Three-point boundary value problems for nonlinear second-order impulsive q-difference equations

Jessada Tariboon ${ }^{1 *}$ and Sotiris K Ntouyas²

Correspondence:
jessadat@kmutnb.ac.th
${ }^{1}$ Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand Full list of author information is available at the end of the article

Abstract

The quantum calculus on finite intervals was studied recently by the authors in Adv. Differ. Equ. 2013:282, 2013, where the concepts of q_{k}-derivative and q_{k}-integral of a function $f: J_{k}:=\left[t_{k}, t_{k+1}\right] \rightarrow \mathbb{R}$ have been introduced. In this paper, we prove existence and uniqueness results for nonlinear second-order impulsive q_{k}-difference three-point boundary value problems, by using Banach's contraction mapping principle and Krasnoselskii's fixed-point theorem. MSC: 26A33; 39A13; 34A37 Keywords: q_{k}-derivative; q_{k}-integral; impulsive q_{k}-difference equation; existence; uniqueness; three-point boundary conditions; fixed-point theorems

1 Introduction

In this article, we investigate the nonlinear second-order impulsive q_{k}-difference equation with three-point boundary conditions

$$
\left\{\begin{array}{l}
D_{q_{k}}^{2} x(t)=f(t, x(t)), \quad t \in J:=[0, T], t \neq t_{k}, \tag{1.1}\\
\Delta x\left(t_{k}\right)=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2, \ldots, m, \\
D_{q_{k}} x\left(t_{k}^{+}\right)-D_{q_{k-1}} x\left(t_{k}\right)=I_{k}^{*}\left(x\left(t_{k}\right)\right), \quad k=1,2, \ldots, m, \\
x(0)=0, \quad x(T)=x(\eta),
\end{array}\right.
$$

where $0=t_{0}<t_{1}<t_{2}<\cdots<t_{k}<\cdots<t_{m}<t_{m+1}=T, f: J \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $I_{k}, I_{k}^{*} \in C(\mathbb{R}, \mathbb{R}), \Delta x\left(t_{k}\right)=x\left(t_{k}^{+}\right)-x\left(t_{k}\right)$ for $k=1,2, \ldots, m, x\left(t_{k}^{+}\right)=\lim _{h \rightarrow 0} x\left(t_{k}+h\right), \eta \in\left(t_{j}, t_{j+1}\right)$ a constant for some $j \in\{0,1,2, \ldots, m\}$ and $0<q_{k}<1$ for $k=0,1,2, \ldots, m$.

The theory of quantum calculus on finite intervals was developed recently by the authors in [1]. In [1] the concepts of q_{k}-derivative and q_{k}-integral of a function $f: J_{k}:=\left[t_{k}, t_{k+1}\right] \rightarrow$ \mathbb{R}, are defined and their basic properties proved. As applications, existence and uniqueness results for initial value problems for first- and second-order impulsive q_{k}-difference equations are proved.

The book by Kac and Cheung [2] covers many of the fundamental aspects of the quantum calculus. In recent years, the topic of q-calculus has attracted the attention of several researchers and a variety of new results can be found in the papers [3-15] and the references cited therein.

Impulsive differential equations, that is, differential equations involving an impulse effect, appear as a natural description of observed evolution phenomena of several realworld problems. For some monographs on impulsive differential equations we refer to [16-18].
In the present paper we prove existence and uniqueness results for the impulsive boundary value problem (1.1) by using Banach's contraction mapping principle and Krasnoselskii's fixed-point theorem. The rest of this paper is organized as follows: In Section 2 we present the notions of q_{k}-derivative and q_{k}-integral on finite intervals and collect their properties. The main results are proved in Section 3, while examples illustrating the results are presented in Section 4.

2 Preliminaries

In this section we present the notions of q_{k}-derivative and q_{k}-integral on finite intervals. For a fixed $k \in \mathbb{N} \cup\{0\}$ let $J_{k}:=\left[t_{k}, t_{k+1}\right] \subset \mathbb{R}$ be an interval and $0<q_{k}<1$ be a constant. We define q_{k}-derivative of a function $f: J_{k} \rightarrow \mathbb{R}$ at a point $t \in J_{k}$ as follows.

Definition 2.1 Assume $f: J_{k} \rightarrow \mathbb{R}$ is a continuous function and let $t \in J_{k}$. Then the expression

$$
\begin{equation*}
D_{q_{k}} f(t)=\frac{f(t)-f\left(q_{k} t+\left(1-q_{k}\right) t_{k}\right)}{\left(1-q_{k}\right)\left(t-t_{k}\right)}, \quad t \neq t_{k}, \quad D_{q_{k}} f\left(t_{k}\right)=\lim _{t \rightarrow t_{k}} D_{q_{k}} f(t) \tag{2.1}
\end{equation*}
$$

is called the q_{k}-derivative of function f at t.

We say that f is q_{k}-differentiable on J_{k} provided $D_{q_{k}} f(t)$ exists for all $t \in J_{k}$. Note that if $t_{k}=0$ and $q_{k}=q$ in (2.1), then $D_{q_{k}} f=D_{q} f$, where D_{q} is the well-known q-derivative of the function $f(t)$ defined by

$$
\begin{equation*}
D_{q} f(t)=\frac{f(t)-f(q t)}{(1-q) t} . \tag{2.2}
\end{equation*}
$$

In addition, we should define the higher q_{k}-derivative of functions.

Definition 2.2 Let $f: J_{k} \rightarrow \mathbb{R}$ is a continuous function, we call the second-order q_{k} derivative $D_{q_{k}}^{2} f$ provided $D_{q_{k}} f$ is q_{k}-differentiable on J_{k} with $D_{q_{k}}^{2} f=D_{q_{k}}\left(D_{q_{k}} f\right): J_{k} \rightarrow \mathbb{R}$. Similarly, we define the higher-order q_{k}-derivative $D_{q_{k}}^{n}: J_{k} \rightarrow \mathbb{R}$.

The properties of the q_{k}-derivative are summarized in the following theorem.

Theorem 2.3 Assume $f, g: J_{k} \rightarrow \mathbb{R}$ are q_{k}-differentiable on J_{k}. Then:
(i) The sum $f+g: J_{k} \rightarrow \mathbb{R}$ is q_{k}-differentiable on J_{k} with

$$
D_{q_{k}}(f(t)+g(t))=D_{q_{k}} f(t)+D_{q_{k}} g(t) .
$$

(ii) For any constant $\alpha, \alpha f: J_{k} \rightarrow \mathbb{R}$ is q_{k}-differentiable on J_{k} with

$$
D_{q_{k}}(\alpha f)(t)=\alpha D_{q_{k}} f(t)
$$

(iii) The product fg: $J_{k} \rightarrow \mathbb{R}$ is q_{k}-differentiable on J_{k} with

$$
\begin{aligned}
D_{q_{k}}(f g)(t) & =f(t) D_{q_{k}} g(t)+g\left(q_{k} t+\left(1-q_{k}\right) t_{k}\right) D_{q_{k}} f(t) \\
& =g(t) D_{q_{k}} f(t)+f\left(q_{k} t+\left(1-q_{k}\right) t_{k}\right) D_{q_{k}} g(t) .
\end{aligned}
$$

(iv) If $g(t) g\left(q_{k} t+\left(1-q_{k}\right) t_{k}\right) \neq 0$, then $\frac{f}{g}$ is q_{k}-differentiable on J_{k} with

$$
D_{q_{k}}\left(\frac{f}{g}\right)(t)=\frac{g(t) D_{q_{k}} f(t)-f(t) D_{q_{k}} g(t)}{g(t) g\left(q_{k} t+\left(1-q_{k}\right) t_{k}\right)} .
$$

Definition 2.4 Assume $f: J_{k} \rightarrow \mathbb{R}$ is a continuous function. Then the q_{k}-integral is defined by

$$
\begin{equation*}
\int_{t_{k}}^{t} f(s) d_{q_{k}} s=\left(1-q_{k}\right)\left(t-t_{k}\right) \sum_{n=0}^{\infty} q_{k}^{n} f\left(q_{k}^{n} t+\left(1-q_{k}^{n}\right) t_{k}\right) \tag{2.3}
\end{equation*}
$$

for $t \in J_{k}$. Moreover, if $a \in\left(t_{k}, t\right)$ then the definite q_{k}-integral is defined by

$$
\begin{aligned}
\int_{a}^{t} f(s) d_{q_{k}} s= & \int_{t_{k}}^{t} f(s) d_{q_{k}} s-\int_{t_{k}}^{a} f(s) d_{q_{k}} s \\
= & \left(1-q_{k}\right)\left(t-t_{k}\right) \sum_{n=0}^{\infty} q_{k}^{n} f\left(q_{k}^{n} t+\left(1-q_{k}^{n}\right) t_{k}\right) \\
& -\left(1-q_{k}\right)\left(a-t_{k}\right) \sum_{n=0}^{\infty} q_{k}^{n} f\left(q_{k}^{n} a+\left(1-q_{k}^{n}\right) t_{k}\right)
\end{aligned}
$$

Note that if $t_{k}=0$ and $q_{k}=q$, then (2.3) reduces to the q-integral of a function $f(t)$, defined by $\int_{0}^{t} f(s) d_{q} s=(1-q) t \sum_{n=0}^{\infty} q^{n} f\left(q^{n} t\right)$ for $t \in[0, \infty)$.

Theorem 2.5 For $t \in J_{k}$, the following formulas hold:
(i) $D_{q_{k}} \int_{t_{k}}^{t} f(s) d_{q_{k}} s=f(t)$;
(ii) $\int_{t_{k}}^{t} D_{q_{k}} f(s) d_{q_{k}} s=f(t)$;
(iii) $\int_{a}^{t} D_{q_{k}} f(s) d_{q_{k}} s=f(t)-f(a)$ for $a \in\left(t_{k}, t\right)$.

3 Main results

Let $J=[0, T], J_{0}=\left[t_{0}, t_{1}\right], J_{k}=\left(t_{k}, t_{k+1}\right]$ for $k=1,2, \ldots, m$. Let $P C(J, \mathbb{R})=\{x: J \rightarrow \mathbb{R}$: $x(t)$ is continuous everywhere except for some t_{k} at which $x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$exist and $x\left(t_{k}^{-}\right)=$ $\left.x\left(t_{k}\right), k=1,2, \ldots, m\right\} . P C(J, \mathbb{R})$ is a Banach space with the norm $\|x\|_{P C}=\sup \{|x(t)| ; t \in J\}$.

Lemma 3.1 The unique solution of problem (1.1) is given by

$$
\begin{aligned}
x(t)= & -t \sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right) \\
& -\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(T-t_{k}\right) \\
& +\frac{t}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) d_{q_{j}} \sigma d_{q_{j}} s \\
& -\frac{t}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) d_{q_{m}} \sigma d_{q_{m}} s \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right) \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(t-t_{k}\right) \\
& +\int_{t_{k}}^{t} \int_{t_{k}}^{s} f(\sigma, x(\sigma)) d_{q_{k}} \sigma d_{q_{k}} s, \tag{3.1}
\end{align*}
$$

with $\sum_{0<0}(\cdot)=0$.

Proof For $t \in J_{0}$, taking the q_{0}-integral for the first equation of (1.1), we get

$$
\begin{equation*}
D_{q_{0}} x(t)=D_{q_{0}} x(0)+\int_{0}^{t} f(s, x(s)) d_{q_{0}} s, \tag{3.2}
\end{equation*}
$$

which yields

$$
\begin{equation*}
D_{q_{0}} x\left(t_{1}\right)=D_{q_{0}} x(0)+\int_{0}^{t_{1}} f(s, x(s)) d_{q_{0}} s . \tag{3.3}
\end{equation*}
$$

For $t \in J_{0}$ we obtain by q_{0}-integrating (3.2),

$$
\begin{aligned}
x(t) & =x(0)+D_{q_{0}} x(0) t+\int_{0}^{t} \int_{0}^{s} f(\sigma, x(\sigma)) d_{q_{0}} \sigma d_{q_{0}} s \\
& :=A+B t+\int_{0}^{t} \int_{0}^{s} f(\sigma, x(\sigma)) d_{q_{0}} \sigma d_{q_{0}} s \quad\left(x(0)=A, D_{q_{0}} x(0)=B\right) .
\end{aligned}
$$

In particular, for $t=t_{1}$

$$
\begin{equation*}
x\left(t_{1}\right)=A+B t_{1}+\int_{0}^{t_{1}} \int_{0}^{s} f(\sigma, x(\sigma)) d_{q_{0}} \sigma d_{q_{0}} s . \tag{3.4}
\end{equation*}
$$

For $t \in J_{1}=\left(t_{1}, t_{2}\right], q_{1}$-integrating (1.1), we have

$$
D_{q_{1}} x(t)=D_{q_{1}} x\left(t_{1}^{+}\right)+\int_{t_{1}}^{t} f(s, x(s)) d_{q_{1}} s
$$

Using the third condition of (1.1) with (3.3), it follows that

$$
\begin{equation*}
D_{q_{1}} x(t)=B+\int_{0}^{t_{1}} f(s, x(s)) d_{q_{0}} s+I_{1}^{*}\left(x\left(t_{1}\right)\right)+\int_{t_{1}}^{t} f(s, x(s)) d_{q_{1}} s \tag{3.5}
\end{equation*}
$$

Taking the q_{1}-integral to (3.5) for $t \in J_{1}$, we obtain

$$
\begin{align*}
x(t)= & x\left(t_{1}^{+}\right)+\left[B+\int_{0}^{t_{1}} f(s, x(s)) d_{q_{0}} s+I_{1}^{*}\left(x\left(t_{1}\right)\right)\right]\left(t-t_{1}\right) \\
& +\int_{t_{1}}^{t} \int_{t_{1}}^{s} f(\sigma, x(\sigma)) d_{q_{1}} \sigma d_{q_{1}} s . \tag{3.6}
\end{align*}
$$

Applying the second equation of (1.1) with (3.4) and (3.6), we get

$$
\begin{aligned}
x(t)= & A+B t_{1}+\int_{0}^{t_{1}} \int_{0}^{s} f(\sigma, x(\sigma)) d_{q_{0}} \sigma d_{q_{0}} s+I_{1}\left(x\left(t_{1}\right)\right) \\
& +\left[B+\int_{0}^{t_{1}} f(s, x(s)) d_{q_{0}} s+I_{1}^{*}\left(x\left(t_{1}\right)\right)\right]\left(t-t_{1}\right) \\
& +\int_{t_{1}}^{t} \int_{t_{1}}^{s} f(\sigma, x(\sigma)) d_{q_{1}} \sigma d_{q_{1}} s \\
= & A+B t+\int_{0}^{t_{1}} \int_{0}^{s} f(\sigma, x(\sigma)) d_{q_{0}} \sigma d_{q_{0}} s+I_{1}\left(x\left(t_{1}\right)\right) \\
& +\left[\int_{0}^{t_{1}} f(s, x(s)) d_{q_{0}} s+I_{1}^{*}\left(x\left(t_{1}\right)\right)\right]\left(t-t_{1}\right) \\
& +\int_{t_{1}}^{t} \int_{t_{1}}^{s} f(\sigma, x(\sigma)) d_{q_{1}} \sigma d_{q_{1}} s .
\end{aligned}
$$

Repeating the above process, for $t \in J$, we get

$$
\begin{align*}
x(t)= & A+B t \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right) \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(t-t_{k}\right) \\
& +\int_{t_{k}}^{t} \int_{t_{k}}^{s} f(\sigma, x(\sigma)) d_{q_{k}} \sigma d_{q_{k}} s . \tag{3.7}
\end{align*}
$$

The first boundary condition of (1.1) implies $A=0$. The second boundary condition of (1.1) yields

$$
\begin{aligned}
\sum_{k=1}^{m} & \left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right) \\
& +\sum_{k=1}^{m}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(T-t_{k}\right) \\
& +\int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) d_{q_{m}} \sigma d_{q_{m}} s+B T \\
= & \sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(\eta-t_{k}\right) \\
& +\int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) d_{q_{j}} \sigma d_{q_{j}} s+B \eta
\end{aligned}
$$

which implies

$$
\begin{aligned}
B= & -\sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right) \\
& -\frac{1}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right) \\
& -\frac{1}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(T-t_{k}\right) \\
& +\frac{1}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) d_{q_{j}} \sigma d_{q_{j}} s-\frac{1}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) d_{q_{m}} \sigma d_{q_{m}} s .
\end{aligned}
$$

Substituting the constant B into (3.7), we obtain (3.1) as required.

In view of Lemma 3.1, we define an operator $\mathcal{A}: P C(J, \mathbb{R}) \rightarrow P C(J, \mathbb{R})$ by

$$
\begin{align*}
(\mathcal{A} x)(t)= & -t \sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right) \\
& -\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right) \\
& -\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(T-t_{k}\right) \\
& +\frac{t}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) d_{q_{j}} \sigma d_{q_{j}} s \\
& -\frac{t}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) d_{q_{m}} \sigma d_{q_{m}} s \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s+I_{k}\left(x\left(t_{k}\right)\right)\right) \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+I_{k}^{*}\left(x\left(t_{k}\right)\right)\right)\left(t-t_{k}\right) \\
& +\int_{t_{k}}^{t} \int_{t_{k}}^{s} f(\sigma, x(\sigma)) d_{q_{k}} \sigma d_{q_{k}} s . \tag{3.8}
\end{align*}
$$

It should be noticed that problem (1.1) has solutions if and only if the operator \mathcal{A} has fixed points.

For convenience, we set

$$
\begin{align*}
& \Phi_{k}=\left[\left(t_{k}-t_{k-1}\right)\left(T-t_{k}\right)+\frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}\right] M_{1}+M_{2}+\left(T-t_{k}\right) M_{3}, \tag{3.9}\\
& \Psi_{k}=\left[\left(t_{k}-t_{k-1}\right)\left(T-t_{k}\right)+\frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}\right] L_{1}+L_{2}+\left(T-t_{k}\right) L_{3}, \tag{3.10}
\end{align*}
$$

for $k=1, \ldots, m$.

Theorem 3.2 Assume that:

$\left(\mathrm{H}_{1}\right)$ The function $f:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous and there exists a constant $L_{1}>0$ such that $|f(t, x)-f(t, y)| \leq L_{1}|x-y|$, for each $t \in J$ and $x, y \in \mathbb{R}$.
$\left(\mathrm{H}_{2}\right)$ The functions $I_{k}, I_{k}^{*}: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and there exist constants $L_{2}, L_{3}>0$ such that $\left|I_{k}(x)-I_{k}(y)\right| \leq L_{2}|x-y|$ and $\left|I_{k}^{*}(x)-I_{k}^{*}(y)\right| \leq L_{3}|x-y|$ for each $x, y \in \mathbb{R}, k=$ $1,2, \ldots, m$.

If

$$
\begin{align*}
\Lambda:= & T \sum_{k=1}^{j}\left[\left(t_{k}-t_{k-1}\right) L_{1}+L_{3}\right]+\frac{T}{T-\eta} \sum_{k=j+1}^{m} \Psi_{k}+\frac{T L_{1}}{T-\eta}\left(\frac{\left(\eta-t_{j}\right)^{2}}{1+q_{j}}+\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}}\right) \\
& +\sum_{k=1}^{m} \Psi_{k}+\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}} L_{1} \leq \delta<1, \tag{3.11}
\end{align*}
$$

then the impulsive q_{k}-difference boundary value problem (1.1) has a unique solution on J.

Proof First, we transform the problem (1.1) into a fixed-point problem, $x=\mathcal{A} x$, where the operator \mathcal{A} is defined by (3.8). By using Banach's contraction principle, we shall show that \mathcal{A} has a fixed point which is the unique solution of problem (1.1).

Set $\sup _{t \in J}|f(t, 0)|=M_{1}<\infty, \sup \left\{\left|I_{k}(0)\right|: k=1,2, \ldots, m\right\}=M_{2}<\infty, \sup \left\{\left|I_{k}^{*}(0)\right|: k=\right.$ $1,2, \ldots, m\}=M_{3}<\infty$ and a constant

$$
\begin{align*}
\rho= & T \sum_{k=1}^{j}\left[\left(t_{k}-t_{k-1}\right) M_{1}+M_{3}\right]+\frac{T}{T-\eta} \sum_{k=j+1}^{m} \Phi_{k} \\
& +\frac{T M_{1}}{T-\eta}\left(\frac{\left(\eta-t_{j}\right)^{2}}{1+q_{j}}+\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}}\right) \\
& +\sum_{k=1}^{m} \Phi_{k}+\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}} M_{1} . \tag{3.12}
\end{align*}
$$

Choosing $r \geq \frac{\rho}{1-\varepsilon}$, where $\delta \leq \varepsilon<1$, we show that $\mathcal{A} B_{r} \subset B_{r}$, where $B_{r}=\{x \in P C(J, \mathbb{R})$: $\|x\| \leq r\}$. For $x \in B_{r}$, we have
$\|\mathcal{A} x\|$

$$
\leq \sup _{t \in J}\left\{t \sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}}|f(s, x(s))| d_{q_{k-1}} s+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)\right|\right)\right.
$$

$$
\begin{aligned}
& +\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s}|f(\sigma, x(\sigma))| d_{q_{k-1}} \sigma d_{q_{k-1}} s+\left|I_{k}\left(x\left(t_{k}\right)\right)\right|\right) \\
& +\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}}|f(s, x(s))| d_{q_{k-1}} s+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)\right|\right)\left(T-t_{k}\right) \\
& +\frac{t}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s}|f(\sigma, x(\sigma))| d_{q_{j}} \sigma d_{q_{j}} s+\frac{t}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s}|f(\sigma, x(\sigma))| d_{q_{m}} \sigma d_{q_{m}} s \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s}|f(\sigma, x(\sigma))| d_{q_{k-1}} \sigma d_{q_{k-1}} s+\left|I_{k}\left(x\left(t_{k}\right)\right)\right|\right) \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}}|f(s, x(s))| d_{q_{k-1}} s+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)\right|\right)\left(t-t_{k}\right) \\
& \left.+\int_{t_{k}}^{t} \int_{t_{k}}^{s}|f(\sigma, x(\sigma))| d_{q_{k}} \sigma d_{q_{k}} s\right\} \\
& \leq T \sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}}(|f(s, x(s))-f(s, 0)|+|f(s, 0)|) d_{q_{k-1}} s+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}(0)\right|+\left|I_{k}^{*}(0)\right|\right) \\
& +\frac{T}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s}(|f(\sigma, x(\sigma))-f(\sigma, 0)|+|f(\sigma, 0)|) d_{q_{k-1}} \sigma d_{q_{k-1}} s\right. \\
& \left.+\left|I_{k}\left(x\left(t_{k}\right)\right)-I_{k}(0)\right|+\left|I_{k}(0)\right|\right) \\
& +\frac{T}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}}(|f(s, x(s))-f(s, 0)|+|f(s, 0)|) d_{q_{k-1}} s\right. \\
& \left.+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}(0)\right|+\left|I_{k}^{*}(0)\right|\right)\left(T-t_{k}\right) \\
& +\frac{T}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s}(|f(\sigma, x(\sigma))-f(\sigma, 0)|+|f(\sigma, 0)|) d_{q_{j}} \sigma d_{q_{j}} s \\
& +\frac{T}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s}(|f(\sigma, x(\sigma))-f(\sigma, 0)|+|f(\sigma, 0)|) d_{q_{m}} \sigma d_{q_{m}} s \\
& +\sum_{k=1}^{m}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s}(|f(\sigma, x(\sigma))-f(\sigma, 0)|+|f(\sigma, 0)|) d_{q_{k-1}} \sigma d_{q_{k-1}} s\right. \\
& \left.+\left|I_{k}\left(x\left(t_{k}\right)\right)-I_{k}(0)\right|+\left|I_{k}(0)\right|\right) \\
& +\sum_{k=1}^{m}\left(\int_{t_{k-1}}^{t_{k}}(|f(s, x(s))-f(s, 0)|+|f(s, 0)|) d_{q_{k-1}} s\right. \\
& \left.+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}(0)\right|+\left|I_{k}^{*}(0)\right|\right)\left(T-t_{k}\right) \\
& +\int_{t_{m}}^{T} \int_{t_{m}}^{s}(|f(\sigma, x(\sigma))-f(\sigma, 0)|+|f(\sigma, 0)|) d_{q_{m}} \sigma d_{q_{m}} s \\
& \leq T \sum_{k=1}^{j}\left(\left(t_{k}-t_{k-1}\right)\left(L_{1} r+M_{1}\right)+L_{3} r+M_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{T}{T-\eta} \sum_{k=j+1}^{m}\left(\frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}\left(L_{1} r+M_{1}\right)+L_{2} r+M_{2}\right) \\
& +\frac{T}{T-\eta} \sum_{k=j+1}^{m}\left(\left(t_{k}-t_{k-1}\right)\left(L_{1} r+M_{1}\right)+L_{3} r+M_{3}\right)\left(T-t_{k}\right) \\
& +\frac{T}{T-\eta}\left(\frac{\left(\eta-t_{j}\right)^{2}}{1+q_{j}}+\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}}\right)\left(L_{1} r+M_{1}\right) \\
& +\sum_{k=1}^{m}\left(\frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}\left(L_{1} r+M_{1}\right)+L_{2} r+M_{2}\right) \\
& +\sum_{k=1}^{m}\left(\left(t_{k}-t_{k-1}\right)\left(L_{1} r+M_{1}\right)+L_{3} r+M_{3}\right)\left(T-t_{k}\right)+\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}}\left(L_{1} r+M_{1}\right) \\
& =r \Lambda+\rho \leq(\delta+1-\varepsilon) r \leq r .
\end{aligned}
$$

It follows that $\mathcal{A} B_{r} \subset B_{r}$.
For $x, y \in P C(J, \mathbb{R})$ and for each $t \in J$, we have

$$
\begin{aligned}
& \|\mathcal{A} x-\mathcal{A} y\| \\
& \leq \sup _{t \in J}\left\{t \sum_{k=1}^{j}\left(\int_{t_{k-1}}^{t_{k}}|f(s, x(s))-f(s, y(s))| d_{q_{k-1}} s+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}\left(y\left(t_{k}\right)\right)\right|\right)\right. \\
& +\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s}|f(\sigma, x(\sigma))-f(\sigma, y(\sigma))| d_{q_{k-1}} \sigma d_{q_{k-1}} s\right. \\
& \left.+\left|I_{k}\left(x\left(t_{k}\right)\right)-I_{k}\left(y\left(t_{k}\right)\right)\right|\right) \\
& +\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(\int_{t_{k-1}}^{t_{k}}|f(s, x(s))-f(s, y(s))| d_{q_{k-1}} s+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}\left(y\left(t_{k}\right)\right)\right|\right)\left(T-t_{k}\right) \\
& +\frac{t}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s}|f(\sigma, x(\sigma))-f(\sigma, y(\sigma))| d_{q_{j}} \sigma d_{q_{j}} s \\
& +\frac{t}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s}|f(\sigma, x(\sigma))-f(\sigma, y(\sigma))| d_{q_{m}} \sigma d_{q_{m}} s \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s}|f(\sigma, x(\sigma))-f(\sigma, y(\sigma))| d_{q_{k-1}} \sigma d_{q_{k-1}} s+\left|I_{k}\left(x\left(t_{k}\right)\right)-I_{k}\left(y\left(t_{k}\right)\right)\right|\right) \\
& +\sum_{0<t_{k}<t}\left(\int_{t_{k-1}}^{t_{k}}|f(s, x(s))-f(s, y(s))| d_{q_{k-1}} s+\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}\left(y\left(t_{k}\right)\right)\right|\right)\left(t-t_{k}\right) \\
& \left.+\int_{t_{k}}^{t} \int_{t_{k}}^{s}|f(\sigma, x(\sigma))-f(\sigma, y(\sigma))| d_{q_{k}} \sigma d_{q_{k}} s\right\} \\
& \leq T\|x-y\| \sum_{k=1}^{j}\left[\left(t_{k}-t_{k-1}\right) L_{1}+L_{3}\right]+\frac{T\|x-y\|}{T-\eta} \sum_{k=j+1}^{m}\left(\frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}} L_{1}+L_{2}\right) \\
& +\frac{T\|x-y\|}{T-\eta} \sum_{k=j+1}^{m}\left(\left(t_{k}-t_{k-1}\right) L_{1}+L_{3}\right)\left(T-t_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{T\|x-y\|}{T-\eta}\left(\frac{\left(\eta-t_{j}\right)^{2}}{1+q_{j}}+\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}}\right) L_{1} \\
& +\sum_{k=1}^{m}\left(\frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}} L_{1}+L_{2}\right)\|x-y\|+\sum_{k=1}^{m}\left(\left(t_{k}-t_{k-1}\right) L_{1}+L_{3}\right)\left(T-t_{k}\right)\|x-y\| \\
& +\frac{\left(T-t_{m}\right)^{2}}{1+q_{m}} L_{1}\|x-y\| \\
& =\Lambda\|x-y\| .
\end{aligned}
$$

As $\Lambda<1, \mathcal{A}$ is a contraction. Hence, by Banach's contraction mapping principle, we find that \mathcal{A} has a fixed point which is the unique solution of problem (1.1).

Our next result is based on Krasnoselskii's fixed-point theorem.

Lemma 3.3 (Krasnoselskii's fixed-point theorem) [19] Let M be a closed, bounded, convex and nonempty subset of a Banach space X. Let A, B be the operators such that (a) $A x+B y \in$ M whenever $x, y \in M$; (b) A is compact and continuous; (c) B is a contraction mapping. Then there exists $z \in M$ such that $z=A z+B z$.

Further, we use the notation

$$
\begin{align*}
\theta_{1}= & T \sum_{k=1}^{j}\left(t_{k}-t_{k-1}\right)+\frac{T}{T-\eta} \sum_{k=j+1}^{m} \frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}} \\
& +\frac{T}{T-\eta} \sum_{k=j+1}^{m}\left(T-t_{k}\right)\left(t_{k}-t_{k-1}\right)+\frac{T\left(\eta-t_{j}\right)^{2}}{(T-\eta)\left(1+q_{j}\right)} \\
& +\frac{T\left(T-t_{m}\right)^{2}}{(T-\eta)\left(1+q_{m}\right)}+\sum_{k=1}^{m+1} \frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}+\sum_{k=1}^{m}\left(T-t_{k}\right)\left(t_{k}-t_{k-1}\right), \tag{3.13}
\end{align*}
$$

and

$$
\begin{equation*}
\theta_{2}=j T N_{2}+\frac{(m-j) T N_{1}}{T-\eta}+m N_{1}+N_{2} \sum_{k=1}^{m}\left(T-t_{k}\right)+\frac{T N_{2}}{T-\eta} \sum_{j+1}^{m}\left(T-t_{k}\right) \tag{3.14}
\end{equation*}
$$

Theorem 3.4 Let $f: J \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Assume that $\left(\mathrm{H}_{2}\right)$ holds and in addition suppose that:
$\left(\mathrm{H}_{3}\right) \quad|f(t, x)| \leq \mu(t), \forall(t, x) \in J \times \mathbb{R}$, and $\mu \in C\left(J, \mathbb{R}^{+}\right)$.
$\left(\mathrm{H}_{4}\right)$ There exist constants $N_{1}, N_{2}>0$ such that $\left|I_{k}(x)\right| \leq N_{1}$ and $\left|I_{k}^{*}(x)\right| \leq N_{2}$ for all $x \in \mathbb{R}$, for $k=1,2, \ldots, m$.

Then the impulsive q_{k}-difference boundary value problem (1.1) has at least one solution on J provided that

$$
\begin{equation*}
j T L_{3}+m L_{2}+\frac{T(m-j) L_{2}}{T-\eta}+L_{3} \sum_{k=1}^{m}\left(T-t_{k}\right)<1 . \tag{3.15}
\end{equation*}
$$

Proof Firstly, we define $\sup _{t \in J}|\mu(t)|=\|\mu\|$. Choosing a suitable ball $B_{R}=\{x \in P C(J, \mathbb{R})$: $\|x\| \leq R\}$, where

$$
\begin{equation*}
R \geq\|\mu\| \theta_{1}+\theta_{2} \tag{3.16}
\end{equation*}
$$

and θ_{1}, θ_{2} are defined by (3.13), (3.14), respectively, we define the operators \mathcal{S}_{1} and \mathcal{S}_{2} on B_{R} by
$\left(\mathcal{S}_{1} x\right)(t)$

$$
\begin{aligned}
= & -t \sum_{k=1}^{j} \int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s-\frac{t}{T-\eta} \sum_{k=j+1}^{m} \int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s \\
& -\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(T-t_{k}\right) \int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+\frac{t}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s} f(\sigma, x(\sigma)) d_{q_{j}} \sigma d_{q_{j}} s \\
& -\frac{t}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s} f(\sigma, x(\sigma)) d_{q_{m}} \sigma d_{q_{m}} s+\sum_{0<t_{k}<t} \int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s} f(\sigma, x(\sigma)) d_{q_{k-1}} \sigma d_{q_{k-1}} s \\
& +\sum_{0<t_{k}<t}\left(t-t_{k}\right) \int_{t_{k-1}}^{t_{k}} f(s, x(s)) d_{q_{k-1}} s+\int_{t_{k}}^{t} \int_{t_{k}}^{s} f(\sigma, x(\sigma)) d_{q_{k}} \sigma d_{q_{k}} s, \quad t \in[0, T],
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\mathcal{S}_{2} x\right)(t)= & -t \sum_{k=1}^{j} I_{k}^{*}\left(x\left(t_{k}\right)\right)-\frac{t}{T-\eta} \sum_{k=j+1}^{m} I_{k}\left(x\left(t_{k}\right)\right)-\frac{t}{T-\eta} \sum_{k=j+1}^{m}\left(T-t_{k}\right) I_{k}^{*}\left(x\left(t_{k}\right)\right) \\
& +\sum_{0<t_{k}<t} I_{k}\left(x\left(t_{k}\right)\right)+\sum_{0<t_{k}<t}\left(t-t_{k}\right) I_{k}^{*}\left(x\left(t_{k}\right)\right), \quad t \in[0, T]
\end{aligned}
$$

For any $x, y \in B_{R}$, we have

$$
\begin{aligned}
\left\|\mathcal{S}_{1} x+\mathcal{S}_{2} y\right\| \leq & \|\mu\|\left[T \sum_{k=1}^{j}\left(t_{k}-t_{k-1}\right)+\frac{T}{T-\eta} \sum_{k=j+1}^{m} \frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}\right. \\
& +\frac{T}{T-\eta} \sum_{k=j+1}^{m}\left(T-t_{k}\right)\left(t_{k}-t_{k-1}\right)+\frac{T\left(\eta-t_{j}\right)^{2}}{(T-\eta)\left(1+q_{j}\right)} \\
& \left.+\frac{T\left(T-t_{m}\right)^{2}}{(T-\eta)\left(1+q_{m}\right)}+\sum_{k=1}^{m+1} \frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}+\sum_{k=1}^{m}\left(T-t_{k}\right)\left(t_{k}-t_{k-1}\right)\right] \\
& +j T N_{2}+\frac{(m-j) T N_{1}}{T-\eta}+m N_{1}+N_{2} \sum_{k=1}^{m}\left(T-t_{k}\right)+\frac{T N_{2}}{T-\eta} \sum_{j+1}^{m}\left(T-t_{k}\right) \\
= & \|\mu\| \theta_{1}+\theta_{2} \\
\leq & R .
\end{aligned}
$$

Hence, $\mathcal{S}_{1} x+\mathcal{S}_{2} y \in B_{R}$.

To show that \mathcal{S}_{2} is a contraction, for $x, y \in P C(J, \mathbb{R})$, we have

$$
\begin{aligned}
\left\|\mathcal{S}_{2} x-\mathcal{S}_{2} y\right\| \leq & T \sum_{k=1}^{j}\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}\left(y\left(t_{k}\right)\right)\right|+\frac{T}{T-\eta} \sum_{k=j+1}^{m}\left|I_{k}\left(x\left(t_{k}\right)\right)-I_{k}\left(y\left(t_{k}\right)\right)\right| \\
& +\sum_{k=1}^{m}\left|I\left(x\left(t_{k}\right)\right)-I_{k}\left(y\left(t_{k}\right)\right)\right|+\sum_{k=1}^{m}\left(t-t_{k}\right)\left|I_{k}^{*}\left(x\left(t_{k}\right)\right)-I_{k}^{*}\left(y\left(t_{k}\right)\right)\right| \\
\leq & {\left[j T L_{3}+m L_{2}+\frac{T(m-j) L_{2}}{T-\eta}+L_{3} \sum_{k=1}^{m}\left(T-t_{k}\right)\right]\|x-y\| . }
\end{aligned}
$$

From (3.15), it follows that \mathcal{S}_{2} is a contraction.
Next, the continuity of f implies that the operator \mathcal{S}_{1} is continuous. Further, \mathcal{S}_{1} is uniformly bounded on B_{R} by

$$
\left\|\mathcal{S}_{1} x\right\| \leq\|\mu\| \theta_{1} .
$$

Now we shall prove the compactness of \mathcal{S}_{1}. Setting $\sup _{(t, x) \in J \times B_{R}}|f(t, x)|=f^{*}<\infty$, then for each $\tau_{1}, \tau_{2} \in\left(t_{l}, t_{l+1}\right)$ for some $l \in\{0,1, \ldots, m\}$ with $\tau_{2}>\tau_{1}$, we have

$$
\begin{aligned}
&\left|\left(\mathcal{S}_{1} x\right)\left(\tau_{2}\right)-\left(\mathcal{S}_{1} x\right)\left(\tau_{1}\right)\right| \\
& \leq\left|\tau_{2}-\tau_{1}\right| \sum_{k=1}^{j} \int_{t_{k-1}}^{t_{k}}|f(s, x(s))| d_{q_{k-1}} s \\
&+\frac{\left|\tau_{2}-\tau_{1}\right|}{T-\eta} \sum_{k=j+1}^{m} \int_{t_{k-1}}^{t_{k}} \int_{t_{k-1}}^{s}|f(\sigma, x(\sigma))| d_{q_{k-1}} \sigma d_{q_{k-1}} s \\
&+\frac{\left|\tau_{2}-\tau_{1}\right|}{T-\eta} \sum_{k=j+1}^{m}\left(T-t_{k}\right) \int_{t_{k-1}}^{t_{k}}|f(s, x(s))| d_{q_{k-1}} s \\
&+\frac{\left|\tau_{2}-\tau_{1}\right|}{T-\eta} \int_{t_{j}}^{\eta} \int_{t_{j}}^{s}|f(\sigma, x(\sigma))| d_{q_{j}} \sigma d_{q_{j}} s \\
&+\frac{\left|\tau_{2}-\tau_{1}\right|}{T-\eta} \int_{t_{m}}^{T} \int_{t_{m}}^{s}|f(\sigma, x(\sigma))| d_{q_{m}} \sigma d_{q_{m}} s+\left|\tau_{2}-\tau_{1}\right| \sum_{k=1}^{l} \int_{t_{k-1}}^{t_{k}}|f(s, x(s))| d_{q_{k-1}} s \\
&+\left|\int_{t_{l}}^{\tau_{2}} \int_{t_{l}}^{s}\right| f(\sigma, x(\sigma))\left|d_{q_{l}} \sigma d_{q_{l}} s-\int_{t_{l}}^{\tau_{1}} \int_{t_{l}}^{s}\right| f(\sigma, x(\sigma))\left|d_{q_{l}} \sigma d_{q_{l}} s\right| \\
& \leq\left|\tau_{2}-\tau_{1}\right| f^{*}\left[\sum_{k=1}^{j}\left(t_{k}-t_{k-1}\right)+\frac{1}{T-\eta} \sum_{k=j+1}^{m} \frac{\left(t_{k}-t_{k-1}\right)^{2}}{1+q_{k-1}}+\frac{\left(\eta-t_{j}\right)^{2}}{(T-\eta)\left(1+q_{j}\right)}\right. \\
&+\frac{\left(T-t_{m}\right)^{2}}{(T-\eta)\left(1+q_{m}\right)}+\frac{1}{T-\eta} \sum_{k=j+1}^{m}\left(T-t_{k}\right)\left(t_{k}-t_{k-1}\right) \\
&\left.+\sum_{k=1}^{l}\left(t_{k}-t_{k-1}\right)+\frac{\left(\tau_{1}+\tau_{2}+2 t_{l}\right)}{1+q_{l}}\right] .
\end{aligned}
$$

As $\tau_{1} \rightarrow \tau_{2}$, the right hand side above (which is independent of x) tends to zero. Therefore, the operator \mathcal{S}_{1} is equicontinuous. Since \mathcal{S}_{1} maps bounded subsets into relatively compact
subsets, it follows that \mathcal{S}_{1} is relative compact on B_{R}. Hence, by the Arzelá-Ascoli theorem, \mathcal{S}_{1} is compact on B_{R}. Thus all the assumptions of Lemma 3.3 are satisfied. Hence, by the conclusion of Lemma 3.3, the impulsive q_{k}-difference boundary value problem (1.1) has at least one solution on J.

4 Examples

Example 4.1 Consider the following nonlinear second-order impulsive q_{k}-difference equation with three-point boundary condition:

$$
\left\{\begin{array}{l}
D_{\frac{4}{5+k}}^{2} x(t)=\frac{e^{-\cos ^{2} t|x(t)|}}{(6+t)^{2}(1+|x(t)|)}, \quad t \in J=[0,1], t \neq t_{k}=\frac{k}{10}, \tag{4.1}\\
\Delta x\left(t_{k}\right)=\frac{\left|x\left(t_{k}\right)\right|}{8\left(7+\left|x\left(t_{k}\right)\right|\right)}, \quad k=1,2, \ldots, 9, \\
D_{\frac{4}{5+k}} x\left(t_{k}^{+}\right)-D_{\frac{4}{4+k}} x\left(t_{k}\right)=\frac{1}{6} \tan ^{-1}\left(\frac{1}{8} x\left(t_{k}\right)\right), \quad k=1,2, \ldots, 9, \\
x(0)=0, \quad x(1)=x\left(\frac{1}{4}\right) .
\end{array}\right.
$$

Here $q_{k}=4 /(5+k)$ for $k=0,1,2, \ldots, 9, m=9, T=1, \eta=1 / 4, j=2, f(t, x)=\left(e^{\left.-\cos ^{2} t|x|\right) /}\right.$ $\left((6+t)^{2}(1+|x|)\right), I_{k}(x)=|x| /(8(7+|x|))$ and $I_{k}^{*}(x)=(1 / 6) \tan ^{-1}(x / 8)$. Since

$$
\begin{aligned}
& |f(t, x)-f(t, y)| \leq(1 / 36)|x-y| \\
& \left|I_{k}(x)-I_{k}(y)\right| \leq(1 / 56)|x-y| \quad \text { and } \quad\left|I_{k}^{*}(x)-I_{k}^{*}(y)\right| \leq(1 / 48)|x-y|
\end{aligned}
$$

then $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ are satisfied with $L_{1}=(1 / 36), L_{2}=(1 / 56), L_{3}=(1 / 48)$. We can show that

$$
\Lambda \approx 0.5730986482<1
$$

Hence, by Theorem 3.2, the three-point impulsive q_{k}-difference boundary value problem (4.1) has a unique solution on $[0,1]$.

Example 4.2 Consider the following nonlinear second-order impulsive q_{k}-difference equation with three-point boundary condition:

$$
\left\{\begin{array}{l}
D_{\frac{3}{6}}^{2} x(t)=\frac{\sin ^{2}(\pi t)}{(t+4)^{2}} \frac{|x(t)|}{(1+|x(t)| \mid)}, \quad t \in J=[0,1], t \neq t_{k}=\frac{k}{10}, \tag{4.2}\\
\Delta x\left(t_{k}\right)=\frac{\left|x\left(t_{k}\right)\right|}{9\left(7+\left|x\left(t_{k}\right)\right|\right)}, \quad k=1,2, \ldots, 9, \\
D_{\frac{3}{6+k}} x\left(t_{k}^{+}\right)-D_{\frac{3}{5+k}} x\left(t_{k}\right)=\frac{\left|x\left(t_{k}\right)\right|}{4\left(5+\left|x\left(t_{k}\right)\right|\right)}, \quad k=1,2, \ldots, 9, \\
x(0)=0, \quad x(1)=x\left(\frac{9}{20}\right) .
\end{array}\right.
$$

Set $q_{k}=3 /(6+k)$ for $k=0,1,2, \ldots, 9, m=9, T=1, \eta=9 / 20, j=4, f(t, x)=\left(\sin ^{2}(\pi t)|x|\right) /$ $\left((t+4)^{2}(1+|x|)\right), I_{k}(x)=|x| /(9(7+|x|))$ and $I_{k}^{*}(x)=|x| /(4(5+|x|))$. Since

$$
\left|I_{k}(x)-I_{k}(y)\right| \leq(1 / 63)|x-y| \quad \text { and } \quad\left|I_{k}^{*}(x)-I_{k}^{*}(y)\right| \leq(1 / 20)|x-y|
$$

then $\left(\mathrm{H}_{2}\right)$ is satisfied with $L_{2}=(1 / 63), L_{3}=(1 / 20)$. It is easy to verify that $|f(t, x)| \leq \mu(t) \equiv 1$, $I_{k}(x) \leq N_{1}=1 / 9$ and $I_{k}^{*}(x) \leq N_{2}=1 / 4$ for all $t \in[0,1], x \in \mathbb{R}, k=1, \ldots, m$. Thus $\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{4}\right)$ are satisfied. We can show that

$$
j T L_{3}+m L_{2}+\frac{T(m-j) L_{2}}{T-\eta}+L_{3} \sum_{k=1}^{m}\left(T-t_{k}\right)=\frac{19741}{27720}<1 .
$$

Hence, by Theorem 3.3, the three-point impulsive q_{k}-difference boundary value problem (4.2) has at least one solution on $[0,1]$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally in this article. They read and approved the final manuscript.

Author details

'Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand. ${ }^{2}$ Department of Mathematics, University of Ioannina, Ioannina, 451 10, Greece.

Authors' information

Sotiris K Ntouyas is a member of Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group at King Abdulaziz University, Jeddah, Saudi Arabia.

Acknowledgements

This research of J Tariboon is supported by King Mongkut's University of Technology North Bangkok, Thailand.
Received: 11 November 2013 Accepted: 7 January 2014 Published: 27 Jan 2014

References

1. Tariboon, J, Ntouyas, SK: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282 (2013)
2. Kac, V, Cheung, P: Quantum Calculus. Springer, New York (2002)
3. Bangerezako, G: Variational q-calculus. J. Math. Anal. Appl. 289, 650-665 (2004)
4. Dobrogowska, A, Odzijewicz, A: Second order q-difference equations solvable by factorization method. J. Comput. Appl. Math. 193, 319-346 (2006)
5. Gasper, G, Rahman, M: Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 13, 389-405 (2007)
6. Ismail, MEH, Simeonov, P: q-Difference operators for orthogonal polynomials. J. Comput. Appl. Math. 233, 749-761 (2009)
7. Bohner, M, Guseinov, GS: The h-Laplace and q-Laplace transforms. J. Math. Anal. Appl. 365, 75-92 (2010)
8. El-Shahed, M, Hassan, HA: Positive solutions of q-difference equation. Proc. Am. Math. Soc. 138, 1733-1738 (2010)
9. Ahmad, B: Boundary-value problems for nonlinear third-order q-difference equations. Electron. J. Differ. Equ. 94, 1-7 (2011)
10. Ahmad, B, Alsaedi, A, Ntouyas, SK: A study of second-order q-difference equations with boundary conditions. Adv. Differ. Equ. 2012, 35 (2012)
11. Ahmad, B, Ntouyas, SK, Purnaras, IK: Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Commun. Appl. Nonlinear Anal. 19, 59-72 (2012)
12. Ahmad, B, Nieto, JJ: On nonlocal boundary value problems of nonlinear q-difference equations. Adv. Differ. Equ. 2012, 81 (2012)
13. Ahmad, B, Ntouyas, SK: Boundary value problems for q-difference inclusions. Abstr. Appl. Anal. 2011, Article ID 292860 (2011)
14. Zhou, W, Liu, H: Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2013, 113 (2013)
15. Yu, C, Wang, J: Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives. Adv. Differ. Equ. 2013, 124 (2013)
16. Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
17. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)
18. Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing Corporation, New York (2006)
19. Krasnoselskii, MA: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123-127 (1955)

10.1186/1687-1847-2014-31

Cite this article as: Tariboon and Ntouyas: Three-point boundary value problems for nonlinear second-order impulsive q-difference equations. Advances in Difference Equations 2014, 2014:31

