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Abstract
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1 Introduction
We consider the following form for the fractional evolution equations:

⎧⎨
⎩
Dqx(t) = Ax(t) + f (t,x(t)), t ∈ R+ := [,∞),

x() = x,
(.)

where Dq is the Caputo fractional derivative of order  < q < , A is the infinitesimal gen-
erator of a strongly continuous semigroup of bounded linear operator {T(t)}t≥ in Banach
space E, and f : R+ × E → E is a given function.
Fractional differential equations have appeared inmany branches of physics, economics,

and technical sciences [, ]. There has been a considerable developments in fractional dif-
ferential equations in the last decades. Recently, the definition for mild solutions of frac-
tional evolution equationswas successfully given in twoways: onewas given by using some
probability densities [–], the other was given by the so-called solution operator [–].
In the scheme of these definitions, many interesting existence results for mild solutions
were established by various fixed-point theorems.
We notice that all the papers mentioned above were investigated mild solutions on a

bounded interval. On the other hand, research on mild solutions on an unbounded inter-
val of the integer order evolution equations could be found in papers [, ] and the ref-
erences therein. Very recently, Banaś, O’Regan [] studied existence and attractiveness of
solutions of a nonlinear quadratic integral equations of fractional order on an unbounded
interval. By means of Darbo’s fixed-point theorem, Su [] considered the existence of
solutions to boundary value problems of fractional differential equations on unbounded
domains. So we think there is a real need to concern existence results for fractional evolu-
tion equation on an unbounded interval. But as far as we known, there are few works on
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this subject up to now. Motivated by this, we concern ourselves with existence results for
mild solutions of problem (.) in the present paper by the Tichonov fixed-point theorem.
The rest of paper will be organized as follows. In Section  we will introduce some basic

definitions and lemmas from the measure of noncompactness, fractional derivation, and
integration. Section  is devoted to the existence results for problem (.).We shall present
in Section  an example which illustrates our main theorems.

2 Preliminaries
In this section, we collect some definitions and results which will be used in the rest of
the paper. Let (E,‖ · ‖) be a real Banach space. Define Lp([,b],E) be the space of E-valued
Bochner functions on [,b] with the norm ‖x‖Lp[,b] = (

∫ b
 ‖x(s)‖p ds) p , ≤ p < ∞. Denote

by C(R+,E) the space of continuous functions from R+ into E.

Definition . ([]) The Riemann-Liouville fractional integral of order q ∈ R+ of a func-
tion f : R+ → E is defined by

Iq f (t) =


�(q)

∫ t


(t – s)q–f (s)ds, t > ,

provided the right-hand side is pointwise defined on R+, where � is the gamma function.

Definition . ([]) The Caputo fractional derivative of order  < q <  of a function f ∈
C(R+;E) is defined by

Dqf (t) =


�( – q)

∫ t


(t – s)–qf ′(s)ds, t > .

The space C(R+,E) is the locally convex Fréchet space of continuous functions with the
metric

d(x, y) = sup

{
n ‖x – y‖n

 + ‖x – y‖n : n = , , . . .
}
,

where ‖x‖n = sup{‖x(t)‖ : t ∈ [,n]}.

According to [], a sequence {xn} is convergent to x in C(R+,E) if and only if {xn} is
uniformly convergent to x on compact subsets of R+. Moreover, a subset X ⊂ C(R+,E) is
relatively compact if and only if the restrictions on [,T] of all functions from X form an
equicontinous set for each T >  and X(t) is relatively compact in E for each t ∈ R+, where
X(t) = {x(t) : x ∈ X}.
Next, we present some basic facts concerning the measure of noncompactness on

C(R+,E). Let  be the zero element of E. Denote by B(x, r) the closed ball centered at x
with radius and by Br the ball B(, r). If X is a subset of E, then the symbols X and ConvX
stand for the closure and convex closure of X, respectively. Further we assume ME to be
the family of all nonempty and bounded subsets of E,NE represents its subfamily consist-
ing of relatively compact sets.

Definition . ([]) A function μ :ME → R+ is said to be of regular noncompactness if
it satisfies the following conditions:
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(i) μ(X) =  ⇔ X ∈NE .
(ii) X ⊂ Y ⇒ μ(X)≤ μ(Y ).
(iii) μ(ConvX) = μ(X).
(iv) μ(λX + ( – λ)Y ) ≤ λμ(X) + ( – λ)μ(Y ) for λ ∈ [, ].
(v) μ(λX) = |λ|μ(X) for λ ∈ R.
(vi) μ(X + Y )≤ μ(X) +μ(Y ).
(vii) μ(X ∪ Y ) =max{μ(X),μ(Y )}.
(viii) If {Xn} is a sequence of nonempty, bounded, and closed subsets of E such that

Xn+ ⊂ Xn (n = , , . . .) and if limn→∞ μ(Xn) = , then the intersection
X∞ =

⋂∞
n=Xn is nonempty.

Next we consider themeasure of noncompactness inC(R+,E) introduced in []. To this
end, let r : R+ → (,∞) be a given function and

Mr =
{
X ⊂ C

(
R+,E

)
: X = ∅,∥∥x(t)∥∥ ≤ r(t) for x ∈ X, t ≥ 

}
.

Denote byNr the family of all relatively compact members ofMr .
Fix X ∈Mr and T > ; for x ∈ X and ε > , denote by ωT (x, ε) the modulus of continuity

of the function x on the interval [,T] as follows:

ωT (x, ε) = sup
{∥∥x(t) – x(s)

∥∥ : t, s ∈ [,T], |t – s| ≤ ε
}
.

Further, we define

ωT (X, ε) = sup
{
ωT (x, ε),x ∈ X

}
, ωT

 (X) = lim
ε→+

ωT (X, ε).

Remark . ([]) We observe that functions from the set X ∈Mr are equicontinuous on
compact intervals of R+ if and only if ωT

 (X) =  for each T > .
Assume that μ is the regular measure of noncompactness in E and let us put μT (X) =

sup{μ(X(t)) : t ∈ [,T]}; we define the γ on the familyMr by

γR(X) = sup

{


R(T)
(
ωT
 (X),μ

T (X)
)
: T ≥ 

}
, (.)

where R : R+ → (,∞) is a given function such that r(t) ≤ R(t) for t ≥ .

Theorem . ([]) The mapping γR :Mr → R+ has the following properties:
() The family kerγR = {X ∈Mr : γR(X) = } =Nr .
() γR(Conv(X)) = γR(X).
() If {Xn} is a sequence of closed sets fromMr such that Xn+ ⊂ Xn (n = , , . . .) and if

limn→∞ γR(Xn) = , then the intersection X∞ =
⋂∞

n=Xn is nonempty.

For X ∈Mr , let us denote
∫ t
 X(τ )dτ = {∫ t

 x(τ )dτ ,x ∈ X}.

Lemma . ([]) If all functions belonging to X are equicontinuous on compact subsets of
R+ then

μ

(∫ t


X(τ )

)
≤

∫ t


μ

(
X(τ )

)
dτ for t ≥ .

http://www.advancesindifferenceequations.com/content/2014/1/27


Zhang et al. Advances in Difference Equations 2014, 2014:27 Page 4 of 10
http://www.advancesindifferenceequations.com/content/2014/1/27

Lemma . ([]) If μ is a regular measure of noncompactness then

∣∣μ(X) –μ(Y )
∣∣ ≤ μ

(
B(, )

)
dH (X,Y )

for any bounded subset X,Y ⊂ E, where dH is the Hausdorff distance between X and Y .

Lemma . ([]) Suppose that x≥ , then

(
x
e

)x√
πx

(
 +


x

)
< �(x + ) <

(
x
e

)x√
πx

(
 +


x – .

)
.

Similar to Cauchy’s formula, we have the following lemma.

Lemma . If z : R+ → R is a continuous function and q > , then

∫ t


(t – s)q–

∫ s


(s – s)q– · · ·

∫ sn


(sn – sn+)q–z(sn+)dsn+ dsn · · · ds

=
�n+(q)

�((n + )q)

∫ t


(t – s)(n+)q–z(s)ds.

Proof By changing the integral order and some calculations, one can prove the lemma
easily. We omit the proof here. �

Theorem . ([], Tikhonov fixed-point theorem) Let V be a locally convex topologi-
cal vector space. For any nonempty compact convex X in V , if the function F : X → X is
continuous, then F has a fixed point in X .

3 Main results
In this section we will establish the existence results. Based on reference [], we give the
definition of the mild solutions of problem (.) as follows.

Definition . A continuous function x : R+ → E is said to be a mild solution of (.) if x
satisfies

x(t) =S(t)x +
∫ t


(t – s)q–T(t – s)f

(
s,x(s)

)
ds,

where

S(t) =
∫ ∞


ξq(θ )T

(
tqθ

)
dθ ,

T(t) = q
∫ ∞


θξq(θ )T

(
tqθ

)
dθ ,

(.)

ξq(θ ) =

q
θ
–– 

q �q
(
θ
– 
q
)
,

�q(θ ) =

π

∞∑
n=

(–)n–θ–qn– �(nq + )
n!

sin(nπq), θ ∈ R+.
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Remark . ([]) ξq(θ ) is the probability density function defined on R+ and

∫ ∞


θξq(θ )dθ =

∫ ∞




θq �q(θ )dθ =


�( + q)

.

To state and prove our main results for the existence of mild solutions of problem (.),
we need the following hypotheses:
(H) The C-semigroup {T(t)}t> generated by A is compact and there exists a constant

M >  such thatM = sup{‖T(t)‖; t ∈ R+} < +∞.
(H) The function f : R+ × E → E satisfies the Carathéodory type conditions, i.e.

f (t, ·) : E → E is continuous for a.e. t ∈ R+ and f (·,x) : R+ → E is strongly
measurable for each x ∈ E.

(H) There exists a locally L

p -integrable ( < p < q) function m : R+ → R+ such that

‖f (t,x)‖ ≤ m(t) for all x ∈ E and a.e. t ∈ R+.
(H) k : R+ → R+ is a measurable and essentially bounded function on the compact

intervals of R+ such that

μ
(
f (t,X)

) ≤ k(t)μ(X)

for a.e. t ∈ R+ and bounded subsets X of E, where μ is a regular measure of
noncompactness on E.

Remark . If ‖f (t,x) – f (t, y)‖ ≤ L(t)‖x – y‖, L(t) ∈ L(R+,R+), x, y ∈ E, then we get
α(f (t,X))≤ L(t)α(X) for each bounded X ⊂ E and a.e. t ∈ R+.

Lemma . Assume that hypotheses (H)-(H) hold, then:
(i) For any fixed t ≥ ,S(t) and T(t) defined in (.) are linear and bounded operators,

i.e. for any x ∈ E,

∥∥S(t)x
∥∥ ≤M‖x‖, ∥∥T(t)x∥∥ ≤ M

�(q)
‖x‖.

(ii) S(t) and T(t) are continuous in the uniform operator topology for t > .

Proof (i) was proved in [] and (ii) can easily be proved by the compactness of the semi-
group {T(t)}t>. We omit the proof here. �

Theorem . Under the assumptions (H)-(H) problem (.) has at least one mild solu-
tion x in C(R+,E) for each x ∈ E.

Proof Define operator F : C(R+,E)→ C(R+,E) by

(Fx)(t) =S(t)x +
∫ t


(t – s)q–T(t – s)f

(
s,x(s)

)
ds, t ≥ .

Firstly, we shall show that there exists a function r : R+ → (,∞) such that if x ∈ C(R+,E)
and ‖x(t)‖ ≤ r(t) for t ≥ , then

∥∥(Fx)(t)∥∥ ≤ r(t). (.)

http://www.advancesindifferenceequations.com/content/2014/1/27
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In fact, we choose r(t) =M‖x‖ + M
�(q) (

–p
q–p )

–ptq–p‖m‖
L

p [,t]

, then from the hypotheses we
have

∥∥(Fx)(t)∥∥ ≤ ∥∥S(t)x
∥∥ +

∥∥∥∥
∫ t


(t – s)q–T(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
=

∥∥∥∥
∫ ∞


ξq(θ )T

(
tqθ

)
x dθ

∥∥∥∥
+

∥∥∥∥q
∫ t


(t – s)q–

∫ ∞


θξq(θ )T

(
(t – s)qθ

)
dθ f

(
s,x(s)

)
ds

∥∥∥∥
≤ M‖x‖ + M

�(q)

∫ t


(t – s)q–m(s)ds

≤ M‖x‖ + M
�(q)

(∫ t


(t – s)

q–
–p ds

)–p

‖m‖
L

p [,t]

≤ M‖x‖ + M
�(q)

(
 – p
q – p

)–p

tq–p‖m‖
L

p [,t]

= r(t).

Moreover, r(t) is nondecreasing.
Let us fix x ∈ C(R+,E) such that ‖x(t)‖ ≤ r(t), we will estimate the modulus of conti-

nuity of the function Fx. Fix arbitrary T ≥  and ε ≥  and take t, t ∈ [,T] such that
|t – t| ≤ ε. Without loss of generality, we assume that t ≥ t, then

∥∥(Fx)(t) – (Fx)(t)
∥∥

=
∥∥∥∥S(t)x +

∫ t


(t – s)q–T(t – s)f

(
s,x(s)

)
ds

–S(t)x +
∫ t


(t – s)q–T(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
≤ ∥∥S(t)x –S(t)x

∥∥ +
∥∥∥∥
∫ t

t
(t – s)q–T(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
+

∥∥∥∥
∫ t



[
(t – s)q– – (t – s)q–

]
T(t – s)f

(
s,x(s)

)
ds

∥∥∥∥
+

∥∥∥∥
∫ t


(t – s)q–

[
T(t – s) –T(t – s)

]
f
(
s,x(s)

)
ds

∥∥∥∥
≤ ωT (S, ε)‖x‖ + M

�(q)

∫ t

t
(t – s)q–m(s)ds

+
M

�(q)

∫ t



[
(t – s)q– – (t – s)q–

]
m(s)ds

+
∫ t


(t – s)q–

∥∥T(t – s) –T(t – s)
∥∥m(s)ds

≤ ωT (S, ε)‖x‖ + M
�(q)

(
 – p
q – p

)–p

εq–p‖m‖
L

p [t,t]

+
M

�(q)

(∫ t



[
(t – s)q– – (t – s)q–

] 
–p ds

)–p

‖m‖
L

p [,t]

http://www.advancesindifferenceequations.com/content/2014/1/27
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+ νT (T, ε)
∫ t


(t – s)q–m(s)ds

≤ ωT (S, ε)‖x‖ + M
�(q)

(
 – p
q – p

)–p

εq–p sup
{‖m‖

L

p [t,t]

: ≤ t ≤ t ≤ T
}

+
M

�(q)

(
 – p
q – p

)–p

εq–p‖m‖
L

p [,T]

+ νT (T, ε)
(
 – p
q – p

)–p

Tq–p‖m‖
L

p [,T]

:= �(T , ε),

where ωT (S, ε) = sup{‖S(t) –S(t)‖ : t, t ∈ [,T], |t – t| ≤ ε}, νT (T, ε) = sup{‖T(t) –
T(t)‖ : t, t ∈ [,T], |t – t| ≤ ε}.
Therefore, we have

∥∥(Fx)(t) – (Fx)(t)
∥∥ ≤ �(T , ε) (.)

for x such that ‖x(t)‖ ≤ r(t). From Lemma ., we have

lim
ε→+

�(T , ε) =  for T ≥ . (.)

Now define the subset Q of C(R+,E) as follows:

Q =
{
x ∈ C

(
R+,E

)
:
∥∥x(t)∥∥ ≤ r(t),ωT (x, ε)≤ �(T , ε) for t,T , ε ≥ 

}
.

In view of x(t)≡Mx ∈Q, we see thatQ is nonempty. Moreover, Q is a closed and convex
subset of C(R+,E). From (.) and Remark ., we find that the set Q is the family consist-
ing of functions equicontinuous on compact intervals of R+. By (.) we find that F maps
Q into itself.
Next, we will show that F :Q → Q is continuous. For x,xn ∈ Q such that limn→∞ xn = x

in C(R+,E), we have

lim
n→∞ sup

t≤T

∥∥xn(t) – x(t)
∥∥ = , T ≥ .

Fix T ≥ ; then we get

sup
t≤T

∥∥(Fxn)(t) – (Fx)(t)
∥∥ ≤ sup

t≤T

∫ t


(t – s)q–

∥∥T(t – s)
[
f
(
s,xn(s)

)
– f

(
s,x(s)

)]∥∥ds

≤ M
�(q)

sup
t≤T

∫ t


(t – s)q–

∥∥f (s,xn(s)) – f
(
s,x(s)

)∥∥ds.

Hence limn→∞ Fxn = Fx in C(R+,E) by the Lebesgue dominated convergence theorem and
hypothesis (H).
Let Q = Q, Qn = ConvF(Qn–) for n = , , . . . , then all sets of this sequence are

nonempty, closed, and convex. Moreover,Qn+ ⊂Qn for n = , , . . . . By the equicontinuity
of the set Q on compact intervals, we have

ωT
 (Qn) = , for n = , , . . . , and T ≥ .

http://www.advancesindifferenceequations.com/content/2014/1/27
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Set zn(t) = μ(Qn(t)). From Lemma . and (.) we have

∣∣zn(t) – zn(s)
∣∣ ≤ μ

(
B(, )

)
�

(
T , |t – s|),

which together with (.) implies the continuity of zn(t) on R+.
By the properties of μ, Lemma ., and Hypothesis (H) we have

zn+(t) = μ
(
(ConvFQn)(t)

)

= μ

(∫ t


(t – s)q–T(t – s)f

(
s,Qn(s)

)
ds

)

≤ M
∫ t


(t – s)q–k(s)zn(s)ds

≤ Mk(t)
∫ t


(t – s)q–zn(s)ds,

where k(t) = ess sup{k(s) : s≤ t}, obviously, k(t) is nondecreasing.
By the method of mathematical induction and Lemma ., we have

zn+(t) ≤ Mk(t)
∫ t


(t – s)q–zn(s)ds

≤ Mk(t)
∫ t


(t – s)q–

∫ s


(s – s)q–zn–(s)ds ds

≤ Mn+kn+(t)
∫ t


(t – s)q–

∫ s


(s – s)q– · · ·

×
∫ sn


(sn – sn+)q–z(sn+)dsn+ dsn · · ·ds

≤ Mn+kn+(t)
�n+(q)

�((n + )q)

∫ t


(t – s)(n+)q–z(s)ds.

Then for n≥ 
q we have

zn+ ≤Mn+kn+(t)
�n+(q)

�((n + )q)
t(n+)q–

∫ t


z(s)ds. (.)

Now we use the measure of noncompactness γR defined in C(R+,E) by formula (.),
where

R(t) = r(t)
(
 +

(
M�(q)k(t)

) 
q
)(

 +
∫ t


z(s)ds

)
e(M�(q)k(t))


q t .

Obviously r(t)≤ R(t). By (.), for n≥ 
q we have

μT (Qn+) = sup
t≤T

zn+ ≤Mn+kn+(T)
�n+(q)

�((n + )q)
T (n+)q–

∫ T


z(s)ds

http://www.advancesindifferenceequations.com/content/2014/1/27
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and

μT (Qn+)
R(T)

=
(M�(q)k(T))n+–


q T (n+)q–

r(T)�((n + )q)e(M�(q)k(T))

q T

=
((M�(q)k(T))


q T)(n+)q–

r(T)�((n + )q)e(M�(q)k(T))

q T

.

By the estimation sup{ anea : a≥ } ≤ nn
en we have

μT (Qn+)
R(T)

≤ ((n + )q – )(n+)q–

r(T)�((n + )q)e(n+)q–
.

Then from Lemma ., we get, for n > 
q ,

μT (Qn+)
R(T)

≤ 
r(T)

√
π ((n + )q – )

.

Hence we have

lim
n→∞γR(Qn+) = lim

n→∞ sup

{


R(T)
(
ωT
 (Qn+),μT (Qn+)

)
: T ≥ 

}
= .

In view of Theorem . we get Q∞ =
⋂∞

n=Qn = ∅. Since  ≤ γ (Q∞) ≤ limn→∞ γR(Qn),
we have γ (Q∞) = , which implies Q∞ is a compact subset in C(R+,E).
Consider F : Q∞ → Q∞. From the above arguments, we see that all the conditions of

the Tichonov fixed-point theorem are satisfied. Therefore F has at least one fixed point x
in Q∞, which is the mild solution of problem (.). The proof is completed. �

4 An example
In this section, we give an example to illustrate the applications of Theorem. established
in the previous sections.
Let � ∈ Rn be a bounded domain with smooth boundary ∂�. Consider a fractional ini-

tial/boundary value Cauchy problem of the form

⎧⎪⎪⎨
⎪⎪⎩
Dqu(t, z) = uzz(t, z) + f (t,u(t, z)), t ∈ R+, z ∈ �,

u(, z) = u, z ∈ �,

u(t, z) = , t ∈ R+, z ∈ ∂�,

(.)

where Dq is the Caputo fractional partial derivative of order  < q < , and f is a given
function.
Let E = L(�), we define an operator Au = ∂u

∂z on E with the domain

D(A) =
{
u ∈ E : u,

∂u
∂z

are absolutely continuous,
∂u
∂z

∈ E,u =  on ∂�

}
.

It is well known thatA generates a strongly continuous semigroup {T(t)}t≥ which is com-
pact, analytic, and self-adjoint.
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Then the system (.) can be reformulated as follows in E:

⎧⎨
⎩
Dqx(t) = Ax(t) + f (t,x(t)), t ∈ R+,

x() = u,

where x(t) = u(t, ·), that is, x(t)z = u(t, z), z ∈ �.
Let us take q = 

 , f (t,x(t)) =


t


sinx(t). Firstly, we see that (H)-(H) are satisfied. From

‖f (t,x(t))– f (t, y(t))‖ ≤ 

t


‖x–y‖∞ andRemark .wefind that (H) is satisfied.According

to Theorem ., problem (.) has at least one mild solution in C(R+,E).
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