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1 Introduction
This paper discusses the existence and iterative method of positive solutions for the fol-
lowing nonlinear fractional differential equations with integral boundary condition:

⎧⎨
⎩
Dα

+u(t) + q(t)f (t,u(t)) = ,  < t < ,

u(j)() = ,  ≤ j ≤ n – , u() = μ
∫ 
 u(s)ds,

(.)

where α ∈ (n–,n] is a real number and n≥  is an integer,μ is a parameter and ≤ μ < α,
Dα

+ is the standard Riemann-Liouville fractional derivative of order α. A function u is
called a positive solution of the problem (.) if u(t) satisfies (.) and u(t) >  on (, ).
Fractional differential equations arise inmany engineering and scientific disciplines such

as the mathematical modeling of systems and processes in the fields of physics, chem-
istry, aerodynamics, electro-dynamics of a complex medium, polymer rheology, and so
on. Recently, the subject of fractional differential equations has gained much more im-
portance and attention. Some excellent work in the study of fractional differential equa-
tions can be found in [–] and the references cited therein. Integral boundary conditions
have various applications in chemical engineering, thermo-elasticity, population dynam-
ics, and so on. Boundary value problems for fractional differential equations with integral
boundary conditions are very interesting and largely unknown. Recently, by using Guo-
Krasnoselskii’s fixed point theorem, Cabada andWang in [] investigated the existence of
positive solutions for the fractional boundary value problem

⎧⎨
⎩

CDα
+u(t) + f (t,u(t)) = ,  < t < ,

u() = u′′() = , u() = λ
∫ 
 u(s)ds,
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where  < α ≤ ,  < λ < , CDα
+ is theCaputo fractional derivative and f : [, ]×[,∞)→

[,∞) is a continuous function. Karakostas [] provided sufficient conditions for the non-
existence of solutions of the boundary-value problems with fractional derivative of order
α ∈ (, ) in the Caputo sense,

⎧⎨
⎩

CDα
+u(t) + f (t,u(t)) = ,  < t < ,

u() = u′() = , u() = λ
∫ 
 u(s)ds.

Motivated by the works mentioned above, our purpose in this paper is to show the exis-
tence and iteration of positive solutions to the problem (.) by using a monotone iterative
method. The method used in this paper is different from that used in []. We not only
obtain the existence of positive solutions, but also give two iterative schemes approxi-
mating the solutions, and the iterative scheme starts off with a known simple function or
the zero function, which is interesting because it gives a numerical method to compute
approximate solutions. The monotone iterative method has been successfully applied to
boundary-value problems of integer-order ordinary differential equations (see [–]
and the references therein). To our knowledge, there is still little utilization of the mono-
tone iterative method to study the existence of positive solutions for nonlinear fractional
boundary-value problems. So, it is worth investigating the problem (.) by using mono-
tone iterative method.

2 Preliminaries
Let us recall some basic definitions on fractional calculus.

Definition . ([, ]) The Riemann-Liouville fractional derivative of order α >  of a
continuous function h : [,∞)→R is defined to be

Dα
+h(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–h(s)ds, n = [α] + ,

where � denotes the Euler gamma function and [α] denotes the integer part of number α,
provided that the right side is pointwise defined on (,∞).

Definition . ([, ]) The Riemann-Liouville fractional integral of order α is defined
as

Iα+h(t) =


�(α)

∫ t


(t – s)α–h(s)ds, t > ,α > ,

provided the integral exists.

In [], the author obtained theGreen’s function associated with the problem (.).More
precisely, the author proved the following lemma.

Lemma . ([]) Let h ∈ C[, ] be a given function, then the boundary-value problem

⎧⎨
⎩
Dα

+u(t) + h(t) = , ≤ t ≤ ,

u(j)() = , ≤ j ≤ n – , u() = μ
∫ 
 u(s)ds,

http://www.advancesindifferenceequations.com/content/2014/1/29


Sun and Sun Advances in Difference Equations 2014, 2014:29 Page 3 of 10
http://www.advancesindifferenceequations.com/content/2014/1/29

has a unique solution,

u(t) =
∫ 


G(t, s)h(s)ds,

where

G(t, s) =H(t, s) +
μtα–

(α –μ)�(α)
s( – s)α–, t, s ∈ [, ], (.)

H(t, s) =


�(α)

⎧⎨
⎩
tα–( – s)α– – (t – s)α–, ≤ s≤ t ≤ ,

tα–( – s)α–,  ≤ t ≤ s≤ .
(.)

Obviously,

G(t, s) =


(α –μ)�(α)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tα–( – s)α–(α –μ +μs) – (α –μ)(t – s)α–,

 ≤ s≤ t ≤ ,

tα–( – s)α–(α –μ +μs),

 ≤ t ≤ s ≤ ,

(.)

and G(t, s) is continuous on the unit square [, ]× [, ].

Lemma . ([]) The function H(t, s) defined by (.) has the following properties:

tα–( – t)
s( – s)α–

�(α)
≤H(t, s)≤ s( – s)α–

�(α – )
, t, s ∈ [, ]. (.)

Lemma . The Green’s function G(t, s) defined by (.) has the following properties:

 ≤G(t, s)≤ tα–

(α –μ)�(α)
( – s)α–(α –μ +μs), t, s ∈ [, ], (.)

p(t)g(s) ≤G(t, s)≤ g(s), t, s ∈ [, ], (.)

where

g(s) =
(α – )(α –μ) +μ

(α –μ)�(α)
s( – s)α–, s ∈ [, ],

p(t) =
αtα–( – t)

(α – )(α –μ) +μ
, t ∈ [, ].

Proof It is obvious from (.) that the right inequality of (.) holds. Relation (.) implies
that H(t, s) ≥ . Thus by (.) we know that the left inequality of (.) is correct. Now we
show that (.) holds. In fact, by (.) and (.), we have

G(t, s) =H(t, s) +
μtα–

(α –μ)�(α)
s( – s)α– ≤ s( – s)α–

�(α – )
+

μ

(α –μ)�(α)
s( – s)α–

=
(α – )(α –μ) +μ

(α –μ)�(α)
s( – s)α– = g(s), t, s ∈ [, ].
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On the other hand, by (.) and (.), we get

G(t, s) =H(t, s) +
μtα–

(α –μ)�(α)
s( – s)α–

≥ tα–( – t)
s( – s)α–

�(α)
+

μtα–( – t)
(α –μ)�(α)

s( – s)α–

=
s( – s)α–

(α –μ)�(α)
αtα–( – t) = g(s)p(t), t, s ∈ [, ].

Then the proof is completed. �

3 Main results
Now, we consider the problem (.). Obviously, u is a solution of the problem (.) if and
only if u is a solution of the following nonlinear integral equation:

u(t) =
∫ 


G(t, s)q(s)f

(
s,u(s)

)
ds, t ∈ [, ],u ∈ C[, ],

where G(t, s) is the Green’s function defined by (.). For the forthcoming analysis, we
need the following assumptions:
(H) f : [, ]× [,∞)→ [,∞) is continuous and f (t, ) �≡  on [, ];
(H) q : (, )→ [,∞) is continuous and  <

∫ 
 ( – s)α–q(s)ds <∞.

The basic space used in this paper is a real Banach space E = C[, ] with the norm ‖u‖,
where ‖u‖ =max≤t≤ |u(t)|. Then, define a set K ⊂ E by

K =
{
u ∈ C[, ] : u(t) ≥ ,u(t) ≥ p(t)‖u‖, t ∈ [, ]

}
.

It is obvious that K is a cone. We define the operator T : C[, ]→ C[, ] by

(T u)(t) =
∫ 


G(t, s)q(s)f

(
s,u(s)

)
ds, t ∈ [, ],u ∈ C[, ]. (.)

It is clear that the existence of a positive solution for the problem (.) is equivalent to the
existence of a nontrivial fixed point of T in K.

Lemma . T is a completely continuous operator and T (K)⊆K.

Proof Applying the Arzela-Ascoli theorem and a standard argument, we can prove that T
is a completely continuous operator. We conclude that T (K) ⊆ K. In fact, for any u ∈ K,
it follows from (H), (H), and (.) that

(T u)(t) =
∫ 


G(t, s)q(s)f

(
s,u(s)

)
ds≤

∫ 


g(s)q(s)f

(
s,u(s)

)
ds, t ∈ [, ],

which implies that

‖T u‖ ≤
∫ 


g(s)q(s)f

(
s,u(s)

)
ds. (.)

http://www.advancesindifferenceequations.com/content/2014/1/29
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On the other hand, by (H), (H), and (.) we have

(T u)(t) =
∫ 


G(t, s)q(s)f

(
s,u(s)

)
ds≥ p(t)

∫ 


g(s)q(s)f

(
s,u(s)

)
ds, t ∈ [, ],

which together with (.) implies

(T u)(t) ≥ p(t)‖T u‖, t ∈ [, ].

Therefore, T u ∈K. The proof is completed. �

For convenience, we denote

� =
(


(α –μ)�(α)

∫ 


( – s)α–(α –μ +μs)q(s)ds

)–

. (.)

By (H) we know that � >  is well defined.

Theorem . Suppose (H) and (H) hold. In addition, we assume that there exists a > ,
such that

f (t,x)≤ f (t, y) ≤ �a,  ≤ x ≤ y≤ a, t ∈ [, ], (.)

where � is given by (.). Then the problem (.) has two positive solutions v∗ and w∗ sat-
isfying  < ‖v∗‖ ≤ ‖w∗‖ ≤ a. In addition, the iterative sequences vk+ = T vk , wk+ = T wk ,
k = , , , . . . , converge, in C-norm, to positive solutions v∗ and w∗, respectively, where
v(t) = , w(t) = atα–, t ∈ [, ].Moreover,

v(t) ≤ v(t) ≤ · · · ≤ vk(t) ≤ · · · ≤ v∗(t)≤ w∗(t) ≤ · · · ≤ wk(t) ≤ · · · ≤ w(t)≤ w(t),

t ∈ [, ].

Remark . The iterative schemes in Theorem . start off with the zero function and a
known simple function, respectively.

Proof The proof will be given in several steps.
Step . Let Ka = {u ∈K : ‖u‖ ≤ a}, then T (Ka) ⊆Ka.
In fact, if u ∈Ka, then

 ≤ u(s)≤ ‖u‖ ≤ a, s ∈ [, ].

Thus by (.) and (.), we get

 ≤ (T u)(t) =
∫ 


G(t, s)q(s)f

(
s,u(s)

)
ds

≤ tα–

(α –μ)�(α)

∫ 


( – s)α–(α –μ +μs)q(s)f (s,a)ds

≤ �a
(α –μ)�(α)

∫ 


( – s)α–(α –μ +μs)q(s)ds = a, t ∈ [, ],

which implies that ‖T u‖ ≤ a, thus T (Ka) ⊆Ka.

http://www.advancesindifferenceequations.com/content/2014/1/29
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Step . The iterative sequence {vk} is increasing, and there exists v∗ ∈ Ka such that
limk→∞ ‖vk – v∗‖ = , and v∗ is a positive solution of the problem (.).
Obviously, v ∈ Ka. Since T : Ka → Ka, we have vk ∈ T (Ka) ⊆ Ka, k = , , . . . . Since

T is completely continuous, we assert that {vk}∞k= is a sequentially compact set. Since
v = T v = T  ∈Ka, we have

a ≥ v(t) = (T v)(t) = (T )(t)≥  = v(t), t ∈ [, ].

It follows from (.) that T is nondecreasing, and then

v(t) = (T v)(t) ≥ (T v)(t) = v(t), t ∈ [, ].

Thus, by the induction, we have

vk+(t)≥ vk(t), t ∈ [, ],k = , , , . . . .

Hence, there exists v∗ ∈ Ka such that limk→∞ ‖vk – v∗‖ = . By the continuity of T and
equation vk+ = T vk , we get T v∗ = v∗. Moreover, since the zero function is not a solution
of the problem (.), ‖v∗‖ > . It follows from the definition of the cone K, that we have
v∗(t) ≥ p(t)‖v∗‖ > , t ∈ (, ), i.e. v∗(t) is a positive solution of the problem (.).
Step . The iterative sequence {wk} is decreasing, and there exists w∗ ∈ Ka such that

limk→∞ ‖wk –w∗‖ = , and w∗ is a positive solution of the problem (.).
Obviously, w ∈ Ka. Since T : Ka → Ka, we have wk ∈ T (Ka) ⊆ Ka, k = , , . . . . Since

T is completely continuous, we assert that {wk}∞k= is a sequentially compact set. Since
w = T w ∈Ka, by (.) and (.), we have

(T w)(t) =
∫ 


G(t, s)q(s)f

(
s,w(s)

)
ds

≤ tα–

(α –μ)�(α)

∫ 


( – s)α–(α –μ +μs)q(s)f (s,a)ds

≤ tα–�a
(α –μ)�(α)

∫ 


( – s)α–(α –μ +μs)q(s)ds = atα– = w(t), t ∈ [, ].

Thus we obtain

w(t) ≤ w(t), t ∈ [, ],

which together with (.) implies that

w(t) = (T w)(t) =
∫ 


G(t, s)q(s)f

(
s,w(s)

)
ds

≤
∫ 


G(t, s)q(s)f

(
s,w(s)

)
ds = (T w)(t) = w(t), t ∈ [, ].

By the induction, we have

wk+(t) ≤ wk(t), t ∈ [, ],k = , , , . . . .
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Hence, there exists w∗ ∈ Ka such that limk→∞ ‖wk – w∗‖ = . Applying the continuity of
T and the definition of K, we can concluded that w∗ is a positive solution of the problem
(.).
Step . From v(t)≤ w(t), t ∈ [, ] we get

v(t) = (T v)(t) =
∫ 


G(t, s)q(s)f

(
s, v(s)

)
ds

≤
∫ 


G(t, s)q(s)f

(
s,w(s)

)
ds = (T w)(t) = w(t), t ∈ [, ].

By the induction, we have

vk(t)≤ wk(t), t ∈ [, ],k = , , , . . . .

The proof is complete. �

Remark . Certainly, w∗ = v∗ may happen and then the problem (.) has only one solu-
tion in Ka.

Corollary . Suppose that (H) and (H) hold. Suppose further that f (t,x) is nondecreas-
ing in x for each t ∈ [, ] and

lim
x→+∞ max

≤t≤

f (t,x)
x

<�.

Then the problem (.) has at least two positive solutions.

4 Examples
To illustrate the usefulness of the results, we give two examples.

Example . Consider the fractional boundary-value problem

⎧⎨
⎩
D/

+ u(t) + u(t) + t +  = ,  < t < ,

u() = u′() = u′′() = , u() = 

∫ 
 u(s)ds.

(.)

In this problem,

α = ., μ = ., q(t) ≡ , f (t,x) = x + t + .

It is easy to see that (H) and (H) hold. If we let a = , by simple computation, we have

� =
(


(α –μ)�(α)

∫ 


( – s)α–(α –μ +μs)q(s)ds

)–

=


√
π


,

and

f (t,x)≤ f (t, )≤ f (, ) =  <


√
π


=�a, (t,x) ∈ [, ]× [,a].

http://www.advancesindifferenceequations.com/content/2014/1/29
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Then (.) is satisfied. Consequently, Theorem . guarantees that the problem (.) has
at least two positive solutions v∗ and w∗, satisfying  < ‖v∗‖ ≤ ‖w∗‖ ≤ .
Moreover, the two iterative schemes are

v(t) = , t ∈ [, ],

vk+(t) =
t/


√

π

∫ 


( – s)/( + s)

[
vk(s) + s + 

]
ds

–



√

π

∫ t


(t – s)/

[
vk(s) + s + 

]
ds, t ∈ [, ],k = , , , . . . ,

and

w(t) = t/, t ∈ [, ],

wk+(t) =
t/


√

π

∫ 


( – s)/( + s)

[
w

k(s) + s + 
]
ds

–



√

π

∫ t


(t – s)/

[
w

k(s) + s + 
]
ds, t ∈ [, ],k = , , , . . . .

After direct calculations byMatlab ., the second and third terms of the two schemes are
as follows:

v(t) =
t/


√

π

(



–



t –



t
)
, t ∈ [, ],

v(t) =
t/


√

π

(



–



t –



t
)
+

t/

π/

(



–



t –


,
t +

,
,

t

–
,
,

t –
,
,

t
)
, t ∈ [, ],

and

w(t) =
t/√

π

(
,
,

–



t –



t –
,
,

t
)
, t ∈ [, ],

w(t) =
t/


√

π

(



–



t –



t
)
+

t/

π/

(
,,

,,,
–

,,,
,,,

t

–
,,
,,

t +
,,
,,

t –
,
,

t –
,
,

t –
,,

,,,
t

+
,,,

,,,
t +

,
,,

t + –
,

,,
t +

,,
,,,

t

–
,,

,,,
t

)
, t ∈ [, ].

Example . Consider the fractional boundary value

⎧⎨
⎩
D/

+ u(t) + ( – t)–/[eu(t)+t+ + u(t) + t + ] = ,  < t < ,

u() = u′() = u′′() = u′′′() = , u() = 
∫ 
 u(s)ds.

(.)

http://www.advancesindifferenceequations.com/content/2014/1/29
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In this problem,

α = ., μ = , q(t) = ( – t)–/, f (t,x) = ex+t+ + x + t + .

Obviously, q(t) and f (t,x) satisfy the conditions (H) and (H). In addition, f (t,x) is in-
creasing in x, and

� =
(


(α –μ)�(α)

∫ 


( – s)α–(α –μ +μs)q(s)ds

)–

=


√
π


.

Let a = , then for any (t,x) ∈ [, ]× [,a], direct computations give

f (t,x)≤ f (t, )≤ f (, ) =  + e <


√
π


=�a.

Therefore, all assumptions of Theorem . are satisfied. Thus Theorem . ensures that
the problem (.) has two positive solutions v∗ and w∗, satisfying  < ‖v∗‖ ≤ ‖w∗‖ ≤  and
limk→∞ ‖vk – v∗‖ = , limk→∞ ‖wk –w∗‖ = , where

v(t) = , t ∈ [, ],

vk+(t) =
t/


√

π

∫ 


( – s)( + s)

[
evk (s)+s+ + vk(s) + s + 

]
ds

–



√

π

∫ t



(t – s)/

( – s)/
[
evk (s)+s+ + vk(s) + s + 

]
ds,

t ∈ [, ],k = , , , . . . .

and

w(t) = t/, t ∈ [, ],

wk+(t) =
t/


√

π

∫ 


( – s)( + s)

[
ewk (s)+s+ + w

k(s) + s + 
]
ds

–



√

π

∫ t



(t – s)/

( – s)/
[
ewk (s)+s+ + w

k(s) + s + 
]
ds,

t ∈ [, ],k = , , , . . . .
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