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Abstract
The purpose of this article is to give oscillation criteria for the third-order neutral
dynamic equation (r2(t)[(r1(t)[y(t) + p(t)y(τ (t))]�)�]γ )� + f (t, y(δ(t))) = 0, where γ ≥ 1 is
a ratio of odd positive integers with r1(t), r2(t), and p(t) are positive real-valued
rd-continuous functions defined on T. We give new results for the third-order neutral
dynamic equations and an example to illustrate the importance of our results.
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1 Introduction
In the present article, we are concerned with oscillations of the third-order nonlinear neu-
tral dynamic equation

(
r(t)

[(
r(t)

[
y(t) + p(t)y

(
τ (t)

)]�)�]γ )� + f
(
t, y

(
δ(t)

))
=  ()

on a time scale T. Throughout this paper it is assumed that γ ≥  is a ratio of odd positive
integers, τ (t) : T → T and δ(t) : T → R are rd-continuous functions such that τ (t) ≤ t,
δ(t) ≤ t, limt→∞ δ(t) = limt→∞ τ (t) = ∞ and δ�(t) >  is rd-continuous, r(t), r(t) and p(t)
are positive real valued rd-continuous functions defined on T,  ≤ p(t) ≤ p <  is increas-
ing. We define the time scale interval [t,∞)T by [t,∞)T = [t,∞) ∩ T. Furthermore,
f : T×R → R is a continuous function such that uf (t,u) >  for all u �=  and there exists
a rd-continuous positive function q(t) defined on T such that |f (t,u)| ≥ q(t)|uγ |.
We use throughout this paper the following notations for convenience and for shorten-

ing the equations:

x(t) = y(t) + p(t)y
(
τ (t)

)
, x[] =

(
rx�)�,

x[] = r
(
x[]

)γ , x[] =
(
x[]

)�.
()

A nontrivial function y(t) is said to be a solution of () if x ∈ C
rd[ty,∞), rx� ∈ C

rd[ty,∞)
and x[] ∈ C

rd[ty,∞) for ty ≥ t and y(t) satisfies equation () for ty ≥ t. A solution of ()
which is nontrivial for all large t is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is called nonoscillatory.
Recently, there has been many important research activity on the oscillatory behavior

of dynamic equations. For example, on second-order dynamic equations, Saker [], and
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Agarwal et al. [], Saker [], Hassan [] and Candan [, ] considered the following non-
linear dynamic equations:

(
r(t)

((
y(t) + p(t)y(t – τ )

)�)γ )� + f
(
t, y(t – δ)

)
= ,

(
r(t)

((
y(t) + p(t)y

(
τ (t)

))�)γ )� + f
(
t, y

(
δ(t)

))
= ,

(
r(t)

(
x�(t)

)γ )� + p(t)xγ (t) = ,

and

(
r(t)

((
y(t) + p(t)y

(
τ (t)

))�)γ )� +
∫ d

c
f
(
t, y

(
θ (t, ξ )

))�ξ = ,

respectively, and they gave sufficient conditions which guarantee that every solution of the
equation oscillates. Moreover, there are also some papers on third-order dynamic equa-
tions. For instance, Erbe et al. [] considered the third-order nonlinear dynamic equation

(
c(t)

(
a(t)x�(t)

)�)� + q(t)f
(
x(t)

)
= .

Later, Erbe et al. [] considered the third-order nonlinear dynamic equation

x���(t) + p(t)x(t) = 

by giving Hille and Nehari type criteria. Then, Hassan [] studied the third-order nonlin-
ear dynamic equation

(
a(t)

((
r(t)x�(t)

)�)γ )� + f
(
t,x

(
τ (t)

))
= .

Lastly, Wang and Xu [] studied asymptotic properties of a certain third-order dynamic
equation,

(
r(t)

((
r(t)x�(t)

)�)γ )� + q(t)f
(
x(t)

)
= .

As we see from all the above, our equation, a neutral dynamic equation, is more general
than other third-order dynamic equations and therefore it is very important. For some
other important articles on oscillations of second-order nonlinear neutral delay dynamic
equation on time scales and oscillations of third-order neutral differential equations, we
refer the reader to the papers [, ], and [], respectively. We give [, ] as references
for books on the time scale calculus.

2 Main results
Lemma  Assume that y is an eventually positive solution of () and

∫ ∞

t

�t
r(t)

=∞,
∫ ∞

t

(


r(t)

) 
γ

�t =∞. ()

Then, there is a t ∈ [t,∞)T such that either

(i) x(t) > , x�(t) > , x[](t) > , t ∈ [t,∞)T ,
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or

(ii) x(t) > , x�(t) < , x[](t) > , t ∈ [t,∞)T .

Proof Assume that y(t) >  for t ≥ t and therefore y(τ (t)) >  and y(δ(t)) >  for t ≥ t > t.
Consequently, x(t) > , eventually. Using () in () and the fact that |f (t,u)| ≥ q(t)|uγ |, we
obtain

x[](t) + q(t)
(
y
(
δ(t)

))γ ≤ , t ∈ [t,∞)T . ()

Hence, we conclude that x[](t) is a strictly decreasing function on [t,∞)T. We claim
that x[](t) >  on [t,∞)T. If not, then there exists a t ∈ [t,∞)T such that x[](t) <  on
[t,∞)T. Then, there exist a negative constant c and t ∈ [t,∞)T such that

x[](t) ≤ c < , t ∈ [t,∞)T

and it follows that

x[](t)≤
(

c
r(t)

) 
γ

. ()

Integrating () from t to t and using (), we obtain

r(t)x�(t) ≤ r(t)x�(t) + c

γ

∫ t

t

(


r(s)

) 
γ

�s,

which implies that r(t)x�(t) → –∞ as t → ∞. Therefore, there exists a t ∈ [t,∞)T such
that

r(t)x�(t) ≤ r(t)x�(t) < , t ∈ [t,∞)T . ()

Dividing both sides of () by r(t) and integrating from t to t, we obtain

x(t) – x(t) ≤ r(t)x�(t)
∫ t

t

(


r(s)

)
�s.

Hence, we see from () that x(t) → –∞ as t → ∞, which contradicts the fact that x(t) > ,
and therefore x[](t) >  for t ∈ [t,∞)T. As a result of x[](t) >  for t ∈ [t,∞)T it follows
that r(t)x�(t) <  on [t,∞)T or r(t)x�(t) >  on [t,∞)T, which completes the proof.

�

Lemma  Let y be an eventually positive solution of (). Assume that Case (i) of Lemma 
holds. Then, there exists a t ∈ [t,∞)T such that

x�(t)≥ r(t, t)
r(t)

[
x[](t)

] 
γ , t ∈ [t,∞)T , ()
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where r(t, t) =
∫ t
t

�s

(r(s))

γ
and

x(t)≥ r(t, t)
[
x[](t)

] 
γ , t ∈ [t,∞)T ,

where r(t, t) =
∫ t
t

r(s,t)
r(s)

�s.

Proof Since x[](t) is strictly decreasing on [t,∞)T, we have

r(t)x�(t) ≥ r(t)x�(t) – r(t)x�(t)

=
∫ t

t

[x[](s)]

γ

(r(s))

γ

�s,

it follows that

x�(t)≥ [x[](t)]

γ

r(t)

∫ t

t

�s

(r(s))

γ

or

x�(t)≥ r(t, t)
r(t)

[
x[](t)

] 
γ , t ∈ [t,∞)T . ()

Similarly, integrating () from t to t, we obtain

x(t)≥ [
x[](t)

] 
γ

∫ t

t

r(s, t)
r(s)

�s

or

x(t)≥ r(t, t)
[
x[](t)

] 
γ , t ∈ [t,∞)T .

This completes the proof. �

Lemma  Let y be an eventually positive solution of (). Assume that Case (ii) of Lemma 
holds. If

∫ ∞

t


r(t)

∫ ∞

t

[


r(s)

∫ ∞

s
q(u)�u

]/γ

�s�t =∞, ()

then limt→∞ y(t) = .

Proof Since Case (ii) of Lemma  is satisfied,

lim
t→∞x(t) = l ≥ .

We claim that limt→∞ x(t) = . Assume that l > . Then for any ε > , we have l < x(t) < l+ε

for sufficiently large t ≥ t. Choose  < ε < l(–p)
p . On the other hand, since

x(t) = y(t) + p(t)y
(
τ (t)

)
,
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we have

y(t) ≥ x(t) – px
(
τ (t)

)
> l – p(l + ε)

= k(l + ε)

> kx(t), t ≥ t ≥ t,

where k = l–p(l+ε)
l+ε

> . Then,

(
y
(
δ(t)

))γ ≥ kγ
(
x
(
δ(t)

))γ , t ≥ t ≥ t. ()

Substituting () into (), we obtain

x[](t)≤ –q(t)kγ
(
x
(
δ(t)

))γ , t ≥ t. ()

Integrating () from t to ∞, we get

x[](t) ≥ kγ

∫ ∞

t
q(s)

(
x
(
δ(s)

))γ �s, t ≥ t

or using x(δ(t)) > l,

x[](t)≥ kl
[


r(t)

∫ ∞

t
q(s)�s

]/γ

, t ≥ t. ()

Integrating () from t to ∞ and dividing both sides by r(t), we have

–x�(t) ≥ kl
r(t)

∫ ∞

t

[


r(u)

∫ ∞

u
q(s)�s

]/γ

�u, t ≥ t. ()

Integrating () from t to ∞, we obtain

x(t) ≥ kl
∫ ∞

t


r(t)

∫ ∞

t

[


r(s)

∫ ∞

s
q(u)�u

]/γ

�s�t,

which contradicts () and therefore l = . By making use of  ≤ y(t) ≤ x(t), we conclude
that limt→∞ y(t) = . �

Theorem . Assume that δ(σ (t)) = σ (δ(t)). Furthermore, suppose that (), (), and

∫ ∞

t
Q(s)�s =∞, ()

where Q(s) = q(s)( – p)γ , hold. Then, every solution y(t) of () is either oscillatory on
[t,∞)T or limt→∞ y(t) = .

Proof Assume that () has a nonoscillatory solution; without loss of generality we may
suppose that y(t) >  for t ≥ t and therefore y(τ (t)) >  and y(δ(t)) >  for t ≥ t > t. In

http://www.advancesindifferenceequations.com/content/2014/1/35
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the case when y(t) is negative the proof is similar. As we see from Lemma  we have two
cases to consider. First we assume that x(t) satisfies Case (i) in Lemma . Then, by using
() we see that

y(t) ≥ x(t) – p(t)x
(
τ (t)

) ≥ ( – p)x(t), t ≥ t ≥ t

or

(
y
(
δ(t)

))γ ≥ ( – p)γ
(
x
(
δ(t)

))γ , t ≥ t ≥ t. ()

Substituting () into (), we obtain

x[](t)≤ –q(t)( – p)γ
(
x
(
δ(t)

))γ = –Q(t)
(
x
(
δ(t)

))γ , t ≥ t. ()

Furthermore, using Pötzche’s chain rule, we find

((
x
(
δ(t)

))γ )�

= γ

∫ 



[
h
(
x
(
δ(t)

))σ + ( – h)x
(
δ(t)

)]γ–(x(δ(t)))� dh

≥ γ

∫ 



[
hx

(
δ(t)

)
+ ( – h)x

(
δ(t)

)]γ–(x(δ(t)))� dh

= γ
(
x
(
δ(t)

))γ–x�(
δ(t)

)
δ�(t) > . ()

Define the function

z(t) =
x[](t)

(x(δ(t)))γ
, t ≥ t. ()

It is easy to see that z(t) > . Taking the derivative of z(t), we see that

z�(t) =
x[](t)

(x(δ(t)))γ
+

(
x[](t)

)σ

(


(x(δ(t)))γ

)�

=
x[](t)

(x(δ(t)))γ
–

(
x[](t)

)σ ((x(δ(t)))γ )�

(x(δσ (t)))γ (x(δ(t)))γ
. ()

Substituting () into () and using (), respectively, we have

z�(t) ≤ –Q(t) –
(
x[](t)

)σ ((x(δ(t)))γ )�

(x(δσ (t)))γ (x(δ(t)))γ

≤ –Q(t) –
(
x[](t)

)σ γ (x(δ(t)))γ–x�(δ(t))δ�(t)
(x(δσ (t)))γ (x(δ(t)))γ

= –Q(t) – γ
(
x[](t)

)σ x�(δ(t))δ�(t)
(x(δσ (t)))γ x(δ(t))

≤ –Q(t) – γ
(
x[](t)

)σ x�(δ(t))δ�(t)
(x(δσ (t)))γ+

. ()
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Using () in () and the fact that x[](t) is strictly decreasing, we obtain from ()

z�(t) ≤ –Q(t) – γ
δ�(t)r(δ(t), t)

r(δ(t))
(x[](δ(t)))


γ

x(δσ (t))
(x[](t))σ

(x(δσ (t)))γ

≤ –Q(t) – γ
δ�(t)r(δ(t), t)

r(δ(t))
(
zσ (t)

) γ+
γ . ()

Finally, integrating () from t to t, we get

z(t) – z(t) ≤
∫ t

t

[
–Q(s) – γ

r(δ(s), t)δ�(s)
r(δ(s))

(
zσ (s)

) γ+
γ

]
�s ≤ –

∫ t

t
Q(s)�s

and consequently

∫ t

t
Q(s)�s≤ z(t),

which contradicts (). When Case (ii) holds, we can conclude from Lemma  that
limt→∞ y(t) = . �

Theorem . Suppose that (), () hold and δ(σ (t)) = σ (δ(t)). Furthermore, assume that
there exists a positive rd-continuous �-differentiable function α(t) such that

lim sup
t→∞

∫ t

t

[
α(s)Q(s) –

(
(α�(s))+
γ + 

)γ+( r(δ(s))
α(s)r(δ(s), t)δ�(s)

)γ ]
�s =∞, ()

where (α�(s))+ = max{,α�(s)} and Q(s) = q(s)( – p)γ . Then, every solution y(t) of () is
either oscillatory on [t,∞)T or limt→∞ y(t) = .

Proof Suppose to the contrary that y(t) is nonoscillatory solution of (). We assume that
y(t) >  for t ≥ t, then y(τ (t)) >  and y(δ(t)) >  for t ≥ t > t. We first consider that x(t)
satisfies Case (i) in Lemma . We proceed as in the proof of Theorem ., and we obtain
(). Let us define the function

z(t) = α(t)
x[](t)

(x(δ(t)))γ
, t ≥ t. ()

It is clear that z(t) > . Taking the derivative of z(t), we see that

z�(t) =
(
x[](t)

)σ

(
α(t)

(x(δ(t)))γ

)�
+

α(t)
(x(δ(t)))γ

x[](t)

=
α(t)x[](t)
(x(δ(t)))γ

+
(
x[](t)

)σ

(
(x(δ(t)))γ α�(t) – α(t)((x(δ(t)))γ )�

(x(δ(t)))γ (x(δσ (t)))γ

)
. ()

Now using () in (), we obtain

z�(t)≤ –α(t)Q(t) +
α�(t)zσ (t)

ασ (t)
–

α(t)(x[](t))σ ((x(δ(t)))γ )�

(x(δ(t)))γ (x(δσ (t)))γ
. ()
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Substituting () into (), we obtain

z�(t)≤ –α(t)Q(t) +
α�(t)zσ (t)

ασ (t)
– γ

α(t)(x[](t))σx�(δ(t))δ�(t)
x(δ(t))(x(δσ (t)))γ

. ()

By using () into (), we obtain

z�(t)≤ –α(t)Q(t) +
(α�(t))+zσ (t)

ασ (t)
– γ

α(t)r(δ(t), t)δ�(t)
r(δ(t))

(
zσ (t)
ασ (t)

)λ

, ()

where λ = γ+
γ
. Let

Aλ = γ
α(t)r(δ(t), t)δ�(t)

r(δ(t))

(
zσ (t)
ασ (t)

)λ

and

Bλ– =
(α�(t))+

λ

(
r(δ(t))

γα(t)r(δ(t), t)δ�(t)

)/λ

.

By making use of the inequality

λABλ– –Aλ ≤ (λ – )Bλ, λ > ,A,B ≥  ()

in (), we have

z�(t)≤ –α(t)Q(t) +
(
(α�(t))+
γ + 

)γ+( r(δ(t))
α(t)r(δ(t), t)δ�(t)

)γ

. ()

Integrating both sides of () from t to t then yields

∫ t

t

(
α(s)Q(s) –

(
(α�(s))+
γ + 

)γ+( r(δ(s))
α(s)r(δ(s), t)δ�(s)

)γ )
�s ≤ z(t) – z(t) ≤ z(t),

which contradicts ().
When Case (ii) holds, we can conclude from Lemma  that limt→∞ y(t) = . �

Let D ≡ {(t, s) ∈ T
 : t > s ≥ t} and D ≡ {(t, s) ∈ T

 : t ≥ s ≥ t}. The function H ∈
Crd(D,R) is said to belong to class � if H(t, t) = , t ≥ t, H(t, s) >  on D and H has a
continuous �-partial derivative H�s (t, s) on D with respect to the second variable.

Theorem . Assume that () and () hold and δ(σ (t)) = σ (δ(t)). Furthermore, α(t) is
defined as in Theorem . and H ∈ � such that

lim sup
t→∞


H(t, t)

∫ t

t

[
H(t, s)α(s)Q(s)

–
(

ασ (s)C(t, s)
γ + 

)γ+( r(δ(s))
H(t, s)α(s)r(δ(s), t)δ�(s)

)γ ]
�s =∞, ()
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where C(t, s) =max{,H�s (t, s) + H(t,s)(α�(s))+
ασ (s) }. Then every solution y(t) of () is either oscil-

latory on [t,∞)T or limt→∞ y(t) = .

Proof Assume that y(t) is a nonoscillatory solution of (). Define z(t) as in ().Weproceed
as in the proof of Theorem . to obtain (). Multiplying both sides of () by H(t, s),
integrating with respect to s from t to t, we get

∫ t

t
H(t, s)α(s)Q(s)�s ≤ –

∫ t

t
H(t, s)z�(s)�s +

∫ t

t

H(t, s)(α�(s))+zσ (s)
ασ (s)

�s

–
∫ t

t

γH(t, s)α(s)r(δ(s), t)δ�(s)
r(δ(s))

(
zσ (s)
ασ (s)

)λ

�s, ()

where λ = γ+
γ
. Integrating by parts yields by ()

∫ t

t
H(t, s)α(s)Q(s)�s

≤H(t, t)z(t) +
∫ t

t
H�s (t, s)zσ (s)�s

+
∫ t

t

H(t, s)(α�(s))+zσ (s)
ασ (s)

�s –
∫ t

t

γH(t, s)α(s)r(δ(s), t)δ�(s)
r(δ(s))

(
zσ (s)
ασ (s)

)λ

�s

≤H(t, t)z(t) +
∫ t

t
C(t, s)zσ (s)�s

–
∫ t

t

γH(t, s)α(s)r(δ(s), t)δ�(s)
r(δ(s))

(
zσ (s)
ασ (s)

)λ

�s. ()

Let

Aλ =
γH(t, s)α(s)r(δ(s), t)δ�(s)

r(δ(s))

(
zσ (s)
ασ (s)

)λ

and

Bλ– =
C(t, s)ασ (s)

λ

(
r(δ(t))

γH(t, s)α(t)r(δ(t), t)δ�(t)

)/λ

.

Then, using the inequality () in (), we have
∫ t

t
H(t, s)α(s)Q(s)�s ≤ H(t, t)z(t)

+
∫ t

t

(
ασ (s)C(t, s)

γ + 

)γ+( r(δ(s))
H(t, s)α(s)r(δ(s), t)δ�(s)

)γ

�s

or


H(t, t)

∫ t

t

[
H(t, s)α(s)Q(s)

–
(

ασ (s)C(t, s)
γ + 

)γ+( r(δ(s))
H(t, s)α(s)r(δ(s), t)δ�(s)

)γ ]
�s ≤ z(t),

which contradicts () and completes the proof.
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When Case (ii) holds, we can conclude from Lemma  that limt→∞ y(t) = . �

Example . Consider the following third-order neutral nonlinear dynamic equation:

(
t

[(
t
[
y(t) +



y
(
t


)]�)�])�
+

t
y

(
t


)
= , t ∈ [t,∞)T , t > , ()

where γ = , r(t) = t, r(t) = r(t) = t p(t) = 
 , τ (t) = δ(t) = t

 , and q(t) = t–. We can
verify that all conditions of Theorem . are satisfied, therefore every solution of () is
oscillatory or limt→∞ y(t) = . In fact, y(t) = t– is a solution of ().
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