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Abstract

In this paper, we establish a functional generalization of diamond-a integral Dresher’s
inequality on time scales. Its reverse form is also considered.
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1 Introduction
In the fifties of the previous century, Beckenbach [1] introduced a famous inequality as
follows.

Letl<p<2andwx;,y;>0,i=1,...,n. Then

Z?:l (s +yi)p
Z?:l (x; + yt)Pil

Sud Sl

=< - —. (1.1)
Y XLl

The following integral version of the above-mentioned discrete inequality is due to
Dresher [2] (see also [3]):

Assume that f(x) and g(x) are non-negative and continuous real-valued functions on
[a,b],and 0 < r <1 < p, then

(f: (f(x) + g(x))? dx)”“’_’) - (fabfp(x) dx)l/(p_r) + (M)N@_r), (1.2)

[P (F0) + g@)y dx [ fr(x) dx [? gr(x) dax

From that time, some generalizations of the Beckenbach-Dresher inequality (1.1) and (1.2)
have appeared. Here, we refer to the papers of Pecari¢ and Beesack [4], Petree and Persson
[5], Persson [6] , VaroSanec [7], Anwar et al. [8], and Nikolova et al. [9], where the reader
can find literature related to this inequality. Recently, Zhao [10] gave the following reverse
Dresher’s inequality.

Assume that f(x) and g(x) are non-negative and continuous real-valued functions on
[a,b],and p < 0 <r <1, then

(ff () + gy dx)”“’") . (W)W—” . <M)”M. 13)

[P () + g@)y dx T\ S fr(x) dx 17 gr(x) dax
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The aim of this work is to give a functional generalization of diamond-« integral

Dresher’s inequality for time scales. Its reverse form is also presented.

2 Main results

Let T be a time scale; that is, T is an arbitrary nonempty closed subset of real numbers. The
set of the real numbers, the integers, the natural numbers, and the Cantor set are examples
of time scales. But the open interval between 0 and 1, the rational numbers, the irrational
numbers, and the complex numbers are not time scales. Let a,b € T. We now suppose
that the reader is familiar with some basic facts from the theory of time scales, which can
also be found in [11-22], and of delta, nabla and diamond-« dynamic derivatives.

Our main results are given in the following theorems.

Theorem 2.1 (Dresher’s inequality) Let T be a time scale a,b € T witha <band 0 <r <
1 < p. Let Hi(x1,%2,...,%1) > 0, Fp(x1,%0,...,%) and Gi(x1,%2,...,x¢) be three arbitrary
functions of I, m and k variables, respectively. Assume that {fi(x)}, { g,»(x)}f‘=1 and {hi(x)}g=1
are continuous real-valued functions on [a, b, then

(fab Hl(hh hZ’ ceey hl)lFm(fh PEIRRE 1fm) + Gk(gligb “ee rgk)|p0ax)1/(p_r)
J2Hyhy hoy o s )\ (o for oo fon) + Gr(@1 @20, @Ot
3 ( S Hulhs, s .., )| Eunf, 2,...,fm)|1’<>o,x>“@—'>
T NS Hh, o 1) E(fofor o fon) 7Ot
. ( f;’Hl(hl,hz,...,hl)|Gk(g1,gz,...,gk>|p<>ax)”“””
fale(hb th ceey hl)|Gk(g1’g2) v rgk)|r<>01x

2.1)

there is equality only when the functions |F,,(fi,f2, .- ., fm)| and |Gr(g1, 82, . ..,8x)| are effec-

tively proportional.

Proof First, we have

b 1(p-r)
(/ Hl(hly h2, ey hl)|Fm(f1; 2y yfm) + Gk(ghgb “ee :gk)|p<>ax>

b 1/p b 1/p\ pl/(p-1)
5(( / H1|Fm|ﬂ<>ax) +< / H,|Gk|1’<>ax) ) (2.2)

by Minkowski’s inequality on time scales [18]. Next, by the right-hand side of the above

inequality, we have

b 1p b p\ p/(p-7)
((/ H1|Fm|p<>ax> + (/ H1|Gk|p<>ax> )
J? HF P 0ux\ P ([ ur
(e e
fa H1|Fm|r<>ozx a

(f:HzlelpOax)”p(/‘me ‘o )1/p)p/<p—r>
"\ L 1Gi| X .
Y Hil Gyl g
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We apply Holder’s inequality to the above equality to obtain
S HilElPOux\ P (1P U
(S22 ([ aprous)
fa H1|Fm|r<>ax a
b 1/, b 1/ /(p-1)
H)|Gi[P<Ogx\ P P\ P
(rares) ([ mares)’)
fa H1|Gk|r<>ax a
<((IZH1|Fm|P<>ax>“‘”"> (fsz|Gk|P<>ax>“<P-’>)
<((EH— +| G
S HilEplr g S HilGilr g
b 1/r b 1/r\ rl(p-r)
X ((/ H1|Fm|r<>ax) + (/ H1|Gk|r<>ax) ) . (2.3)

By applying reverse Minkowski’s inequality with 0 < r < 1, we obtain

b 1/r b 1r\ r b
((/ H1|Fm|r<>ozx) +(/ Hl|Gk|r<>ax) ) S/ H|Fy + Gi|" . (2.4)

From (2.2), (2.3) and (2.4), we obtain the desired inequality. O

Corollary 2.1 (T =R) Let 0 <r <1 < p. Let Hi(x1,%5,...,%;) > 0, F,,(x1,%,...,%,) and
Gi(x1,%2,...,xx) be three arbitrary functions of I, m and k variables, respectively. Assume
that {f;(x)}/, {g,'(x)}f:1 and {hi(x)}f:1 are continuous real-valued functions on [a, b), then

(fsz(hl,hz,...,hz)|Pm<f1, 2,...,fm>+Gk(gl,gz,...,gk)wdx)“("-”
[P Hihy, hoy . B E(Fisfos o fon) + G180 @)1 d

B (f;’Hxhl,hz,...,hl)|Fm(f1,f2,...,fm)wdx)”@’)
B fale(hlth)n-;hl)lFm(ﬁ} 2;'~~’fm)|rdx

. ( [ Hy(h, hay .. 1) | G812, 0)IP dx)l/@”
fale(hl’h27‘ . -7hl)|Gk(g1:g21 .. '7gk)|rdx

(2.5)

there is equality only when the functions |F,,(fi,f2, - - ., fu)| and |Gi(g1,82, ..., 2x)| are effec-
tively proportional.

Corollary 2.2 (T =Z) Let 0 <r <1 < p. Let Hj(x1,%2,...,%1) > 0, Fy(x1,%2,...,%,,) and
Gi(x1,%2,...,xx) be three arbitrary functions of I, m and k variables, respectively. Assume

that {an, ap, ..., 4imYys {ba,bios ..., b}y and {ca,c,. .., ciy}l, are real numbers for any
m,k,l € N, then

(271 Hi(cis cins o os Ci)|Emlains ains . . ., aim) + Gr(bi, by, . -~rbik)|p)1/(p_r)
Yol Hiea, cios ..o ci)|Fulan, an, ..., aim) + Gi(bi, big, ..., b |”

1(p-
< (Z?:lHZ(CiI:CiZ:'urCil)|Fm(ﬂi1;ﬂi2r'n,ﬂim)|p) -
~\ XL Hilea, ¢is - c)|Fmlan, an, - ..., aim)|”

/(p-r
(Z?:lHl(CibCﬂxuwcil)|Gk(bi1,bi2:'-~tbik)|p)1 v ), (2.6)

Yo Hileascin o cit)|Gi(bin bigs .., bi) 1"
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there is equality only when the functions |F,(aa,di, ..., &im)| and |Gi(ba, bia, ..., bi)| are
effectively proportional.

Theorem 2.2 (reverse Dresher’s inequality) Let T be a time scale, a,b € T with a < b and
p<0<r<1l Let Hx1,%,...,%;) >0, Fry(x1,%2, ...,%,) and Gi(x1,%3,...,xx) be three ar-
bitrary functions of I, m and k variables, respectively. Assume that {f;(x)}",, {gi/(x)}*, and
{hi(x)}f=1 are continuous real-valued functions on [a, b]T, then

(fab Hl(hl: h2r ceey hl)lFm(fl: PIRRE 7fm) + Gk(gl:gZ: “ee rgk)|poax)l/(p_r)
1Y Hilh, hay e B)VE(Fisfor - ofon) + Gi(@1, 8201 O Ok
. ( L Hy(h, o, ) En(f, 2,...,fm)|1’<>ax)”(”-’>
T NS H, o 1) E(fofor o fon) 7Ot
. ( f;’Hxhhhz,...,hz)|Gk(g1,g2,...,gk>|19<>ax)”“””
JL Hilh, ha, . 1) |Gi(@1, @0 @O Ok

2.7)

there is equality only when the functions |F,,(fi,f2, - - -, fu)| and |Gi(g1, 82, ..., 2x)| are effec-
tively proportional.

Proof Letoy > 0,05 >0, 81 >0,and B, > 0,and -1 < A < 0, applying the following Radon’s
inequality (see [23]):

u i Qo @)
A

x> 0,ar>0,0<p<l,

we have
0‘?:1 N ay*! < (g + 062)’\:1, 2.8)
Bi B5 (B1 + B2)
there is equality only when (&) and (8) are proportional. Let
b Up
o = (/ Hy(hi,ha, ..., h)| Fm(fis 2,...,f,,1)]"<>ax) , (2.9)
b 1/r
,31 = (/ Hl(hl;h21"':hl)|Fm(ﬁ, 27~-«1fm)| <>o(x> ’ (2'10)
b 1/p
Oy = </ Hl(hlihZ"";hl)|Gk(g1;g2;-~~1gk)|p<>ax> ) (2'11)
b 1/r
ﬂZ = (/ Hl(hl)hZJ~~¢hl)|Gk(g1:g21"'¢gk)| <>ax> ) (212)
a

and set A = p% From (2.8)-(2.12), we have

re

a{dl a;&l
A + A
Bt B

S H W) Elfo for o fi) P Oa) S
(2 Hilhi, oy, 1) Ea(fis for oo fon) )™
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f Hi(hy, hay .. 1) | Gi(g1, @2« - G1) [P Oqix) D2

2 Hyhy, o, .., 1) | G182, - @I O

~ (fﬂ Hy(hy, by, ..., )| Fu(fy, 2’_“,fm)|p<>ax>l/(p—r)

f:Hl(l’lb hoyeo s B)IEu(fofor - oo fn) T On

+ (fabHl(hl’hz"'"hl)IGk(ghgz,...,gk)lpoaxy/(p_r) TR Vi
fale(hl,hz,...,h1)|G1<(g1,g2,,“,gk)|r<>ax = (B + o)
L HUE Ay f)POad)™ + ([} HilGi(gr, -, @O ) P)P0)
[y HUEn (oo fn) a4 ([ HilGi(giy ., g1 )71

(213)

Since -1 < A = lﬁ < 0, we may assume p < 0 < r, and by Minkowski’s inequality for p < 0

and 0 < 7 <1, we obtain respectively

b 1/p b Upqp
|:(/ H]’Fm(ﬂ,...,fm)’poax> +</ Hlka(gl,..,,gk)|P<>ax> i|

b
> / HYEwlfi o ofon) + Gl -, g0 O (2.14)

there is equality only when |F,,,(fi,...,fin)| and |Gi(g1, . ..,gx)| are proportional, and

b 1/r b 1/rqr
|:</ H1|Fm(ﬁr~-:fm)|r<>ax> + </ Hl|Gk(g1’~"’gk)|r<>ax> ]

b
< / HY|En(fis - ofon) + Gr(grr - &) (2.15)

with equality if and only if |F,,(f1, ..., fn)| and |Gk(g, . ..,g)| are proportional.

From equality conditions for (2.8), (2.14) and (2.15), it follows that the sign of equality
in (2.7) holds if and only if |F,,(f1, ..., f)| and |G(g, .. .,g)| are proportional.

From (2.13)-(2.15), we arrive at reverse Dresher’s inequality, and the theorem is com-
pletely proved. |

Corollary 2.3 (T =R) Let p <0 <r <1. Let Hi(x1,%,...,x1) >0, F,(x1,%2,...,%,,) and
Gi(x1,%2,...,xx) be three arbitrary functions of [, m and k variables, respectively. Assume

that {fi(x)}7, { gl(x)}f;1 and {hi(ac)}ﬁz1 are continuous real-valued functions on [a, D], then

( [P Hyh, hay s B)\E(Finfor o fon) + Gi(81, 220 -, @O dx)l“f”)
fale(hl: h2’ .. -;hl)|Fm(f1) 27 ;fm) + Gk(gl:gZ’ oo ’gk)|rdx
. ( S Hh hay e 1) En(fosfor oo fon) P dx)l’“’-”
NP Hihy by W) E(fifos e fi) I dx
. ( JL Hi(h s ) GG g2 - @OV dx)““’-’)
L Hyh, o )| Gilgr, 2, . " d

(2.16)

there is equality only when the functions |F,,(fi,fa, ..., fm)| and |Gi(g1,£2, .- .,8)| are pro-
portional.
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Corollary 2.4 (T =Z) Let p <0 <r <1. Let Hi(x1,%3,...,%1) > 0, Fy,(%1,%2,...,%,) and
Gi(x1,%2,...,%k) be three arbitrary functions of I, m and k variables, respectively. Assume
that {apn, ap, ..., GimY s (b, bios ..., b}y and {ca, ¢, ..., ci}}, are real numbers for any
m,k,l €N, then

(Z?:lHl(CibciZw--vcil)lFm(ﬂilxﬂib cooaim) + Gr(ba, by, . ..,bik)|p>1/(p_r)
Y Hilea,cin o cit)|Flan, ain, ..., aim) + Gi(ba, bia, ..., bi)|”

1/(p—
> (Z;’lHl(CihCl‘Z)H'rCil)lFm(ail)aiZI--waim)lp) -
~\ XYL Hi(ca, cis - ci)|Fmlan, ai, . ..., aim)|”

n 1/(p-r)
(ZiﬂHl(Cﬂ,Ciz,..~,Ci1)|Gk(bi1,biz,---»bikﬂp) v , (2.17)

Yo Hileascins o cit)|Gr(bin, bins ., b1

there is equality only when the functions |F,, (a1, ai, ..., aim)| and |Gr(ba, b, ..., bi)| are

proportional.
Obviously, Corollaries 2.2 and 2.4 are well known for the integers.

Remark 2.1 Let {fi(x,)}7, {gi(x, y)}i.‘=1 and {/;(x, y)}f=1 be continuous real-valued func-
tions on [a, b]t x [a,b]T, and H}, F,, and Gi be defined as in Theorem 2.1, then by The-
orems 2.1 and 2.2, we obtain functional generalizations of two-dimensional diamond-«

integral Dresher’s inequality and reverse Dresher’s inequality on time scales.
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