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Abstract
In this paper, we establish a functional generalization of diamond-α integral Dresher’s
inequality on time scales. Its reverse form is also considered.
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1 Introduction
In the fifties of the previous century, Beckenbach [] introduced a famous inequality as
follows.
Let ≤ p ≤  and xi, yi > , i = , . . . ,n. Then

∑n
i= (xi + yi)p∑n

i= (xi + yi)p–
≤

∑n
i= x

p
i∑n

i= x
p–
i

+
∑n

i= y
p
i∑n

i= y
p–
i

. (.)

The following integral version of the above-mentioned discrete inequality is due to
Dresher [] (see also []):
Assume that f (x) and g(x) are non-negative and continuous real-valued functions on

[a,b], and  < r ≤ ≤ p, then

(∫ b
a (f (x) + g(x))p dx∫ b
a (f (x) + g(x))r dx

)/(p–r)

≤
(∫ b

a f p(x)dx∫ b
a f r(x)dx

)/(p–r)

+
(∫ b

a gp(x)dx∫ b
a gr(x)dx

)/(p–r)

. (.)

From that time, some generalizations of the Beckenbach-Dresher inequality (.) and (.)
have appeared. Here, we refer to the papers of Pečarić and Beesack [], Petree and Persson
[], Persson [] , Varošanec [], Anwar et al. [], and Nikolova et al. [], where the reader
can find literature related to this inequality. Recently, Zhao [] gave the following reverse
Dresher’s inequality.
Assume that f (x) and g(x) are non-negative and continuous real-valued functions on

[a,b], and p ≤ ≤ r ≤ , then

(∫ b
a (f (x) + g(x))p dx∫ b
a (f (x) + g(x))r dx

)/(p–r)

≥
(∫ b

a f p(x)dx∫ b
a f r(x)dx

)/(p–r)

+
(∫ b

a gp(x)dx∫ b
a gr(x)dx

)/(p–r)

. (.)
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The aim of this work is to give a functional generalization of diamond-α integral
Dresher’s inequality for time scales. Its reverse form is also presented.

2 Main results
Let T be a time scale; that is, T is an arbitrary nonempty closed subset of real numbers. The
set of the real numbers, the integers, the natural numbers, and the Cantor set are examples
of time scales. But the open interval between  and , the rational numbers, the irrational
numbers, and the complex numbers are not time scales. Let a,b ∈ T. We now suppose
that the reader is familiar with some basic facts from the theory of time scales, which can
also be found in [–], and of delta, nabla and diamond-α dynamic derivatives.
Our main results are given in the following theorems.

Theorem . (Dresher’s inequality) Let T be a time scale a,b ∈ T with a < b and  < r ≤
 ≤ p. Let Hl(x,x, . . . ,xl) > , Fm(x,x, . . . ,xm) and Gk(x,x, . . . ,xk) be three arbitrary
functions of l,mand k variables, respectively.Assume that {fi(x)}mi=, {gi(x)}ki= and {hi(x)}li=
are continuous real-valued functions on [a,b]T, then

(∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|r♦αx

)/(p–r)

≤
(∫ b

a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|r♦αx

)/(p–r)

+
(∫ b

a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|r♦αx

)/(p–r)

, (.)

there is equality only when the functions |Fm(f, f, . . . , fm)| and |Gk(g, g, . . . , gk)| are effec-
tively proportional.

Proof First, we have

(∫ b

a
Hl(h,h, . . . ,hl)

∣∣Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)
∣∣p♦αx

)/(p–r)

≤
((∫ b

a
Hl|Fm|p♦αx

)/p

+
(∫ b

a
Hl|Gk|p♦αx

)/p)p/(p–r)

(.)

by Minkowski’s inequality on time scales []. Next, by the right-hand side of the above
inequality, we have

((∫ b

a
Hl|Fm|p♦αx

)/p

+
(∫ b

a
Hl|Gk|p♦αx

)/p)p/(p–r)

=
((∫ b

a Hl|Fm|p♦αx∫ b
a Hl|Fm|r♦αx

)/p(∫ b

a
Hl|Fm|r♦αx

)/p

+
(∫ b

a Hl|Gk|p♦αx∫ b
a Hl|Gk|r♦αx

)/p(∫ b

a
Hl|Gk|r♦αx

)/p)p/(p–r)

.
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We apply Hölder’s inequality to the above equality to obtain

((∫ b
a Hl|Fm|p♦αx∫ b
a Hl|Fm|r♦αx

)/p(∫ b

a
Hl|Fm|r♦αx

)/p

+
(∫ b

a Hl|Gk|p♦αx∫ b
a Hl|Gk|r♦αx

)/p(∫ b

a
Hl|Gk|r♦αx

)/p)p/(p–r)

≤
((∫ b

a Hl|Fm|p♦αx∫ b
a Hl|Fm|r♦αx

)/(p–r)

+
(∫ b

a Hl|Gk|p♦αx∫ b
a Hl|Gk|r♦αx

)/(p–r))

×
((∫ b

a
Hl|Fm|r♦αx

)/r

+
(∫ b

a
Hl|Gk|r♦αx

)/r)r/(p–r)

. (.)

By applying reverse Minkowski’s inequality with  < r < , we obtain

((∫ b

a
Hl|Fm|r♦αx

)/r

+
(∫ b

a
Hl|Gk|r♦αx

)/r)r

≤
∫ b

a
Hl|Fm +Gk|r♦αx. (.)

From (.), (.) and (.), we obtain the desired inequality. �

Corollary . (T = R) Let  < r ≤  ≤ p. Let Hl(x,x, . . . ,xl) > , Fm(x,x, . . . ,xm) and
Gk(x,x, . . . ,xk) be three arbitrary functions of l, m and k variables, respectively. Assume
that {fi(x)}mi=, {gi(x)}ki= and {hi(x)}li= are continuous real-valued functions on [a,b], then

(∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|p dx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|r dx

)/(p–r)

≤
(∫ b

a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|p dx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|r dx

)/(p–r)

+
(∫ b

a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|p dx∫ b
a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|r dx

)/(p–r)

, (.)

there is equality only when the functions |Fm(f, f, . . . , fm)| and |Gk(g, g, . . . , gk)| are effec-
tively proportional.

Corollary . (T = Z) Let  < r ≤  ≤ p. Let Hl(x,x, . . . ,xl) > , Fm(x,x, . . . ,xm) and
Gk(x,x, . . . ,xk) be three arbitrary functions of l, m and k variables, respectively. Assume
that {ai,ai, . . . ,aim}ni=, {bi,bi, . . . ,bik}ni= and {ci, ci, . . . , cil}ni= are real numbers for any
m,k, l ∈N, then

(∑n
i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim) +Gk(bi,bi, . . . ,bik)|p∑n
i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim) +Gk(bi,bi, . . . ,bik)|r

)/(p–r)

≤
(∑n

i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim)|p∑n
i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim)|r

)/(p–r)

+
(∑n

i=Hl(ci, ci, . . . , cil)|Gk(bi,bi, . . . ,bik)|p∑n
i=Hl(ci, ci, . . . , cil)|Gk(bi,bi, . . . ,bik)|r

)/(p–r)

, (.)
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there is equality only when the functions |Fm(ai,ai, . . . ,aim)| and |Gk(bi,bi, . . . ,bik)| are
effectively proportional.

Theorem . (reverse Dresher’s inequality) Let T be a time scale, a,b ∈ T with a < b and
p ≤  ≤ r ≤ . Let Hl(x,x, . . . ,xl) > , Fm(x,x, . . . ,xm) and Gk(x,x, . . . ,xk) be three ar-
bitrary functions of l, m and k variables, respectively. Assume that {fi(x)}mi=, {gi(x)}ki= and
{hi(x)}li= are continuous real-valued functions on [a,b]T, then

(∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|r♦αx

)/(p–r)

≥
(∫ b

a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|r♦αx

)/(p–r)

+
(∫ b

a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|r♦αx

)/(p–r)

, (.)

there is equality only when the functions |Fm(f, f, . . . , fm)| and |Gk(g, g, . . . , gk)| are effec-
tively proportional.

Proof Let α ≥ , α ≥ , β > , and β > , and – < λ < , applying the following Radon’s
inequality (see []):

n∑
k=

apk
bp–k

<
(
∑n

k= ak)p

(
∑n

k= bk)p–
, xk ≥ ,ak > , < p < ,

we have

αλ+


βλ


+
αλ+


βλ


≤ (α + α)λ+

(β + β)λ
, (.)

there is equality only when (α) and (β) are proportional. Let

α =
(∫ b

a
Hl(h,h, . . . ,hl)

∣∣Fm(f, f, . . . , fm)∣∣p♦αx
)/p

, (.)

β =
(∫ b

a
Hl(h,h, . . . ,hl)

∣∣Fm(f, f, . . . , fm)∣∣r♦αx
)/r

, (.)

α =
(∫ b

a
Hl(h,h, . . . ,hl)

∣∣Gk(g, g, . . . , gk)
∣∣p♦αx

)/p

, (.)

β =
(∫ b

a
Hl(h,h, . . . ,hl)

∣∣Gk(g, g, . . . , gk)
∣∣r♦αx

)/r

, (.)

and set λ = r
p–r . From (.)-(.), we have

αλ+


βλ


+
αλ+


βλ


=
(
∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|p♦αx)(λ+)/p

(
∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|r♦αx)λ/r
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+
(
∫ b
a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|p♦αx)(λ+)/p

(
∫ b
a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|r♦αx)λ/r

=
(∫ b

a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|r♦αx

)/(p–r)

+
(∫ b

a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|p♦αx∫ b
a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|r♦αx

)/(p–r)

≤ (α + α)λ+

(β + β)λ

=
[(
∫ b
a Hl|Fm(f, . . . , fm)|p♦αx)/p + (

∫ b
a Hl|Gk(g, . . . , gk)|p♦αx)/p]p/(p–r)

[(
∫ b
a Hl|Fm(f, . . . , fm)|r♦αx)/r + (

∫ b
a Hl|Gk(g, . . . , gk)|r♦αx)/r]r/(p–r)

. (.)

Since – < λ = r
p–r < , we may assume p <  < r, and by Minkowski’s inequality for p < 

and  < r ≤ , we obtain respectively

[(∫ b

a
Hl

∣∣Fm(f, . . . , fm)∣∣p♦αx
)/p

+
(∫ b

a
Hl

∣∣Gk(g, . . . , gk)
∣∣p♦αx

)/p]p

≥
∫ b

a
Hl

∣∣Fm(f, . . . , fm) +Gk(g, . . . , gk)
∣∣p♦αx, (.)

there is equality only when |Fm(f, . . . , fm)| and |Gk(g, . . . , gk)| are proportional, and
[(∫ b

a
Hl

∣∣Fm(f, . . . , fm)∣∣r♦αx
)/r

+
(∫ b

a
Hl

∣∣Gk(g, . . . , gk)
∣∣r♦αx

)/r]r

≤
∫ b

a
Hl

∣∣Fm(f, . . . , fm) +Gk(g, . . . , gk)
∣∣r♦αx (.)

with equality if and only if |Fm(f, . . . , fm)| and |Gk(g, . . . , gk)| are proportional.
From equality conditions for (.), (.) and (.), it follows that the sign of equality

in (.) holds if and only if |Fm(f, . . . , fm)| and |Gk(g, . . . , gk)| are proportional.
From (.)-(.), we arrive at reverse Dresher’s inequality, and the theorem is com-

pletely proved. �

Corollary . (T = R) Let p ≤  ≤ r ≤ . Let Hl(x,x, . . . ,xl) > , Fm(x,x, . . . ,xm) and
Gk(x,x, . . . ,xk) be three arbitrary functions of l, m and k variables, respectively. Assume
that {fi(x)}mi=, {gi(x)}ki= and {hi(x)}li= are continuous real-valued functions on [a,b], then

(∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|p dx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm) +Gk(g, g, . . . , gk)|r dx

)/(p–r)

≥
(∫ b

a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|p dx∫ b
a Hl(h,h, . . . ,hl)|Fm(f, f, . . . , fm)|r dx

)/(p–r)

+
(∫ b

a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|p dx∫ b
a Hl(h,h, . . . ,hl)|Gk(g, g, . . . , gk)|r dx

)/(p–r)

, (.)

there is equality only when the functions |Fm(f, f, . . . , fm)| and |Gk(g, g, . . . , gk)| are pro-
portional.
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Corollary . (T = Z) Let p ≤  ≤ r ≤ . Let Hl(x,x, . . . ,xl) > , Fm(x,x, . . . ,xm) and
Gk(x,x, . . . ,xk) be three arbitrary functions of l, m and k variables, respectively. Assume
that {ai,ai, . . . ,aim}ni=, {bi,bi, . . . ,bik}ni= and {ci, ci, . . . , cil}ni= are real numbers for any
m,k, l ∈N, then

(∑n
i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim) +Gk(bi,bi, . . . ,bik)|p∑n
i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim) +Gk(bi,bi, . . . ,bik)|r

)/(p–r)

≥
(∑n

i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim)|p∑n
i=Hl(ci, ci, . . . , cil)|Fm(ai,ai, . . . ,aim)|r

)/(p–r)

+
(∑n

i=Hl(ci, ci, . . . , cil)|Gk(bi,bi, . . . ,bik)|p∑n
i=Hl(ci, ci, . . . , cil)|Gk(bi,bi, . . . ,bik)|r

)/(p–r)

, (.)

there is equality only when the functions |Fm(ai,ai, . . . ,aim)| and |Gk(bi,bi, . . . ,bik)| are
proportional.

Obviously, Corollaries . and . are well known for the integers.

Remark . Let {fi(x, y)}mi=, {gi(x, y)}ki= and {hi(x, y)}li= be continuous real-valued func-
tions on [a,b]T × [a,b]T, and Hl , Fm and Gk be defined as in Theorem ., then by The-
orems . and ., we obtain functional generalizations of two-dimensional diamond-α
integral Dresher’s inequality and reverse Dresher’s inequality on time scales.
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