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Abstract
In this paper, we study the functional system on q-difference equations, our results
can give estimates on the proximity functions and the counting functions of the
solutions of q-difference equations system. This implies that solutions have a relatively
large number of poles. The main results in this paper concern q-difference equations
to the system of q-difference equations.
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1 Introduction andmain results
A function f (z) is called meromorphic if it is analytic in the complex plane C except at
isolate poles. In what follows, we assume that the reader is familiar with the basic notion
of Nevanlinna’s value distribution theory, see [] and [].
Let us consider the q-difference polynomial case. Let dj ∈C for j = , . . . ,n, and let Iq be

a finite set of multi-indexes γ = (γ, . . . ,γn). A q-difference polynomial of a meromorphic
function w(z) is defined as follows:

P(z,w) = P
(
z,w(qz),w

(
qz

)
, . . . ,w

(
qnz

))
=

∑
γ∈Iq

aγ (z)w(z)γw(qz)γ · · ·w(
qnz

)γn , (.)

where q ∈ C{}, and the coefficients aγ (z) are small meromorphic functions with respect
to w(z) such that T(r,aγ ) = o(T(r,w)) on a logarithmic density , denoted by Sq(r,w). The
total degree of P(z,w) in w(z) and the q-shifts of w(z) is denoted by degqw(P), and the order
of zero of P(z,x,x, . . . ,xn), as a function of x at x = , is denoted as ordq(P), which can
be found, e.g., in []. Moreover, the weight of difference polynomial (.) is defined by

Kq(P) =max
γ∈Iq

{ n∑
j=

γj

}
,

where γ and Iq are the same as in (.) above. The q-difference polynomial P(z,w) is said
to be homogeneous with respect to w(z) if the degree dγ = γ + · · ·+ γn of each term in the
sum (.) is non-zero and the same for all γ ∈ Iq.
We recall the following result of Zhang et al. [, Theorem ].
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Theorem A Let w(z) be a zero-order meromorphic solution of

H(z,w)P(z,w) =Q(z,w),

where P(z,w) is a homogeneous q-difference polynomial with polynomial coefficients, and
H(z,w) andQ(z,w) are polynomials in w(z)with polynomial coefficients having no common
factors. If

max
{
degqw(H),degqw(Q) – degqw(P)

}
>min

{
degqw(P),ord

q
(Q)

}
– ordq(P),

then N(r,w) �= Sq(r,w), where ord
q
(P) denotes the order of zero of P(z,x,x, . . . ,xn), as a

function of x at x = .

Now let us introduce some notation. Let qj ∈C \ {, } for j = , . . . ,n, and let I and J be a
finite set of multi-indexes I = (i, . . . , in) and J = (j, . . . , jn). Two q-difference polynomials
of a meromorphic function w(z) are defined as follows:

�(z,w,w) = �
(
z,w(z),w(z),w(qz),w(qz), . . . ,w(qnz),w(qnz)

)
=

∑
i∈I

ai(z)
∏

k=

wk(z)kiwk(qz)ki · · ·wk(qnz)kin

and

�(z,w,w) = �
(
z,w(z),w(z),w(qz),w(qz), . . . ,w(qnz),w(qnz)

)
=

∑
j∈J

bj(z)
∏

k=

wk(z)kiwk(qz)ki · · ·wk(qnz)kin ,

where the coefficients ai(z) and bj(z) are small with respect to w(z) and w(z) in the sense
that T(r,ai) = o(T(r,wk)) and T(r,bj) = o(T(r,wk)), k = , , on a set of logarithmic density
, as r tends to infinity outside of an exceptional set E of finite logarithmic measure

lim
r→∞

∫
E∩[,r)

dt
t
<∞.

The weights of �(z,w,w) and �(z,w,w) in w(z), w(z) are denoted by

λ =max
i

{ n∑
l=

il

}
, λ =max

i

{ n∑
l=

il

}

and

λ =max
j

{ n∑
l=

il

}
, λ =max

j

{ n∑
l=

il

}
.

The purpose of this paper is to study the problem of the properties of Nevanlinna count-
ing functions and proximity functions of meromorphic solutions of a type of systems of

http://www.advancesindifferenceequations.com/content/2014/1/3


Xu et al. Advances in Difference Equations 2014, 2014:3 Page 3 of 9
http://www.advancesindifferenceequations.com/content/2014/1/3

q-difference equations of the following form:

⎧⎨
⎩�(z,w,w) = R(z,w),

�(z,w,w) = R(z,w),
(.)

where

R(z,w) =
P(z,w)
Q(z,w)

=
∑p

i= ai(z)wi
∑q

j= bj(z)w
j


and

R(z,w) =
P(z,w)
Q(z,w)

=
∑p

i= ci(z)wi
∑q

j= dj(z)w
j


,

the coefficients {ai(z)}, {bi(z)}, {ci(z)}, {di(z)} are meromorphic functions and small func-
tions. The order of zero of �j(z,x, . . . ,xn), as a function of x at x = , is denoted by
ord(�j). The q-difference polynomial �k(z,w,w), k = , , is said to be homogeneous
with respect to wk(z) if the degree dk = ik + · · · + ikn of each term in the sum is non-zero
and the same for all i ∈ I . Finally, the order of growth of a meromorphic solution (w,w)
is defined by

ρ(w,w) =max
{
ρ(w),ρ(w)

}
,

where

ρ(wk) = lim sup
r→∞

logT(r,wk)
log r

, k = , .

In this paper, the main results are as follows.

Theorem  Let (w,w) be a zero-order meromorphic solution of system (.), where
�k(z,w,w) (k = , ) are homogeneous q-difference polynomials in w andw, respectively,
withmeromorphic coefficients, and Pk(z,wk) andQ(z,wk), k = , , are polynomials in wk(z)
with meromorphic coefficients having no common factors. If

max{q,p – λ} >min
{
λ,ordw (P)

}
– ordw (�) + λ (.)

and

max{q,p – λ} >min
{
λ,ordw (P)

}
– ordw (�) + λ, (.)

thenN(r,w) = Sq(r,w) andN(r,w) = Sq(r,w) cannot hold both at the same time, possibly
outside of an exceptional set of finite logarithmic measure.

Theorem  Let (w,w) be a zero-order meromorphic solution of system (.), where
�k(z,w,w) (k = , ) are homogeneous q-difference polynomials in w andw, respectively,
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withmeromorphic coefficients, and Pk(z,wk) andQ(z,wk), k = , , are polynomials in wk(z)
with meromorphic coefficients having no common factors,

A = λ –
(
max{p,q + λ} –min

{
λ,ordw (�)

})
and

B = λ –
(
max{p,q + λ} –min

{
λ,ordw (�)

})
.

If A < , B <  and AB > λλ, then m(r,wk) = Sq(r,wk) (k = , ), where r runs to infinity
outside of an exceptional set of finite logarithmic measure.

2 Some lemmas
Lemma  ([], Theorem .) Let f (z) be a non-constant zero-order meromorphic function,
and q ∈C \ {}. Then

m
(
r,
f (qz)
f (z)

)
= Sq(r, f ).

Lemma  ([], Lemma ) If T : R+ → R+ is a piecewise continuous increasing function
such that

lim
r→∞

logT(r)
log r

= ,

then the set

E :=
{
r : T(Cr) ≥ CT(r)

}
has logarithmic density  for all C >  and C > .

3 Proof of Theorem 1
Since�k(z,w,w) are homogeneous inw andw, respectively, it follows by Lemma  that

m
(
r,

�(z,w,w)
wλ


)
≤ λm(r,w) + Sq(r,w) (.)

and

m
(
r,

�(z,w,w)
wλ


)
≤ λm(r,w) + Sq(r,w) (.)

for all r outside of an exceptional set of finite logarithmic measure. Moreover, from (.),
we have

T
(
r,

�(z,w,w)
wλ


)
= T

(
r,

P(z,w)
Q(z,w)wλ



)

=
(
max{p,q + λ} –min

{
λ,ordw (P)

})
T(r,w)

+ Sq(r,w) (.)
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and

T
(
r,

�(z,w,w)
wλ


)
= T

(
r,

P(z,w)
Q(z,w)wλ



)

=
(
max{p,q + λ} –min

{
λ,ordw (P)

})
T(r,w)

+ Sq(r,w), (.)

where r approaches infinity outside of an exceptional set of finite logarithmic measure. By
combining (.) and (.), (.) and (.), respectively, it follows that

N
(
r,

�(z,w,w)
wλ


)
≥ (

 + λ + λ – ordw (�)
)
T(r,w)

– λm(r,w) + Sq(r,w) (.)

and

N
(
r,

�(z,w,w)
wλ


)
≥ (

 + λ + λ – ordw (�)
)
T(r,w)

– λm(r,w) + Sq(r,w). (.)

From Lemma , we have

N
(
r,

�(z,w,w)

wordw (�(z,w,w))


)

≤ (
λ – ordw (�)

)
N(qr,w) + λN(qr,w) + Sq(r,w)

=
(
λ – ordw (�)

)
N(r,w) + λN(r,w) + Sq(r,w) + Sq(r,w)

and

N
(
r,

�(z,w,w)

wordw (�(z,w,w))


)

≤ (
λ – ordw (�)

)
N(qr,w) + λN(qr,w) + Sq(r,w)

=
(
λ – ordw (�)

)
N(r,w) + λN(r,w) + Sq(r,w) + Sq(r,w).

Therefore,

N
(
r,

�(z,w,w)
wλ


)
≤ N

(
r,

�(z,w,w)

wordw (�(z,w,w))


)
+N

(
r,



wλ–ordw (�)


)

≤ (
λ – ordw (�)

)
N(r,w) + λN(r,w)

+ T
(
r,



wλ–ordw (�)


)
+ Sq(r,w) + Sq(r,w)

≤ (
λ – ordw (�)

)
N(r,w) + λN(r,w)

+
(
λ – ordw (�)

)
T(r,w) + Sq(r,w) + Sq(r,w) (.)
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and

N
(
r,

�(z,w,w)
wλ


)
≤ N

(
r,

�(z,w,w)

wordw (�(z,w,w))


)
+N

(
r,



wλ–ordw (�)


)

≤ (
λ – ordw (�)

)
N(r,w) + λN(r,w)

+ T
(
r,



wλ–ordw (�)


)
+ Sq(r,w) + Sq(r,w)

≤ (
λ – ordw (�)

)
N(r,w) + λN(r,w)

+
(
λ – ordw (�)

)
T(r,w) + Sq(r,w) + Sq(r,w). (.)

Combining (.) and (.), (.) and (.), respectively, we have

(
 + λ + λ – ordw (�)

)
T(r,w)

<
(
λ – ordw (�)

)
N(r,w) + λT(r,w)

+
(
λ – ordw (�)

)
T(r,w) + Sq(r,w) + Sq(r,w) (.)

and

(
 + λ + λ – ordw (�)

)
T(r,w)

<
(
λ – ordw (�)

)
N(r,w) + λT(r,w)

+
(
λ – ordw (�)

)
T(r,w) + Sq(r,w) + Sq(r,w). (.)

Suppose that N(r,w) = Sq(r,w) and N(r,w) = Sq(r,w), according to (.) and (.), we
have

( + λ)T(r,w) < λT(r,w) + Sq(r,w) + Sq(r,w)

and

( + λ)T(r,w) < λT(r,w) + Sq(r,w) + Sq(r,w).

That is,

(
 + λ + o()

)
T(r,w) <

(
λ + o()

)
T(r,w) (.)

and

(
 + λ + o()

)
T(r,w) <

(
λ + o()

)
T(r,w). (.)

By (.) and (.), we conclude that

 + λ +  + λ + o() < λ + λ,

which is impossible, we prove the assertion.
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4 Proof of Theorem 2
It follows by Lemma  that

m
(
r,

�(z,w,w)
wλ


)
≤ λm(r,w) + Sq(r,w) (.)

and

m
(
r,

�(z,w,w)
wλ


)
≤ λm(r,w) + Sq(r,w) (.)

for all r outside of an exceptional set of finite logarithmic measure.
Suppose now that (w(z),w(z)) is a finite-ordermeromorphic solution of (.). Denoting

C =maxj=,...,n{|cj|} in �(z,w,w) and �(z,w,w), by Lemma , we obtain

N
(
r,

�(z,w,w)
wλ


)
≤ λ

(
N

(|q|r,w
)
+N

(
r,


w

))

+ λ

(
N

(|q|r,w
)
+N

(
r,


w

))

+ λN(r,w) + Sq(r,w) + Sq(r,w)

= λ

(
N(r,w) +N

(
r,


w

))
+ λ

(
N(r,w) +N

(
r,


w

))

+ λN(r,w) + Sq(r,w) + Sq(r,w) (.)

for all r outside of a set E of finite logarithmic measure. By (.) and (.), we have

N
(
r,

�(z,w,w)
wλ


)
≤ λ

(
N(r,w) +N

(
r,


w

))

+ λ

(
N(r,w) +N

(
r,


w

))
+ Sq(r,w) + Sq(r,w)

≤ λ
(
T(r,w) –m(r,w)

)
+ λ

(
T(r,w) – m(r,w)

)
+ Sq(r,w) + Sq(r,w) (.)

for all r /∈ E. On the other hand, by (.) and (.),

N
(
r,

�(z,w,w)
wλ


)
+ λm(r,w)

≥ T
(
r,

P(r,w)
wλ
 Qr,w

)

=
(
max{p,q + λ} –min

{
λ,ordw (�)

})
T(r,w) + Sq(r,w), (.)

where r lies outside of a set F of finite logarithmic measure. Combining inequalities (.)
and (.) with the assumption in Theorem , we have

(
max{p,q + λ} –min

{
λ,ordw (�)

})
T(r,w)

– λm(r,w) + Sq(r,w) + Sq(r,w)

http://www.advancesindifferenceequations.com/content/2014/1/3
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≤ λ
(
T(r,w) –m(r,w)

)
+ λ

(
T(r,w) – m(r,w)

)
+ Sq(r,w) + Sq(r,w). (.)

Similarly, we obtain

(
max{p,q + λ} –min

{
λ,ordw (�)

})
T(r,w)

– λm(r,w) + Sq(r,w) + Sq(r,w)

≤ λ
(
T(r,w) –m(r,w)

)
+ λ

(
T(r,w) – m(r,w)

)
+ Sq(r,w) + Sq(r,w). (.)

By (.) and (.), we obtain

λm(r,w)

≤ (
λ –

(
max{p,q + λ} –min

{
λ,ordw (�)

})
+ o()

)
T(r,w)

+
(
λ + o()

)
T(r,w) (.)

and

((
max{p,q + λ} –min

{
λ,ordw (�)

})
– λ + o()

)
T(r,w)

≤ (
λ + o()

)
T(r,w) – λm(r,w). (.)

Combining (.) and (.), we have

λm(r,w)

≤ (
λ –

(
max{p,q + λ} –min

{
λ,ordw (�)

})
+ o()

)
T(r,w)

+
λ(λ + o())T(r,w) – λλm(r,w)

(max{p,q + λ} –min{λ,ordw (�)}) – λ
,

that is,
(

λ –
λλ

B

)
m(r,w) ≤

(
A –

λλ + o()
B

)
T(r,w), (.)

whereA = λ –(max{p,q +λ}–min{λ,ordw (�)}) and B = λ –(max{p,q +λ}–
min{λ,ordw (�)}). Combining the assumption and (.), we have

m(r,w) = Sq(r,w)

for all r outside of E ∪ F , a set of finite logarithmic measure.
Similarly, we obtain

m(r,w) = Sq(r,w)

for all r outside of E ∪ F , we have proved the assertion.
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