊥,
we define |u|ω = |v|ω +‖z‖. Particularly, if (un = vn + zn) is ‖ · ‖-bounded and un |·|ω→ u, then
vn ⇀ v weakly in N , zn → z strongly in N⊥, un ⇀ v + z weakly inW (cf. []).
Let W = W– ⊕ W+, z ∈ W+ with ‖z‖ = . Let N := W– ⊕ Rz and W+

 := N⊥ =
(W– ⊕Rz)⊥. For R > , let

Q :=
{
u := u– + sz : s ∈R

+,u– ∈W–,‖u‖ < R
}

with P = sz ∈ Q, s > . We define

D :=
{
u := sz + z+ : s ∈R, z+ ∈W+

 ,
∥∥sz + z+

∥∥ = s
}
.
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For 	 ∈ C(W ,R), we define


 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩h :

[, ]× Q̄ �→W is | · |ω-continuous;
h(,u) = u and 	(h(s,u))≤ 	(u) for all u ∈ Q̄;
for any (s,u) ∈ [, ]× Q̄, there is a | · |ω-neighborhood
U(s,u) s.t. {U – h(t,u) : (t,u) ∈U(s,u) ∩ ([, ]× Q̄)} ⊂Wfin

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

whereWfin denotes various finite-dimensional subspaces ofW ,
 �= , since id ∈ 
.
We shall use the following variant weak linking theorem to prove our result.

Theorem A ([]) The family of C-functional {	λ} has the form

	λ(u) := J(u) – λK(u), ∀λ ∈ [, ].

Assume that
(a) K(u) ≥ , ∀u ∈W , 	 = 	;
(b) J(u) → ∞ or K(u) → ∞ as ‖u‖ → ∞;
(c) 	λ is | · |ω-upper semicontinuous, 	′

λ is weakly sequentially continuous onW .
Moreover, 	λ maps bounded sets to bounded sets;

(d) sup∂Q 	λ < infD 	λ, ∀λ ∈ [, ].
Then for almost all λ ∈ [, ], there exists a sequence {un} such that

sup
n

‖un‖ < ∞, 	′
λ(un) → , 	λ(un) → cλ,

where cλ := infh∈
 supu∈Q 	λ(h(,u)) ∈ [infD 	λ, supQ̄ 	].

The rest of the present paper is organized as follows. In Section , we give some prelim-
inary lemmas, which are useful in the proof of our main result. In Section , we give the
detailed proof of our main result.

2 Preliminaries
In this section, we firstly give the variational frameworks of our problem and some related
preliminary lemmas, and then give the detailed proof of the main result.
In the following, we use ‖ · ‖p to denote the norm of Lp(R,RN ) for any p ∈ [,∞]. Let

E :=H(R,RN ) be a Hilbert space with the inner product and norm given, respectively, by

〈u, v〉E =
∫
R

[(
u̇(t), v̇(t)

)
+

(
u(t), v(t)

)]
dt, ‖u‖E = 〈u,u〉/E , ∀u, v ∈ E.

It is well known that E is continuously embedded in Lp(R,RN ) for p ∈ [,∞). We define
an operator J : E → E by

(Ju, v) :=
∫
R

(
Mu(t), v̇(t)

)
dt, ∀u, v ∈ E.

Since M is an antisymmetric N × N constant matrix, J is self-adjoint on E. Moreover,
we denote by χ the self-adjoint extension of the operator – d

dt + L(t) + J with the domain
D(χ ) ⊂ L(R,RN ).

http://www.advancesindifferenceequations.com/content/2014/1/230
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LetW :=D(|χ |/), the domain of |χ |/.We define, respectively, onW the inner product
and the norm

〈u, v〉W :=
(|χ |/u, |χ |/v) + (u, v) and ‖u‖W = 〈u,u〉/W ,

where (·, ·) denotes the inner product in L(R,RN ).
By a similar proof of Lemma . in [], we can prove the following lemma.

Lemma. If conditions (L) and (L) hold, thenW is compactly embedded into Lp(R,RN )
for all  ≤ p≤ +∞.

By Lemma ., it is easy to prove that the spectrum σ (χ ) has a sequence of eigenvalues
(counted with their multiplicities)

λ ≤ λ ≤ · · · ≤ λk ≤ · · · → ∞,

and the corresponding system of eigenfunctions {ek : k ∈N} (χek = λkek) forms an orthog-
onal basis in L(R,RN ).
By (J), we may let

k := {j : λj < }, W– := span{e, . . . , ek}, W+ := clW
(
span{ek , . . .}

)
.

Then one has the orthogonal decomposition

W =W– ⊕W+

with respect to the inner product 〈·, ·〉W . Now, we introduce, respectively, on W the fol-
lowing new inner product and norm:

〈u, v〉 := (|χ |/u, |χ |/v), ‖u‖ = 〈u,u〉/,

where u, v ∈ W =W– ⊕W+ with u = u– + u+ and v = v– + v+. Clearly, the norms ‖ · ‖ and
‖ · ‖W are equivalent (see []), and the decomposition W =W– ⊕ W+ is also orthogonal
with respect to both inner products 〈·, ·〉 and (·, ·).
For problem (.), we consider the following functional:

	(u) =



∫
R

[∣∣u̇(t)∣∣ + (
Mu(t), u̇(t)

)
+

(
L(t)u(t),u(t)

)]
dt –

∫
R

H(t,u)dt, u ∈W .

Then 	 can be rewritten as

	(u) =


∥∥u+∥∥ –



∥∥u–∥∥ –

∫
R

H(t,u)dt, u = u– + u+ ∈W . (.)

Let I(u) :=
∫
R
H(t,u)dt. In view of the assumptions ofH , we know	, I ∈ C(W ,R) and the

derivatives are given by

I ′(u)v =
∫
R

(
Hu(t,u), v

)
dt, 	′(u)v =

〈
u+, v+

〉
–

〈
u–, v–

〉
– I ′(u)v,

for any u, v ∈ W =W– ⊕ W+ with u = u– + u+ and v = v– + v+. By the discussion of [],
the (weak) solutions of system (.) are the critical points of the C functional 	 :W →R.

http://www.advancesindifferenceequations.com/content/2014/1/230
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Moreover, it is easy to verify that if u �≡  is a solution of (.), then u(t) →  and u̇(t) → 
as |t| → ∞ (see Lemma . in []).
In order to apply Theorem A, we consider

	λ(u) :=


∥∥u+∥∥ – λ

(


∥∥u–∥∥ +

∫
R

H(t,u)dt
)
. (.)

It is easy to see that 	λ satisfies conditions (a), (b) in Theorem A. To see (c), if un
|·|ω→ u,

then u+n → u+ and u–n ⇀ u– in W , going to a subsequence if necessary, un → u a.e. on R.
By Fatou’s lemma and the weak lower semicontinuity of the norm, we have

lim
n→∞	λ(un) ≤ 	λ(u),

which means that 	λ is | · |ω-upper semicontinuous. 	′
λ is weakly sequentially continuous

on W is due to []. To continue the discussion, we still need to verify condition (d) in
Theorem A.

Lemma . Under the assumptions of Theorem ., we have the following facts:
(i) There exists ρ >  independent of λ ∈ [, ] such that κ := inf	λ(SρW+) > , where

SρW+ :=
{
z ∈W+ : ‖z‖ = ρ

}
.

(ii) For fixed z ∈ W+ with ‖z‖ =  and any λ ∈ [, ], there is R > ρ >  such that
sup	λ(∂Q) ≤ , where Q := {u := u– + sz : s ∈ R

+,u– ∈W–,‖u‖ < R}.

Proof (i) Under assumptions (H) and (H), we know for any ε >  there exists Cε >  such
that

∣∣Hu(t,u)
∣∣ ≤ ε|u| +Cε|u|p– (.)

and

∣∣H(t,u)
∣∣ ≤ ε|u| +Cε|u|p, (.)

where p≥ σ
σ– >  with σ > . Hence, for any u ∈W+,

	λ(u) ≥ 

‖u‖ – λε‖u‖ –C′

ε‖u‖p,

which implies the conclusion.
(ii) Suppose by contradiction that there exist un ∈ W– ⊕ R

+z such that 	λ(un) >  for
all n and ‖un‖ → ∞ as n→ ∞. Let vn := un

‖un‖ = snz + v–n , then

 <
	λ(un)
‖un‖ =



(
sn – λ

∥∥v–n∥∥) – λ

∫
R

H(t,un)
|un| |vn| dt. (.)

It follows from H(t,u) ≥  (see (H)) that

∥∥v–n∥∥ ≤ λ
∥∥v–n∥∥ < sn =  –

∥∥v–n∥∥,

therefore, ‖v–n‖ ≤ √
 and  – √

 ≤ sn ≤ .

http://www.advancesindifferenceequations.com/content/2014/1/230
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Thus sn → s �=  after passing to a subsequence, vn ⇀ v and vn → v a.e. on R. Hence,
v = sz + v– �=  and, since |vn| → ∞ if v �= , it follows from (H) and Fatou’s lemma that∫

R

H(t,un)
|un| |vn| dt → +∞, (.)

contrary to (.). The proof is finished. �

Applying Theorem A, we soon obtain the following facts.

Lemma . Under the assumptions of Theorem ., for almost all λ ∈ [, ], there exists a
sequence {un} such that

sup
n

‖un‖ < ∞, 	′
λ(un) → , 	λ(un) → cλ ∈

[
κ , sup

Q̄
	

]
.

Lemma . Under the assumptions of Theorem ., for almost all λ ∈ [, ], there exists a
uλ such that

	′
λ(uλ) = , 	λ(uλ)≤ sup

Q̄
	.

Proof Let {un} be the sequence obtained in Lemma ., write un = u–n +u+n with u±
n ∈W±.

Since {un} is bounded, {u+n} is also bounded, then un ⇀ uλ and u+n ⇀ u+λ inW , after passing
to a subsequence.
We claim that u+λ �= . If not, then Lemma . implies u+n →  in Lq(R,RN ) for all q ∈

[, +∞]. It follows from the definition of 	, Hölder’s inequality, and (.) that

 ≤
∫
R

∣∣(Hu(t,un),u+n
)∣∣dt ≤ ε

∫
R

|un| ·
∣∣u+n∣∣dt +Cε

∫
R

|un|p–
∣∣u+n∣∣dt

≤ ε‖un‖
∥∥u+n∥∥ +Cε‖un‖p–p

∥∥u+n∥∥p → .

It follows from (.) and Lemma . that

	λ(un) ≤
∥∥u+n∥∥ = 	′

λ(un)u
+
n + λ

∫
R

(
Hu(t,un),u+n

)
dt → ,

which contradicts with the fact that 	λ(un)≥ κ . Hence, u+λ �= , and thus uλ �= . Note that
	′

λ is weakly sequentially continuous onW , thus

	′
λ(uλ)z = lim

n→∞	′
λ(un)z = , ∀z ∈W .

By (H), Fatou’s lemma, and Lemma ., we have

sup
Q̄

	 ≥ cλ = lim
n→∞

(
	λ(un) –



	′

λ(un)un
)

= lim
n→∞λ

∫
R

(


(
Hu(t,un),un

)
–H(t,un)

)
dt

≥ λ

∫
R

(


(
Hu(t,uλ),uλ

)
–H(t,uλ)

)
dt = 	λ(uλ).

Thus we get 	λ(uλ) ≤ supQ̄ 	. �

http://www.advancesindifferenceequations.com/content/2014/1/230
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Lemma . Under the assumptions of Theorem ., there exists λn →  and {uλn} such
that

	′
λn (uλn ) = , 	λn (uλn ) ≤ sup

Q̄
	.

Moreover, {uλn} is bounded.

Proof The existence of {uλn} such that

	′
λn (uλn ) = , 	λn (uλn ) ≤ sup

Q̄
	

is the direct consequence of Lemma .. To prove the boundedness of {uλn}, arguing by
contradiction, suppose that ‖uλn‖ → ∞. Let vλn :=

uλn
‖uλn‖ . Then ‖vλn‖ = , vλn ⇀ v in W

and vλn → v a.e. in R, after passing to a subsequence.
Recall that 	′

λn (uλn ) = . Thus for any ϕ ∈W , we have

〈
u+λn ,ϕ

〉
– λn

〈
u–λn ,ϕ

〉
= λn

∫
R

(
Hu(t,uλn ),ϕ

)
dt.

Consequently {vλn} satisfies
〈
v+λn ,ϕ

〉
– λn

〈
v–λn ,ϕ

〉
= λn

∫
R

(Hu(t,uλn ),ϕ)
‖uλn‖

dt. (.)

Let ϕ = v±
λn in (.), respectively. Then we have

〈
v+λn , v

+
λn

〉
= λn

∫
R

(Hu(t,uλn ), v+λn )
‖uλn‖

dt

and

–λn
〈
v–λn , v

–
λn

〉
= λn

∫
R

(Hu(t,uλn ), v–λn )
‖uλn‖

dt.

Since  = ‖vλn‖ = ‖v+λn‖ + ‖v–λn‖, we have

 =
∫
R

(Hu(t,uλn ),λnv+λn – v–λn )
‖uλn‖

dt. (.)

For r ≥ , let

h(r) := inf
{
H̃(t,u) : t ∈ R and u ∈R

N with |u| ≥ r
}
.

By (H) and (H), we have h(r) >  for all r > . By (H) and (H), for |u| ≥ r,

cH̃(t,u) ≥ |Hu(t,u)|σ
|u|σ =

( |Hu(t,u)||u|
|u|

)σ

≥
(
(Hu(t,u),u)

|u|
)σ

≥
(
H(t,u)

|u|
)σ

,

it follows from (H) and the definition of h(r) that

h(r) → ∞ as r → ∞.

http://www.advancesindifferenceequations.com/content/2014/1/230
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For  < a < b, let

�n(a,b) :=
{
t ∈R : a ≤ ∣∣uλn (t)

∣∣ < b
}

and

Cb
a := inf

{
H̃(t,u)
|u| : t ∈R and u ∈R

N with a ≤ |u| < b
}
.

By (H), we have Cb
a >  and

H̃(t,uλn ) ≥ Cb
a|uλn | for all t ∈ �n(a,b).

Since	′
λn (uλn ) =  and	λn (uλn ) ≤ supQ̄ 	, there exists a constantC >  such that for all n

C ≥ 	λn (uλn ) –


	′

λn (uλn )uλn =
∫
R

H̃(t,uλn )dt, (.)

from which we have

C ≥
∫

�n(,a)
H̃(t,uλn )dt +

∫
�n(a,b)

H̃(t,uλn )dt +
∫

�n(b,∞)
H̃(t,uλn )dt

≥
∫

�n(,a)
H̃(t,uλn )dt +Cb

a

∫
�n(a,b)

|uλn | dt + h(b)
∣∣�n(b,∞)

∣∣. (.)

Invoking (H), set τ := σ /(σ – ) and σ ′ = τ /. Since σ >  one sees τ ∈ (, +∞). Fix arbi-
trarily τ̂ ∈ (τ , +∞). By (.) and the fact h(r) → ∞ as r → ∞, we have

∣∣�n(b,∞)
∣∣ ≤ C

h(b)
→ 

as b → ∞ uniformly in n, it follows from ‖vλn‖ = , Hölder’s inequality, and Sobolev’s
embedding theorem that

∫
�n(b,∞)

|vλn |τ dt ≤ C
∣∣�n(b,∞)

∣∣– τ
τ̂ →  (.)

as b → ∞ uniformly in n. By (.) and ‖uλn‖ → ∞, for any fixed  < a < b,

∫
�n(a,b)

|vλn | dt =


‖uλn‖
∫

�n(a,b)
|uλn | dt ≤ C

Cb
a‖uλn‖

→  as n→ ∞. (.)

Let  < ε < 
 . Sobolev’s embedding theorem implies ‖vλn‖ ≤ C‖vλn‖ = C and |λn| ≤

C. It follows from the fact that there is aε >  such that |Hu(t,u)| < ε
CC

|u| for all |u| ≤ aε

(see (H)) that

∫
�n(,aε)

(Hu(t,uλn ),λnv+λn – v–λn )
‖uλn‖

dt

≤
∫

�n(,aε)

|Hu(t,uλn )|
|uλn |

|vλn | ·
∣∣λnv+λn – v–λn

∣∣dt
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≤ ε

CC

∫
�n(,aε )

|vλn | ·
∣∣λnv+λn – v–λn

∣∣dt
≤ ε

CC

(∫
R

|vλn | dt
)/(∫

R

∣∣λnv+λn – v–λn
∣∣ dt)/

≤ ε

C
‖vλn‖ ≤ ε (.)

for all n. By (H), (.), and (.), we can take bε ≥ r large so that

∫
�n(bε ,∞)

(Hu(t,uλn ),λnv+λn – v–λn )
‖uλn‖

dt

≤
∫

�n(bε ,∞)

|Hu(t,uλn )|
|uλn |

|vλn | ·
∣∣λnv+λn – v–λn

∣∣dt
≤

(∫
�n(bε ,∞)

|Hu(t,uλn )|σ
|uλn |σ

dt
)/σ(∫

�n(bε ,∞)

(|vλn | ·
∣∣λnv+λn – v–λn

∣∣)σ ′
dt

)/σ ′

≤
(∫

�

cH̃(t,uλn )dt
)/σ(∫

R

∣∣λnv+λn – v–λn
∣∣τ dt)/τ(∫

�n(bε ,∞)
|vλn |τ dt

)/τ

< ε (.)

for all n. Note that there is γ = γ (ε) >  independent of n such that |Hu(t,uλn )| ≤ γ |uλn |
for t ∈ �n(aε ,bε). By (.) there is n such that

∫
�n(aε ,bε )

(Hu(t,uλn ),λnv+λn – v–λn )
‖uλn‖

dt

≤
∫

�n(aε ,bε)

|Hu(t,uλn )|
|uλn |

|vλn | ·
∣∣λnv+λn – v–λn

∣∣dt
≤ γ

∫
�n(aε ,bε )

|vλn | ·
∣∣λnv+λn – v–λn

∣∣dt
≤ γ

(∫
R

|vλn | dt
)/(∫

�n(aε ,bε )

∣∣λnv+λn – v–λn
∣∣ dt)/

≤ γ λn‖vλn‖
(∫

�n(aε ,bε )
|vλn | dt

)/

< ε (.)

for all n≥ n. Therefore, the combination of (.)-(.) implies that for n≥ n, we have

∫
R

(Hu(t,uλn ),λnv+λn – v–λn )
‖uλn‖

dt < ε < ,

which contradicts with (.). Thus {uλn} is bounded. �

Lemma . If {uλn} is the sequence obtained in Lemma ., then it is also a (PS) sequence
for 	 satisfying

lim
n→∞	′(uλn ) = , lim

n→∞	(uλn ) ≤ sup
Q̄

	.

http://www.advancesindifferenceequations.com/content/2014/1/230
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Proof Note that uλn is bounded. From

lim
n→∞	(uλn ) = lim

n→∞

[
	λn (uλn ) + (λn – )

(


∥∥u–λn∥∥ +

∫
R

H(t,uλn )dt
)]

and noting that

lim
n→∞	′(uλn )ϕ = lim

n→∞

[
	′

λn (uλn )ϕ + (λn – )
(〈
u–λn ,ϕ

–〉 + ∫
R

(
Hu(t,uλn ),ϕ

)
dt

)]

uniformly in ϕ ∈W , we obtain the conclusion. �

3 Proof of main result
We are now in a position to prove our main result.

Proof of Theorem . Note that Lemma . implies {uλn} is bounded, thus uλn ⇀ u in W ,
and uλn → u in Lq(R,RN ) for all q ∈ [, +∞] by Lemma ., after passing to a subsequence.
By (.), 	′

λn (uλn )u+λn = , Hölder’s inequality, and Sobolev’s embedding theorem,

∥∥u+λn∥∥ = λ

∫
R

(
Hu(t,uλn ),u

+
λn

)
dt

≤ ε

∫
R

|uλn | ·
∣∣u+λn ∣∣dt +Cε

∫
R

|uλn |p–
∣∣u+λn ∣∣dt

≤ ε‖uλn‖ · ∥∥u+λn∥∥ +C′
ε‖uλn‖p–p

∥∥u+λn∥∥
≤ ε‖uλn‖ · ∥∥u+λn∥∥ +C′′

ε ‖uλn‖p–p ‖uλn‖ · ∥∥u+λn∥∥
≤ ε‖uλn‖ +C′′

ε ‖uλn‖p–p ‖uλn‖. (.)

Similarly, we have

∥∥u–λn∥∥ ≤ ε‖uλn‖ +C′′
ε ‖uλn‖p–p ‖uλn‖. (.)

From (.) and (.), we get

‖uλn‖ ≤ ε‖uλn‖ + C′′
ε ‖uλn‖p–p ‖uλn‖,

which means ‖uλn‖p ≥ c for some constant c, it follows from uλn → u in Lp(R,RN ) that
u �= . The facts that 	′ is weakly sequentially continuous onW and uλn ⇀ u in W imply
	′(u) = .
Let K := {u ∈ W :	′(u) = } be the critical set of 	 and

C := inf
{
	(z) : z ∈ K\{}}.

For any critical point u of 	, assumption (H) implies that

	(u) = 	(u) –


	′(u)u =

∫
R

(


(
Hu(t,u),u

)
–H(t,u)

)
dt >  if u �= . (.)

http://www.advancesindifferenceequations.com/content/2014/1/230
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ThereforeC ≥ .Weprove thatC >  and there is u ∈ K such that	(u) = C. Let uj ∈ K\{}
be such that 	(uj)→ C. Then the proof in Lemma . shows that {uj} is bounded, and by
the concentration compactness principle discussion abovewe know uj ⇀ u ∈ K\{}. Thus

C = lim
j→∞	(uj) = lim

j→∞

∫
R

(


(
Hu(t,uj),uj

)
–H(t,uj)

)
dt

≥
∫

�

(


(
Hu(t,u),u

)
–H(t,u)

)
dt = 	(u) ≥ C,

where the first inequality is due to (H) and Fatou’s lemma. So	(u) = C andC >  because
u �= . �
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