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Abstract
In this paper, we study the boundary value problem for a class of nonlinear fractional
q-difference equation with mixed nonlinear conditions involving the fractional
q-derivative of Riemann-Liouuville type. By means of the Guo-Krasnosel’skii fixed
point theorem on cones, some results concerning the existence of solutions are
obtained. Finally, examples are presented to illustrate our main results.
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1 Introduction
Fractional calculus is a generalization of integer order calculus [, ]. It has been used
by many researchers to adequately describe the evolution of a variety of engineering, eco-
nomical, physical, and biological processes []. There are a large number of papers dealing
with the continuous fractional calculus. Among all the topics, boundary value problems
for fractional differential equations have attracted considerable attention [–]. However,
the discrete fractional calculus has seen slower progress, it is still a relatively new and
emerging area of mathematics. Some efforts have also been made to develop the theory
of discrete fractional calculus in various directions. For some recent works, see []. Of
particular note is that Atici and Sengül have shown the usefulness of fractional difference
equations in tumor growth modeling in [].
The early works about q-difference calculus or quantum calculus were first developed

by Jackson [, ], while basic definitions and properties can be found in the monograph
by Kac and Cheung []. q-Difference equations have been widely used in mathematical
physical problems, dynamical system and quantummodels [], heat and wave equations
[], and sampling theory of signal analysis [].
As an important part of discrete mathematics, more recently, some researchers devoted

their attention to the study of the fractional q-difference calculus, they developed the
q-analogs of fractional integral and difference operators properties, the q-Mittag-Leffler
function [], q-Laplace transform, q-Taylor’s formula, etc. []. The origin of the frac-
tional q-difference calculus can be traced back to the works in [, ] by Al-Salam and
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Agarwal. A book on this subject by Annaby and Mansour [] summarizes and organizes
much of the q-fractional calculus and equations.
As is well known, the aim of finding solutions to boundary value problems is of main

importance in various fields of applied mathematics. Recently, there seems to be a new
interest in the study of the boundary value problems for fractional q-difference equations
[–].
In , Liang and Zhang [] studied the three-point boundary problem of fractional

q-differences,

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= ,  < t < ,  < α < ,

u() = (Dqu)() = , (Dqu)() = β(Dqu)(η),

where  < βηα– < . By using a fixed point theorem in partially ordered sets, they got some
sufficient conditions for the existence and uniqueness of positive solutions to the above
boundary problem.
In , Zhou and Liu [] studied the existence results for fractional q-difference equa-

tions with nonlocal q-integral boundary conditions,

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= , t ∈ (, ),

u() = , u() = μIβq u(η) = μ

∫ η



(η – qs)(β–)

�q(β)
u(s)dqs,

where μ >  is a parameter, Dα
q is the q-derivative of Riemann-Liouville type of order α.

By using the generalized Banach contraction principle, the monotone iterative method
and Krasnoselskii’s fixed point theorem, some existence results of positive solutions to
the above boundary value problems were enunciated.
In , Goodrich [] proved that the nonlocal boundary value problem with mixed

nonlinear boundary conditions

–y′′(t) = f
(
t, y(t)

)
,  < t < ,

y() =H
(
ϕ(y)

)
+

∫
E
H

(
s, y(s)

)
ds, y() = ,

has at least one positive solution by imposing some relatively mild structural conditions
on f , H, H and ϕ.
To the best of our knowledge, very few authors consider the boundary value problem

of fractional q-difference equations with mixed nonlinear boundary conditions. Theories
and applications seem to be just initiated. This paperwill fill up the gap.Here,motivated by
[], we will consider the boundary value problem of the nonlinear fractional q-difference
equations

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= ,  < t < , (.)

subject to the boundary conditions

Di
qu() = , i = , , . . . ,n – , Dqu() =H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs, (.)
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where  < q < , n– < α ≤ n, n ≥  are integers, f : [, ]× [,∞) → [, +∞) is continuous
and ϕ is a linear functional, here E ⊆ (, ] is a closed subinterval, H : [, +∞)→ [, +∞)
and H : [, ] × [, +∞) → [, +∞) are real-valued, continuous functions. We are inter-
ested in the existence of solutions for the boundary value problem (.)-(.) by utilizing
a fixed point theorem on cones.
We should mention that the above boundary conditions are rather general and contain

many common cases such as separated boundary conditions, integral boundary condi-
tions, multi-point boundary conditions, etc., by choosing different H, H, and φ. Our
results generalize and improve some results on the existence of solutions for fractional
q-difference equations. Moreover, problems studied in [] and [] can be regarded as
our special cases.
The paper is organized as follows. In Section , we introduce some definitions of q-frac-

tional integral and differential operator together with some basic properties and lemmas
to prove our main results. In Section , we investigate the existence of solutions for the
boundary value problem (.)-(.) by fixed point theorem on cones. Moreover, some ex-
amples are given to illustrate our main results.

2 Preliminaries
In the following section, we collect some definitions and lemmas about fractional q-inte-
gral and fractional q-derivative; for an overview of the theory one is referred to [, ].
Let q ∈ (, ) and define

[a]q =
 – qa

 – q
, a ∈R.

The q-analog of the power function (a – b)n with n ∈N is

(a – b) = , (a – b)n =
n–∏
k=

(
a – bqk

)
, n ∈N,a,b ∈R.

More generally, if α ∈ R, then

(a – b)(α) = aα

∞∏
n=

a – bqn

a – bqα+n .

It is easy to see that [a(t – s)](α) = aα(t – s)(α). Note that, if b =  then a(α) = aα .
The q-gamma function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈R \ {,–,–, . . .},

and satisfies �q(x + ) = [x]q�q(x).
The q-derivative of a function f is here defined by

(Dqf )(x) =
f (x) – f (qx)
( – q)x

, (Dqf )() = lim
x→

(Dqf )(x) for x 	= ,
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and q-derivatives of higher order by

(
D

qf
)
(x) = f (x) and

(
Dn

qf
)
(x) =Dq

(
Dn–

q f
)
(x), n ∈N.

The q-integral of a function f defined on the interval [,b] is given by

(Iqf )(x) =
∫ x


f (t)dqt = x( – q)

∞∑
n=

f
(
xqn

)
qn, x ∈ [,b].

From the definition of q-integral and the properties of series, we can get the following
results on q-integral, which are helpful in the proofs of our main results.

Lemma .
() If f and g are q-integral on the interval [a,b], α ∈R, c ∈ [a,b], then

(i)
∫ b
a (f (t) + g(t))dqt =

∫ b
a f (t)dqt +

∫ b
a g(t)dqt;

(ii)
∫ b
a αf (t)dqt = α

∫ a
b f (t)dqt;

(iii)
∫ b
a f (t)dqt =

∫ c
a f (t)dqt +

∫ b
c f (t)dqt.

() If |f | is q-integral on the interval [,x], then | ∫ x
 f (t)dqt| ≤

∫ x
 |f (t)|dqt.

() If f and g are q-integral on the interval [,x], f (t) ≤ g(t) for all t ∈ [,x], then∫ x
 f (t)dqt ≤ ∫ x

 g(t)dqt.

Basic properties of q-integral and q-differential operators can be found in the book [].
We now present out three formulas that will be used later (iDq denotes the derivative

with respect to variable i)

tDq(t – s)(α) = [α]q(t – s)(α–),(
xDq

∫ x


f (x, t)dqt

)
(x) =

∫ x


xDqf (x, t)dqt + f (qx,x).

Remark . We note that if α >  and a≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α).

Definition . [] Let α ≥  and f be a function defined on [,b]. The fractional q-inte-
gral of the Riemann-Liouville type is defined by (Iq f )(x) = f (x) and

(
Iαq f

)
(x) =


�q(α)

∫ x


(x – qt)(α–)f (t)dqt, α > ,x ∈ [,b].

Definition . [] The fractional q-derivative of the Riemann-Liouville type of order
α ≥  is defined by (D

qf )(x) = f (x) and

(
Dα

q f
)
(x) =

(
Dp

qI
p–α
q f

)
(x), α > ,

where p is the smallest integer greater than or equal to α.

Next, we list some properties about q-derivative and q-integral that are already known
in the literature.
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Lemma . [, ] Let α,β ≥  and f be a function defined on [, ]. Then the following
formulas hold:

(i) (Iβq Iαq f )(x) = (Iα+β
q f )(x);

(ii) (Dα
q Iαq f )(x) = f (x).

Lemma. [, ] Let α >  and p be a positive integer.Then the following equality holds:

(
Iαq D

p
qf

)
(x) =

(
Dp

qI
α
q f

)
(x) –

p–∑
k=

xα–p+k

�q(α + k – p + )
(
Dk

qf
)
().

Lemma . [] Let X be a Banach space and P ⊆ X be a cone. Suppose that � and �

are bounded open sets contained in X such that  ∈ � ⊆ � ⊆ �. Suppose further that
S : P ∩ (� \ �) → P is a completely continuous operator. If either

(i) ‖Su‖ ≤ ‖u‖ for u ∈ P ∩ ∂� and ‖Su‖ ≥ ‖u‖ for u ∈ P ∩ ∂�, or
(ii) ‖Su‖ ≥ ‖u‖ for u ∈ P ∩ ∂� and ‖Su‖ ≤ ‖u‖ for u ∈ P ∩ ∂�, then S has at least one

fixed point in P ∩ (� \ �).

The next result is important in the sequel.

Lemma . Let h ∈ C[, ] be a given function. Then the boundary value problem

(
Dα

qu
)
(t) + h(t) = ,  ≤ t ≤ , (.)

Di
qu() = , i = , , . . . ,n – , Dqu() =H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs, (.)

has a unique solution

u(t) =
tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

∫ 


G(t,qs)h(s)dqs,

where

G(t,qs) =


�q(α)

⎧⎨
⎩( – qs)(α–)tα– – (t – qs)(α–), ≤ qs ≤ t ≤ ,

( – qs)(α–)tα–,  ≤ t ≤ qs ≤ .
(.)

Proof In view of Definition . and Lemma ., we deduce

Iαq D
α
qu(t) = –Iαq h(t)

and

Iαq D
n
qI

n–α
q u(t) = –Iαq h(t).

It follows from Lemma .,

u(t) = ctα– + ctα– + · · · + cntα–n –


�q(α)

∫ t


(t – qs)(α–)h(s)dqs, (.)
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where c, . . . , cn ∈ R are some constants to be determined. By the boundary condition
u() = , we get cn = . Now if n ≥ , then differentiating both sides of (.) j times for
j = , , . . . ,n – , we obtain

Dj
qu(t) = [α – ]q · · · [α – j]qctα–j– + [α – ]q · · · [α – j – ]qctα–j– + · · ·

+ [α + n – ]q · · · [α – n – j + ]qcn–tα–n–j+

–


�q(α)

∫ t


[α – ]q · · · [α – j]q(t – qs)(α–j–)h(s)dqs.

From the boundary conditions Di
qu() = , for i = , , . . . ,n–, it is easy to know c = c =

· · · = cn– = . Thus, (.) reduces to

u(t) = ctα– –


�q(α)

∫ t


(t – qs)(α–)h(s)dqs. (.)

Differentiating both sides of (.), we obtain

Dqu() = [α – ]qc –


�q(α)

∫ 


[α – ]q( – qs)(α–)h(s)dqs.

Using the boundary condition Dqu() =H(ϕ(u)) +
∫
E H(s,u(s))dqs, we have

c =


[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+


�q(α)

∫ 


( – qs)(α–)h(s)dqs.

Hence,

u(t) =
tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

tα–

�q(α)

∫ 


( – qs)(α–)h(s)dqs

–


�q(α)

∫ t


(t – qs)(α–)h(s)dqs

=
tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

∫ 


G(t,qs)h(s)dqs. �

Remark . [] Let  < τ < . Then  < τα– <  and mint∈[τ ,]G(t,qs) ≥ τα–G(,qs) for
s ∈ [, ].

The following properties of the Green’s function play important roles in this paper.

Lemma . [] The function G defined as (.) satisfies the following properties:
() G(t,qs) ≥  and G(t,qs) ≤G(,qs) for all  ≤ s, t ≤ ;
() G(t,qs) ≥ r(t)maxt∈[,]G(t,qs) = r(t)G(,qs) for all  ≤ t, s≤  with r(t) = tα–.

3 Main results
Let the Banach space B = C[, ] be endowed with the norm ‖u‖ = maxt∈[,] |u(t)|. Let τ

be a real constant with  < τ <  and define the cone K ⊂ B by

K =
{
u ∈ C[, ]

∣∣ u(t) ≥ , min
t∈[τ ,]

u(t)≥ r∗‖u‖,ϕ(u) ≥ 
}
,

where r∗ =min{ mint∈[τ ,] tα–
maxt∈[,] tα–

,mint∈[τ ,] r(t)} =mint∈[τ ,] tα–, obviously, r∗ ∈ (, ].

http://www.advancesindifferenceequations.com/content/2014/1/326
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Define the operator F : K → B by

(Fu)(t) =
tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

∫ 


G(t,qs)f

(
s,u(s)

)
dqs.

In order to get the integrated and rigorous theory, we make the following assumptions.
(H) There are constants C,C >  such that the functional ϕ satisfies the inequality

C‖u‖ ≤ ϕ(u) ≤ C‖u‖ for all u ∈ C[, ]. (.)

(H) For each given ε > , there are C >  and Gε >  such that

∣∣H(z) –Cz
∣∣ < εCz, whenever z >Gε .

(H) There exists a function T : [, +∞) → [, +∞) satisfying the growth condition

T(u) ≤ Cu (.)

for some C ≥ . For each ε >  given and x ∈ [, ], there isMε >  such that

∣∣H(x,u) – T(u)
∣∣ < εT(u), whenever u >Mε .

The following result plays an important role in the coming discussion.

Lemma . F : K → K is completely continuous.

Proof It is easy to see that the operator F is continuous in view of the continuity ofG and f .
By Lemmas . and ., we have

min
t∈[τ ,]

Fu(t)

= min
t∈[τ ,]

[
tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

]

= min
t∈[τ ,]

[
tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)]
+ min

t∈[τ ,]

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

≥ r
[
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

]
+ min

t∈[τ ,]

∫ 


r(t) max

t∈[,]
G(t,qs)f

(
s,u(s)

)
dqs

≥ r
[
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

]
+ min

t∈[τ ,]
r(t) max

t∈[,]

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

≥ r∗‖Fu‖,

where r =
mint∈[τ ,] tα–
maxt∈[,] tα–

. Thus, F(K )⊂ K .
Now let� ⊂ K be bounded, i.e., there exists a positive constantM >  such that ‖u‖ ≤M

for all u ∈ �. By the continuity ofH,H, and ϕ, we easily see thatH andH are bounded,

http://www.advancesindifferenceequations.com/content/2014/1/326
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so there exist constants P >  andQ >  such that |H(ϕ(�))| ≤ P and |H(t,u(t))| ≤Q. Let
L =max‖u‖≤M |f (t,u(t))| + . Then for u ∈ �, from Lemma ., we have

∣∣Fu(t)∣∣ = ∣∣∣∣ tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

∣∣∣∣
≤

∣∣∣∣ 
[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

∫ 


G(,qs)f

(
s,u(s)

)
dqs

∣∣∣∣
≤ 

[α – ]q

(∣∣H
(
ϕ(u)

)∣∣ + ∣∣∣∣
∫
E
H

(
s,u(s)

)
dqs

∣∣∣∣
)
+ L

∫ 


G(,qs)dqs, (.)

we rearrange (.) as follows:

∣∣Fu(t)∣∣ ≤ 
[α – ]q

(∣∣H
(
ϕ(u)

)∣∣ + ∣∣∣∣
∫
E
H

(
s,u(s)

)
dqs

∣∣∣∣
)
+ L

∫ 


G(,qs)dqs

≤ 
[α – ]q

(∣∣H
(
ϕ(u)

)∣∣ + ∫
E

∣∣H
(
s,u(s)

)∣∣dqs
)
+ L

∫ 


G(,qs)dqs

≤ 
[α – ]q

(
P +Qm(E)

)
+ L

∫ 


G(,qs)dqs.

Hence, F(�) is bounded.
On the other hand, for any given ε > , there exists δ >  small enough, such that |Fu(t)–

Fu(t)| < ε holds for each u ∈ � and  ≤ t ≤ t ≤  with |t – t| < δ, that is to say, F(�) is
equicontinuous. In fact,

∣∣Fu(t) – Fu(t)
∣∣

≤ ∣∣tα– – tα–
∣∣∣∣∣∣
[


[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)

+
∫ 



( – qs)(α–)

�q(α)
f
(
s,u(s)

)
dqs

]∣∣∣∣
+


�q(α)

∣∣∣∣
∫ t


(t – qs)(α–)f

(
s,u(s)

)
dqs –

∫ t


(t – qs)(α–)f

(
s,u(s)

)
dqs

∣∣∣∣
≤ ∣∣tα– – tα–

∣∣[ 
[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)

+
∫ 



( – qs)(α–)

�q(α)
∣∣f (s,u(s))∣∣dqs

]

+


�q(α)

∣∣∣∣
∫ 


tα– ( – qs)f

(
s,u(s)

)
dqs –


�q(α)

∫ 


tα– ( – qs)f

(
s,u(s)

)
dqs

∣∣∣∣
≤ ∣∣tα– – tα–

∣∣[ 
[α – ]q

(
P +Qm(E)

)
+ L

∫ 



( – qs)(α–)

�q(α)
dqs

]

+
∣∣tα– – tα–

∣∣ L
�q(α)

∫ 


( – qs)dqs. (.)

Now, we estimate tα– – tα– (we discuss tα– – tα– in the same way, the proof here is
omitted):

http://www.advancesindifferenceequations.com/content/2014/1/326
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() for  ≤ t < δ, δ ≤ t < δ, tα– – tα– ≤ tα– < (δ)α– ≤ δ;
() for  ≤ t < t ≤ δ, tα– – tα– ≤ tα– < δα– ≤ δ;
() for δ ≤ t < t ≤ , from the mean value theorem of differentiation, we have

tα– – tα– ≤ (α – )(t – t) ≤ δ.
Thus, we have

∣∣Fu(t) – Fu(t)
∣∣ < ε.

By means of the Arzela-Ascoli theorem, F : K → K is completely continuous. The proof
is complete. �

Theorem . Assume that the nonlinearity f (t,u) splits in the sense that f (t,u) = a(t)g(u),
for continuous functions a : [, ] → [, +∞) and g : [,∞) → [, +∞) such that
limu→+

g(u)
u = +∞ and limu→+∞ g(u)

u = . Suppose conditions (H)-(H) and

CC +Cm(E) <  (.)

hold, where E ⊆ (, ] is a closed subinterval. Then the boundary value problem (.)-(.)
has at least one solution.

Proof Begin by selecting the number η such that

η

∫ 


γ ∗G(,qs)a(s)dqs > . (.)

Now, there exists a number r >  such that g(u) ≥ ηu for  < u < r. Then take the open
set

�r =
{
u ∈ B : ‖u‖ < r

}
.

By Remark ., Lemma ., and (.), for u ∈ K ∩ ∂�r , we find

(Fu)(t) =
tα–

[α – ]q

(
H

(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs

)
+

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

≥
∫ 


G(t,qs)a(s)g

(
u(s)

)
dqs

≥
∫ 


G(t,qs)a(s)ηu(s)dqs

≥ ‖u‖η
∫ 


γ ∗G(,qs)a(s)dqs

≥ ‖u‖. (.)

Hence, ‖Fu‖ ≥ ‖u‖, that is, F is a cone expansion on K ∩ ∂�r .
On the other hand, we consider two cases:
Case . Suppose that g is bounded for u ∈ [, +∞). We may find r >  sufficiently large

such that

g(u) ≤ r for all u≥ . (.)
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Condition (.) implies the existence of ε >  such that

CCε +CC + ε + (C +Cε)m(E) ≤ . (.)

Now if ‖u‖ ≥ Gε

C
, then by (H) we get ϕ(u) ≥ Gε . According to condition (H), it follows

that

∣∣H
(
ϕ(u)

)
–Cϕ(u)

∣∣ < εCϕ(u) (.)

for all u ∈ C[, ] with ‖u‖ ≥ Gε

C
.

Next, since E ⊆ (, ] is a closed subinterval, we may select  < τ <  such that E ⊆ [τ , ].
Then for each u ∈ K ,

min
t∈E u(t) ≥ min

t∈[τ ,]
u(t) ≥ γ ∗‖u‖. (.)

Thus combining condition (H) we see that

∣∣H
(
s,u(s)

)
– T

(
u(s)

)∣∣ < εT
(
u(s)

)
for each s ∈ E with ‖u‖ ≥ Mε

γ ∗ . (.)

Take r∗ =max{ r
γ ∗ , r, Gε

C
, Mε

γ ∗ }. Set �r∗ = {u ∈ B : ‖u‖ < r∗}.
From (.) we may assume without loss of generality that

g(u) ≤ r∫ 
 G(,qs)a(s)dqs

ε. (.)

Then by (.), (.), (.), and (.), for each u ∈ K ∩ ∂�r∗ , we have

‖Fu‖ ≤ H
(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs +

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

≤ H
(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs +

∫ 


G(,qs)a(s)g

(
u(s)

)
dqs

≤ ∣∣H
(
ϕ(u)

)
–Cϕ(u)

∣∣ +C
∣∣ϕ(u)∣∣ + ∫

E

∣∣H
(
s,u(s)

)
– T

(
u(s)

)∣∣dqs
+

∫
E

∣∣T(
u(s)

)∣∣dqs +
∫ 


rε dqs

≤ εCC‖u‖ +CC‖u‖ +m(E)C( + ε)‖u‖ + ε‖u‖
≤ [

CCε + ε +CC +m(E)C( + ε)
]‖u‖

≤ ‖u‖. (.)

Case . Suppose that g is unbounded at +∞. By condition limu→+∞ g(u)
u = , there exists

a number r >  such that for u > r we find that g(u) ≤ ηu, where η meets

η

∫ 


G(,qs)a(s)dqs ≤ ε. (.)

http://www.advancesindifferenceequations.com/content/2014/1/326
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Noting that g is unbounded at +∞, we may find r∗ >max{ r
γ ∗ , r, Gε

C
, Mε

γ ∗ } such that

g(u) ≤ g(r) for  < u ≤ r∗. (.)

Now, put �r∗ = {u ∈ B : ‖u‖ < r∗}. Then for each u ∈ K ∩ ∂�r∗ we find that by (.),
(.), (.), (.), and (.),

‖Fu‖ ≤ H
(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs +

∫ 


G(t,qs)f

(
s,u(s)

)
dqs

≤ H
(
ϕ(u)

)
+

∫
E
H

(
s,u(s)

)
dqs +

∫ 


G(,qs)a(s)g

(
u(s)

)
dqs

≤ ∣∣H
(
ϕ(u)

)
–Cϕ(u)

∣∣ +C
∣∣ϕ(u)∣∣ + ∫

E

∣∣H
(
s,u(s)

)
– T

(
u(s)

)∣∣dqs
+

∫
E

∣∣T(
u(s)

)∣∣dqs +
∫ 


G(,qs)a(s)g

(
r∗

)
dqs

≤ Cεϕ(u) +CC‖u‖ +
∫
E
( + ε)T

(
u(s)

)
dqs

+
∫ 


G(,qs)a(s)η‖u‖dqs

≤ εCC‖u‖ +CC‖u‖ +m(E)C( + ε)‖u‖ + ε‖u‖
≤ [

CCε + ε +CC +m(E)C( + ε)
]‖u‖

≤ ‖u‖. (.)

Hence, ‖Fu‖ ≤ ‖u‖.
To summarize, we conclude from (.) and (.) that F is a cone compression on K ∩

∂�r∗ .
With the help of Lemma . we can now deduce the existence of function u ∈ K ∩�r∗ \

�r such that Fu = u. Hence, the problem (.)-(.) has at least one solution. The proof
is completed. �

Next, by choosing suitable forms of H and ϕ, we present the corresponding boundary
value problems with separated boundary conditions, integral boundary conditions and
multi-point boundary conditions as corollaries of Theorem. to illustrate the universality
and generalization of our results.

Corollary . Assume f (t,u) is defined as in Theorem . and (H)-(H) hold. If n = ,
H(ϕ(u)) +

∫
E H(s,u(s))dqs = β ≥ . Then the boundary value problem

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= ,  < t < ,  < α ≤ , (.)

u() =Dqu() = , Dqu() = β , (.)

has at least one solution.

This existence result of positive solution for the boundary value problem (.)-(.)
has been studied by Ferreira in [] and Yang et al. in [].
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Corollary . Assume f (t,u) is defined as in Theorem ., ϕ(u) =
∫
T u(s)dqs. Then ϕ is

linear functional, T = [a,b] ⊆ (, ] is a closed subinterval, just need m(T) ≤ C, where m
is Lebesgue measure. If (H)-(H) hold, in addition

CC +Cm(E) < ,

then the boundary value problem (.)-(.) with integral boundary conditions

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= ,  < t < ,n –  < α ≤ n, (.)

u() =Dqu() = , Dqu() =H

(∫
T
u(s)dqs

)
+

∫
E
H

(
s,u(s)

)
dqs, (.)

has at least one solution.

Corollary . Assume f (t,u) is defined as in Theorem ., ϕ(u) =
∑m

i= aiu(ξi). Then ϕ is
linear functional, just need

∑m
i= |ai| ≤ C, E ⊆ (, ] is a closed subinterval. If (H)-(H)

hold,moreover,

CC +Cm(E) < ,

then the boundary value problem (.)-(.) with multi-point boundary conditions

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= ,  < t < ,n –  < α ≤ n, (.)

u() =Dqu() = , Dqu() =H

( m∑
i=

aiu(ξi)

)
+

∫
E
H

(
s,u(s)

)
dqs, (.)

has at least one solution.

4 Example
In this section, we will give an example to expound our main results.

Example . Consider the following boundary value problem:

(
Dα

qu
)
(t) + f (t,u) = ,  < t < , (.)

u() =Dqu() = , Dqu() =
m∑
j=

ajξj + e–
∑m

j= ajξj +
∫
E
u(s)dqs, (.)

here  < α ≤ , aj ≥  with 
 ≤ ∑m

j= aj ≤ 
 and ξj ∈ [ 

 ,

 ] for j = , , . . . ,m, E ⊆ (, ]

is a closed subinterval, ϕ(u) =
∑m

j= ajξj, H(ϕ(u)) = ϕ(u) + e–ϕ(u) and
∫
E H(s,u(s))dqs =∫

E u(s)dqs satisfies (H).
Since aj ≥  and ξj ∈ [ 

 ,

 ], then |ϕ(u)| = ∑m

j= ajξj. Choosing C = 
 and C = 

 ,
we have




≤ ∣∣ϕ(u)∣∣ = m∑
j=

ajξj ≤ 


.
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For each ε > , setting C = , it is clear that

lim
ϕ(u)→∞

∣∣H
(
ϕ(u)

)
– ϕ(u)

∣∣ = ∣∣ϕ(u) + e–ϕ(u) – ϕ(u)
∣∣ = ,

so (H) holds.
If only the given function f (t,u) satisfies f (t,u) = a(t)g(u), for continuous functions a :

[, ] → [, +∞) and g : R → [, +∞) such that limu→+
g(u)
u = +∞ and limu→+∞ g(u)

u = ,
in addition,

CC +Cm(E) < ,

then, by Theorem ., the boundary value problem (.)-(.) has at least one solution.
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