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Abstract
In this paper, we calculate the Jordan decomposition for a class of non-symmetric
Ornstein-Uhlenbeck operators with the drift coefficient matrix, being a Jordan block,
and the diffusion coefficient matrix, being the identity multiplying a constant. For the
2-dimensional case, we present all the general eigenfunctions by mathematical
induction. For the 3-dimensional case, we divide the calculation of the Jordan
decomposition into three steps. The key step is to do the canonical projection onto
the homogeneous Hermite polynomials, and then use the theory of systems of linear
equations. Finally, we get the geometric multiplicity of the eigenvalue of the
Ornstein-Uhlenbeck operator.

Keywords: Jordan decomposition; 2-dimensional non-symmetric
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1 Introduction
For the symmetric Ornstein-Uhlenbeck operator, the eigenfunctions are the well-known
Hermite polynomials []. The eigenfunctions of a type of finite-dimensional normal but
non-symmetric Ornstein-Uhlenbeck operators have recently been found. They are the so-
called complex Hermite polynomials [] (or, say, the Hermite-Laguerre-Itô polynomials)
where the idea is to proceed by means of a decomposition to the summation of series
of up to a -dimensional normal Ornstein-Uhlenbeck operator []. But if the Ornstein-
Uhlenbeck operator is not normal, the general eigenfunctions are still unknown up to
now.
In the present paper, we consider the d-dimensional (d ≥ ) non-symmetric Ornstein-

Uhlenbeck process

⎡
⎢⎢⎢⎣
dX(t)
dX(t)

· · ·
dXd(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
–c   · · · 
 –c  · · · 

· · · · · · · · · · · · · · ·
   · · · –c

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
X(t)
X(t)
· · ·

Xd(t)

⎤
⎥⎥⎥⎦dt +

√
σ 

⎡
⎢⎢⎢⎣
dB(t)
dB(t)

· · ·
dBd(t)

⎤
⎥⎥⎥⎦ . (.)
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The associated Ornstein-Uhlenbeck operator is

Ad = (–cx + x)
∂

∂x
+ (–cx + x)

∂

∂x
+ · · ·

– cxd
∂

∂xd
+ σ 

(
∂

∂x
+

∂

∂x
+ · · · + ∂

∂xd

)
. (.)

Denote B = –c Id+R with Id the identity and R the nilpotent. Clearly, Ad is a non-
symmetric operator since B does not satisfy the reversiblea condition of Ornstein-
Uhlenbeck []

BQ =QB∗,

where Q = σ  Id is the diffusion coefficient matrix and B∗ is the transpose matrix of B.
The associated Markov semigroup (T(t))t≥ on the Banach space of the bounded mea-

surable functions is

(
T(t)f

)
(x) =


(π )/(detQt)/

∫
R

e–〈Q–
t y,y〉/f

(
etBx – y

)
dy, (.)

and

Qt = σ 
∫ t


esBesB

∗
ds.

It is well known that (T(t))t≥ extends to a strongly continuous semigroup of positive
contractions in theHilbert space Lμ = L(Rd, dμ), whereμ is the unique invariantmeasure
[, ]. Still we denote by (Ad,D) the generator of (T(t))t≥ in Lμ; it was shown [] that
the spectrum consists of eigenvalues of finite multiplicities, σ (Ad) = {–nc : n ∈ N}, and all
the generalized eigenfunctions are polynomials and form a complete system in Lμ. Let
γ = –nc. It follows from [, Theorem .] that the algebraic multiplicity of γ is

kAd (γ ) =
(
n + d – 
d – 

)
, (.)

and it follows from [, Proposition ., Theorem.] that νA(γ ), the index of the eigenvalue
γ , is

νAd (γ ) =  + (d – )n. (.)

A natural question is what the geometric multiplicity of the eigenvalue γ is. In addition,
since the spectral subspace associated with γ (i.e.Ker(γ –Ad)νAd (γ )) is a finite-dimensional
vector space over the real field R, what is the Jordan decomposition (or the Jordan canon-
ical form) [, ] of Ad restricted on the spectral subspace? That is to say, what are the
integers r > ,  < qr ≤ qr– ≤ · · · ≤ q ≤ q ≤ νA(γ ) and the generalized eigenfunctions
fr , fr–, . . . , f, f, such that

{
fk , (γ –Ad)fk , . . . , (γ –Ad)qk–fk : k = , , . . . , r

}
(.)
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form the basis of the spectral subspace associated to γ , and

(γ –Ad)qk fk = , k = , , . . . , r? (.)

The integers (qr ,qr–, . . . ,q,q) are also called Segre characteristic (or, say, Segre type,
Segre notation). fk is called a lead vector (or, say, a cyclic vector, a generator) of a Jordan
chain {fk , (γ –Ad)fk , . . . , (γ –Ad)qk–fk} by some authors [, ].
In the present paper, we present an approach to calculate the Jordan decomposition and

the generalized eigenfunctions (see Theorems ., .) for d = , .b The proof of The-
orem . is by direct calculation. The main techniques of the proof of Theorem . are
canonical projection and the theory of systems of linear equations. This approach is novel
to the Jordan decomposition of differential operators as far as we know.
It is a difficult problem to get the geometric multiplicity of the eigenvalue of a dif-

ferential operator from the perspective of functional analysis. It is well known that the
spectrum of the symmetric Ornstein-Uhlenbeck operator is the starting point of stochas-
tic analysis (more precisely: Malliavin calculus), thus the analogous results of the non-
symmetric Ornstein-Uhlenbeck operator are interesting. We will treat the more general
non-symmetric Ornstein-Uhlenbeck operator in the future.

2 In case of dimension 2
In this section, we treat the case of d = . Denote ρ = σ

c . The Hermite polynomials [] are
defined by the formula

Hn(x) = (–ρ)nex/ρ
dn

dxn
e–x

/ρ , n = , , . . . .

Clearly, it has a power series expression,

Hn(x,ρ) =
[n/]∑
k=

(
n
k

)
(k – )!!xn–k(–ρ)k ,

and satisfies

d
dx

Hn(x,ρ) = nHn–(x,ρ),

Hn+(x,ρ) = xHn(x,ρ) – nρHn–(x,ρ),(
–ρ

d

dx
+ x

d
dx

)
Hn(x,ρ) = nHn(x,ρ).

Theorem . The geometric multiplicity of the eigenvalue γ is . Set

Gi(x) =
	i/
∑
j=


j


j!(i – j)!

(
–

ρ

c

)j

Hi–j(x), i = , , . . . . (.)

Suppose f = Gn, then {f , (γ – A)f , (γ – A)f , . . . , (γ – A)nf } forms a basis of the spectral
subspace associated to γ . Also

(γ –A)kf = (–)k
n–k∑
i=

(
–

ρ

c

)n–k–i( k
n – k – i

)
Gi(x)Hk–n+i(y), (.)
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where k = , , . . . ,n and Hl(y) =  when l < . In particular, (γ – A)nf = (–)nHn(y) is the
eigenfunction associated to γ .

Proof We need only prove Eq. (.). It is easy to check that Gi(x) satisfies the recursion
relation:

{
(–ic –A)Gi(x) = –yCi–(x) + ρ

cGi–(x),
G(x) = , G(x) = x.

(.)

Clearly, for any differentiable function h(x), g(y), we have

(γ –A)h(x)g(y) = g(y)(γ –A)h(x) + c · h(x)
(
–ρ

∂

∂y
+ y

∂

∂y

)
g(y).

Then by the property of the Hermite polynomials [], we have

(γ –A)Gi(x)Hk–n+i(y)

=Hk–n+i(y)
[
–yGi–(x) +

ρ

c
Gi–(x) + (i – n)cGi(x)

]

+ cGi(x)(k – n + i)Hk–n+i(y) (by (.))

=Hk–n+i(y)
[
–yGi–(x) +

ρ

c
Gi–(x) + (i + k – n)cGi(x)

]

= –Gi–(x)
[
Hk–n+i+(y) + (k – n + i)ρHk–n+i–(y)

]
+Hk–n+i(y)

[
ρ

c
Gi–(x) + (i + k – n)cGi(x)

]
.

By mathematical induction, we have

(–)k+(γ –A)k+f

= –
n–k∑
i=

(
–

ρ

c

)n–k–i( k
n – k – i

)
(γ –A)Gi(x)Hk–n+i(y)

=
n–k∑
i=

(
–

ρ

c

)n–k–i( k
n – k – i

)
Gi–(x)

[
Hk–n+i+(y) + (k – n + i)ρHk–n+i–(y)

]

+
n–k∑
i=

(
–

ρ

c

)n–k+–i( k
n – k – i

)
Gi–(x)Hk–n+i(y)

– ρ

n–k–∑
i=

(
–

ρ

c

)n–k––i

(n – i – k)
(

k
n – k – i

)
Gi(x)Hk–n+i(y)

=
n–k–∑
i=

(
–

ρ

c

)n–k–i–( k + 
n – k – i – 

)
Gi(x)H(k+)–n+i(y). �

3 In case of dimension 3
In this section, we treat the case of d = . For convenience, we give some notation firstly.
SetP for the space of all polynomials with variables (x, y, z),Pn the space of polynomials of
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degree less than or equal to n, andHn the space of homogeneous polynomials of degree n.
Then P =

⋃
nPn and one has the usual direct sum decomposition of all polynomials [],

Pn =
n⊕

m=

Hm. (.)

Notation  Set γ = –nc, r = 	 n
 
 and ρ = σ

c .

By the monomials property of the Hermite polynomials []

xn =
	n/
∑
k=

(
n
k

)
(k – )!!ρkHn–k(x),

the Hermite polynomials are another basis of P .
Let H′

m = span{Hi(x)Hj(y)Hk(z), i + j + k =m}, then we have another direct sum decom-
position of all polynomials, i.e.,

P =
⋃
n
Pn, Pn =

n⊕
m=

H′
m. (.)

We denote byQm the canonical projection [] of P ontoH′
m.

Theorem . Let

qk = n +  – k, k = , , , . . . , r. (.)

Then there exist {fk ,k = , . . . , r} so that
{
fk , (γ –A)fk , . . . , (γ –A)qk–fk : k = , . . . , r

}

forms a basis of the spectral subspace associated to γ . Set hk = (γ –A)qk–fk . Then {hk ,k =
, , , . . . , r} are the basis of the eigenspace of the eigenvalue γ and satisfy

Qnhk =
k∑
i=

(–)k–i
(
k
i

)
Hk–i(x)Hi(y)Hn–k–i(z). (.)

The proof of Theorem . is presented in Section .. The following is a by-product.

Corollary . The geometric multiplicity of the eigenvalue γ of the Ornstein-Uhlenbeck
operator A is r + .

3.1 Proof of Theorem 3.1
Note that

A = –c
(
–ρ

∂

∂x
+ x

∂

∂x

)
– c

(
–ρ

∂

∂y
+ y

∂

∂y

)
– c

(
–ρ

∂

∂z
+ z

∂

∂z

)
+ y

∂

∂x
+ z

∂

∂y
.
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It follows from the property of the Hermite polynomials [] that

(γ –A)
(
Hi(x)Hj(y)Hk(z)

)
= (m – n)cHi(x)Hj(y)Hk(z) – iHi–(x)

[
Hj+(y) + jρHj–(y)

]
Hk(z)

– jHi(x)Hj–(y)
[
Hk+(z) + kρHk–(z)

]
. (.)

For convenience, Eq. (.) can be rewritten in the following way.

Proposition . If ϕ ∈H′
m then (γ –A)ϕ =Qm(γ –A)ϕ +Qm–(γ –A)ϕ. In particular,

(γ –A)
(
Hi(x)Hj(y)Hk(z)

)
=Qm(γ –A)

(
Hi(x)Hj(y)Hk(z)

)
+Qm–(γ –A)

(
Hi(x)Hj(y)Hk(z)

)
, (.)

where m = i + j + k and

Qm(γ –A)
(
Hi(x)Hj(y)Hk(z)

)
= (m – n)cHi(x)Hj(y)Hk(z) – iHi–(x)Hj+(y)Hk(z)

– jHi(x)Hj–(y)Hk+(z), (.)

and

Qm–(γ –A)
(
Hi(x)Hj(y)Hk(z)

)
= –ijρHi–(x)Hj–(y)Hk(z) – jkρHi(x)Hj–(y)Hk–(z). (.)

In particular, if m = n, then

Qn(γ –A)
(
Hi(x)Hj(y)Hk(z)

)
= –iHi–(x)Hj+(y)Hk(z) – jHi(x)Hj–(y)Hk+(z). (.)

Remark  Equations (.)-(.) make us use the terminology of graph theory. In fact, by
Eq. (.), we have a weighted and directed acyclic graph (which also can be seen as a Hasse
diagram) of the evolution of basis ofH′

n operated byQn(γ –A). For example, when n = 
and n = ,c the directed acyclic graphs are, respectively,

 











  

 





















  

where we denote by the triple integers (i, j,k) the Hermite polynomial Hi(x)Hj(y)Hk(z). It
follows from Eq. (.) that the weights of the arrows between (i, j,k) and (i, j – ,k + ),
(i – , j + ,k) are –j, –i, respectively.
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One can find many properties from the directed acyclic graph. For example, for the ver-
tex (i, j,k) with i + j + k = n, the height (which is defined by the distance between vertices
(n, , ) and (i, j,k) and thus is between  ∼ n) is h = j+k. For simplicity, in each height of
the graph, we list the vertices (i, j,k) decreasingly by lexicographic order. Then the vertices
(i, j,k) and (k, j, i) are symmetric about the nth height of the graph.
It follows from Eq. (.), Corollary ., and Theorem . that the order of the graph

(the numbers of vertices in the graph) is the algebraic multiplicity of γ , qk are  plus the
distance between vertices ( n

 � + k, ,  n
 � – k) and ( n

 � – k, ,  n
 � + k), and the numbers

of vertices in the nth height of the graph is the geometric multiplicity of γ .

Proposition . The spectral subspace associated to γ = –nc belongs to
⊕	 n 


i= H′
n–i.

Proof Suppose that f is a generalized eigenfunction, i.e., there exists an integer k ≥  such
that (λ – A)kf = . It follows from Eq. (.) that if the degree of f is m �= n, then Qm(λ –
A)kf �= . This is a contradiction; then f ∈ Pn and the degree is exactly n.d If there is an
i = , , . . . , 	 n–

 
 such that Qn––if �= , then by Eq. (.), Qn––i(λ – A)kf �= . This is a
contradiction; then f ∈ ⊕	 n 


i= H′
n–i. �

Lemma . For any polynomial g ∈H′
m with m �= n, there exists a unique solution f ∈H′

m

to the equationQm(γ –A)f = g .

Proof Suppose that

g =
∑

i+j+k=m

bijkHi(x)Hj(y)Hk(z)

and f =
∑

i+j+k=m aijkHi(x)Hj(y)Hk(z). It follows from Eq. (.) that

Qm(γ –A)f

=Qm(γ –A)
∑

i+j+k=m

aijkHi(x)Hj(y)Hk(z)

=
∑

i+j+k=m

aijk
[
(m – n)cHi(x)Hj(y)Hk(z)

– iHi–(x)Hj+(y)Hk(z) – jHi(x)Hj–(y)Hk+(z)
]

=
∑

i+j+k=m

bijkHi(x)Hj(y)Hk(z).

By the linear independence of {Hi(x)Hj(y)Hk(z) : i + j + k =m}, we have a system of
(m+


)

linear equations in
(m+


)
unknowns.

We sort {Hi(x)Hj(y)Hk(z) : i + j + k =m}, which appear in the directed acyclic graph in
Remark . The coefficient matrix of the linear equations is a lower triangle matrix with
nonzero diagonal entry (m – n)c. Thus the linear equations have a unique solution. �

http://www.advancesindifferenceequations.com/content/2014/1/34
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Suppose that f =
∑	m 


s= fm–s with fs ∈H′
s. It follows from Eq. (.) that

(γ –A)f = (γ –A)
	m 
∑
s=

fm–s =
	m 
∑
s=

[
Qm–s(γ –A)fm–s +Qm–s–(γ –A)fm–s

]

=Qm(γ –A)fm +
	m 
∑
s=

Qm–s(γ –A)[fm–s + fm+–s].

Thus the equation (γ –A)f = g is equal to the system of equations

Qm(γ –A)fm = g, (.)

Qm–s(γ –A)fm–s = –Qm–s(γ –A)fm+–s, s = , , . . . ,
⌊
m


⌋
. (.)

It follows from Lemma . that whenm �= n, Eq. (.) has a unique solution fm ∈H′
m and

whenm – s �= n, Eq. (.) has a unique solution fm–s ∈H′
m–s.

Clearly, if f satisfies (γ – A)f = g , so does f + h where h is any eigenfunction of A

associated to γ . Thus we have the following proposition.

Proposition . For any g ∈ P with Qn+sg = , s = , , , . . . , there exist solutions f ∈ P
to the equation (γ –A)f = g . In addition, if f is the same degree polynomial to g then there
exists one and only one solution.

Proposition . Set ψk =
∑k

i=(–)k–i
(k
i
)
Hk–i(x)Hi(y)Hn–k–i(z), k = , , . . . , r. Then it sat-

isfies the equationQn(γ –A)ψk = .

Proof Suppose that ψk =
∑k

i= aiHk–i(x)Hi(y)Hn–k–i(z). By Eq. (.), we have

Qn(γ –A)ψk =Qn(γ –A)
k∑
i=

aiHk–i(x)Hi(y)Hn–k–i(z)

=
k∑
i=

–ai
[
(k – i)Hk–i–(x)Hi+(y)Hn–k–i(z)

+ iHk–i(x)Hi–(y)Hn–k–i+(z)
]

= .

By the linear independence of {Hi(x)Hj(y)Hk(z)}, we have a system of k linear homoge-
neous equations in k +  unknowns. The coefficient matrix is

Mk = –

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k    · · ·   
 k –    · · ·   
  k –   · · ·   
...

...
...

...
...

...
...

    · · ·  (k – ) 
    · · ·   k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, the solution is -dimensional and ai = (–)k–i
(k
i
)
, i = , . . . ,k, is a solution. �
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Now suppose that h =ψ + φ with ψ ∈H′
n and φ ∈Pn–; then by Eq. (.),

(γ –A)h = (γ –A)ψ + (γ –A)φ

=Qn(γ –A)ψ +
[
Qn–(γ –A)ψ + (γ –A)φ

]
.

Therefore, the equation (γ –A)h =  is equivalent to two equations:

Qn(γ –A)ψ = , ψ ∈H′
n, (.)

(γ –A)φ = –Qn–(γ –A)ψ , φ ∈Pn–. (.)

By Proposition ., Eq. (.) has  + r independent solutions. It follows from Proposi-
tion . that there exists a unique φ satisfying Eq. (.) for each ψ . Thus we have the
following corollary.

Corollary . The geometricmultiplicity of the eigenvalue γ = –nc is greater than or equal
to  + r (i.e., there are at least  + r independent solutions to the equation (γ –A)h = ).

Denote by hk , k = , , . . . , r the solutions to the equation (γ – A)h =  given by Corol-
lary .. Clearly, hk =ψk + (Id–Qn)hk , where ψk ∈H′

n is the same as in Proposition ..
Suppose that fk = ϕk + gk with ϕk ∈H′

n and gk ∈Pn–, then

(γ –A)qk–fk = (γ –A)qk–(ϕk + gk)

=Qn(γ –A)qk–ϕk +Qn–(γ –A)qk–ϕk + (γ –A)qk–gk .

Therefore, the equation (γ –A)qk–fk = hk is equivalent to two equations:

Qn(γ –A)qk–ϕk =ψk , (.)

(γ –A)qk–gk = (Id–Qn)hk –Qn–(γ –A)qk–ϕk . (.)

Note that ψk =
∑k

i= biHk–i(x)Hi(y)Hn–k–i(z). Set ϕk =
∑k

i= aiHn–k–i(x)Hi(y)Hk–i(z), then
the l.h.s. of Eq. (.) is a linear mapping from the span{Hn–k–i(x)Hi(y)Hk–i(z) : i = , . . . ,k}
to the span{Hk–i(x)Hi(y)Hn–k–i(z) : i = , . . . ,k}. The linear mapping is the evolution from
the k-height to the (n – k)-height of the directed acyclic graph in Remark , which is
represented in the natural basis by a (k + )-square matrix Sr–k (it is the multiplication of
somematrices; for details, please refer to Section .). By Proposition ., thematrix Sr–k
is nonsingular, which implies that Eq. (.) has a solution. Since gk , (Id–Qn)hk ∈ Pn–, it
follows from Proposition . that Eq. (.) has a solution. Then we have the following
proposition.

Proposition . There exists an fk ∈Pn such that (γ –A)qk–fk = hk .

Proof of Theorem . Note thatψk =Qnhk in Proposition . are linear independent, so are
the eigenfunctions hk . Let {fk ,k = , , . . . , r} be as in Proposition .. Then the generalized
eigenfunctions {(γ –A)jfk : j = , , . . . ,qk – ,k = , , . . . , r} are linear independent (please
refer to the proof of [, p., Theorem ..]).

http://www.advancesindifferenceequations.com/content/2014/1/34
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Note that qk = n +  – k; then the algebraic multiplicity of the eigenvalue γ can be
decomposed to

(
n + 


)
=

r∑
k=

(n +  – k) =
r∑

k=

qk . (.)

Thus {(γ – A)jfk : j = , , . . . ,qk – ,k = , , . . . , r} forms a basis of the spectral subspace
associated to γ . Together with Proposition ., we see that the geometric multiplicity of
the eigenvalue γ is equal to r +  (otherwise, the algebraic multiplicity should be greater
than

(n+


)
). Then {hk ,k = , . . . , r} forms the basis of the eigenspace of γ . Equation (.) is

exactly the conclusion of Proposition .. �

3.2 Linear mapping represented by the multiplication of somematrices
For example, by Eq. (.), when n is odd, the evolution from the (n – )-height to the n-
height (the n-height to the (n + )-height) of the directed acyclic graph is

Qn(γ –A)
r∑

i=

aiHr+–i(x)Hi(y)Hr–i(z)

=
r∑

i=

ai
(
–(r +  – i)Hr–i(x)H+i(y)Hr–i(z) – iHr+–i(x)Hi–(y)Hr+–i(z)

)

=
r∑

i=

(
–(r +  – i)ai – ( + i)ai+

)
Hr–i(x)H+i(y)Hr–i(z) (where ar+ = ),

Qn(γ –A)
r∑

i=

biHr–i(x)H+i(y)Hr–i(z)

=
r∑

i=

(
–(r +  – i)bi– – ( + i)bi

)
Hr–i(x)Hi(y)Hr+–i(z) (where b– = ).

Then the matrices associated to the linear mappings are –D, –A (see below). When n
is even, the evolution from the (n – )-height to the n-height (the n-height to the (n + )-
height) of the directed acyclic graph is

Qn(γ –A)
r–∑
i=

ciHr–i(x)Hi+(y)Hr––i(z)

=
r∑

i=

(
–(r +  – i)ci– – ( + i)ci

)
Hr–i(x)Hi(y)Hr–i(z) (where c– = cr = ),

Qn(γ –A)
r∑

i=

diHr–i(x)Hi(y)Hr–i(z)

=
r–∑
i=

(
–(r – i)di – ( + i)di+

)
Hr–i–(x)Hi+(y)Hr–i(z).

Then the matrices associated to the linear mappings are –B, –C (see below).

http://www.advancesindifferenceequations.com/content/2014/1/34
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The others are similar. In general, the matrix Sr–k (see Proposition .) associated to the
linear mapping of the evolution from the (k)-height to the (n– k)-height of the directed
acyclic graph is as follows.

Proposition . Let r = 	 n
 
. If n is odd, then suppose that Sk is an (r +  – k)-square

matrix given by

{
S = DA,
Sk = DkCkSk–BkAk , k = , , . . . , r,

(.)

where Dk , Ak are (r +  – k)-square matrices,

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r + k +     · · ·   
 r + k   · · ·   
  r + k –   · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    · · ·  k +  n – (k + )
    · · ·   k + 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

and

Dk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

    · · ·   
r – k    · · ·   
 r – k –    · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    · · ·  n – k –  
    · · ·   n – k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

and Bk , Ck are (r +  – k)× (r +  – k), (r +  – k)× (r +  – k)matrices, respectively,

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

    · · ·   
r + k    · · ·   
 r + k –    · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    · · · k +  n – k –  
    · · ·  k +  n – k
    · · ·   k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

and

Ck =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r – k +     · · ·   
 r – k   · · ·   
  r – k –   · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    · · ·  n – k –  
    · · ·   n – k + 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (.)
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If n is even, then suppose that Sk is an (r +  – k)-square matrix given by

{
S = Idr+,
Sk = DkCkSk–BkAk , k = , , . . . , r,

(.)

where Dk , Ak are r +  – k order matrices,

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r + k    · · ·   
 r + k –    · · ·   
  r + k –   · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    · · ·  k +  n – k
    · · ·   k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

and

Dk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

    · · ·   
r – k    · · ·   
 r – k –    · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    · · ·  n – k –  
    · · ·   n +  – k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

and Bk , Ck are (r +  – k)× (r +  – k), (r +  – k)× (r +  – k)matrices, respectively,

Bk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

    · · ·   
r + k –     · · ·   

 r + k –    · · ·   
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    · · · k +  n – k –  
    · · ·  k n +  – k
    · · ·   k – 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

and

Ck =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r – k +     · · ·   
 r – k   · · ·   
  r – k –   · · ·   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    · · ·  n – k 
    · · ·   n – k + 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (.)

Then the matrices Sk are nonsingular.

Remark  Set the column vector �uk = [(–)k ,
( k
k–

)
(–)k–, . . . ,

(k

)
(–),

(k

)
(–), ]′, where

k = , , . . . , r.We conjecture that the column vector �ur–k is the eigenvector of Sk associated

http://www.advancesindifferenceequations.com/content/2014/1/34
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to the eigenvalue λk , which is defined as follows: when n is odd,

{
λ = ,
λk = k(k + )(k – )(k + )λk–, k = , , . . . , r,

(.)

when n is even,

{
λ = ,
λk = k(k – )(k – )(k – )λk–, k = , , . . . , r.

If the conjecture is valid, then we can characterize the leader vectors fk more clearly, i.e.,

Qnfk =
k∑
i=

(–)k–i
(
k
i

)
Hn–k–i(x)Hi(y)Hk–i(z).

Apply the notation in [, ]. Let A be an p×qmatrix, α = {i, . . . , is}, and β = {j, . . . , jt},
 ≤ i < · · · < is ≤ p,  ≤ j < · · · < jt ≤ q. Denote by A[i, . . . , is; j, . . . , jt], or simply A[α,β],
the submatrix of A consisting of the entries in rows i, . . . , is and columns j, . . . , jt . Let
A(i, . . . , is|j, . . . , jt) be the submatrix of A obtained by deleting rows i, . . . , is and columns
j, . . . , jt . For convenience, A(i, . . . , is|) (A(|j, . . . , jt)) means deleting rows (columns) only.

Proof We divide the proof into three steps.
Claim : All the minors (i.e., the determinant of the square submatrix) of the matri-

ces Ak, Bk , Ck , Dk , k = , . . . , r, are nonnegative. Since Ak (Bk) and DT
k (CT

k ) have the same
types, we only need to prove the cases of Ak , Bk . The square submatrix of Bk is the same
as that of a certain Bk(i|), i = , . . . , r +  – k, which is a direct sum of two matrices []
with the same type of Dk or Ak . Thus we only need to prove the case of Ak . In fact,
A[i, . . . , is; j, . . . , js] is a direct sum [] of several nonnegative triangular matrices, which
implies that A[i, . . . , is; j, . . . , js] has a nonnegative determinant.
Claim : All the minors of Sk are nonnegative. In fact, we have the following type of

Binet-Cauchy formula:

det(AB)[α,β] =
∑

κ

detA[α,κ]× detA[κ ,β], (.)

where A (B) ism×n (n×m) matrix,m ≤ n, κ runs over all the sequences of {, . . . ,n} with
the same length of α, β . By successively applying Eq. (.), we have

detSk[α,β] = det(DkCkSk–BkAk)[α,β]

=
∑

κ,κ,κ,κ

detDk[α,κ]

× detCk[κ,κ]detSk–[κ,κ]detBk[κ,κ]detAk[κ,β].

Together with Claim  and by mathematical induction, we have detSk[α,β]≥ .
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Claim : detSk > . Clearly, detS > . Since detAk ,detDk > , we need only prove that
det(CkSk–Bk) > . By the Binet-Cauchy formula, we have

det(CkSk–Bk) =
∑
i,j

detCk(|i)detSk–(i|j)detBk(j|).

Clearly, detCk(|i),detBk(j|) > . By the induction assumption detSk– �= , Claim  implies
that there exists at least one detSk–(i|j) > . This ends the proof. �
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Endnotes
a It is well known that the reversibility is equivalent to the symmetric property of the generator for a Markov process

with invariant distribution.
b We think that the approach is also able to solve the same problems for d ≥ 4.
c The directed acyclic graph can easily be given for any integer n, and we ignore it for convenience.
d The reader can also refer to [7, Proposition 3.1].
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