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Abstract
In this paper, by using an integral inequality, we establish some sufficient conditions
ensuring the existence and p-exponential stability of periodic solutions for a class of
stochastic shunting inhibitory cellular neural networks (SICNNs) with distributed
delays. Moreover, we present an example to illustrate the feasibility of our theoretical
results.
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1 Introduction
The shunting inhibitory cellular neural networks (SICNNs) have been described as new
cellular neural networks by Bouzerdout and Pinter in [–]. The layers in SICNNs are
arranged into two-dimensional arrays of processing units called cells, where each cell is
coupled to its neighboring units only. The interactions among cells within a single layer
are mediated via the biophysical mechanism of recurrent shunting inhibition, where the
shunting conductance of each cell is modulated by the voltages of neighboring cells.
Recently, due to its wide applications in image and signal processing, vision, pattern

recognition, and optimization, SICNNs received much attention from many scholars. In
particular, many authors devoted much effort to the existence and global exponential sta-
bility of periodic or almost periodic solutions of SICNNs (see [–]). For example, in [–
], the authors considered the existence and stability of almost periodic solutions for
SCINNs; in [, ], the authors considered the existence and stability of periodic solu-
tions for SCINNs; in [–], the authors considered the existence and stability of anti-
periodic solutions for impulsive SCINNs; in [, ], the authors obtained some sufficient
conditions for the existence and stability of an equilibrium point.
As pointed out in [], in real nervous systems, synaptic transmission is a noisy pro-

cess brought on by random fluctuations from the release of neurotransmitters and other
probabilistic causes. Neural networks could be stabilized or destabilized by some stochas-
tic inputs []. Therefore, it is significant and of prime importance to consider stochastic
effects on the dynamic behavior of neural networks, which are called stochastic neural net-
works. With respect to stochastic neural networks, there are many works on the stability
of considered systems (see [–] and references therein).
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However, it is well known that studies of neural dynamical systems not only involve a
discussion of the stability properties, but they also involve many other dynamic behaviors
such as periodic oscillatory behavior and so on. Therefore, it is significant to study the
existence and stability of periodic solutions for stochastic neural networks (see []). But
to the best of our knowledge, there is no paper published on the existence and stability of
periodic solutions of stochastic shunting inhibitory cellular neural networks.
Motivated by the above discussion, ourmain purpose of this paper is by using an integral

inequality to obtain some sufficient conditions for the existence and p-exponential stability
of periodic solutions in the case of the following stochastic shunting inhibitory cellular
neural network with distributed delays:

dxij(t) =
[
–aij(t)xij(t) –

∑
Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl

(
t – δ(t)

))
xij(t)

–
∑

Ckl∈Nq(i,j)

Bkl
ij (t)

∫ t

t–τij(t)
kij(t – u)g

(
xkl(u)

)
duxij(t) + Lij(t)

]
dt

+
∑

Ckl∈Np(i,j)

Dkl
ij (t)σij

(
xij(t)

)
dwij(t), t ≥ t, (.)

where i = , , . . . ,m, j = , , . . . ,n; Cij denotes the cell at the (i, j) position of the lattice, the
r-neighborhood Nr(i, j) is given as

Nr(i, j) =
{
Ckl :max

(|k – i|, |l – j|) ≤ r, ≤ k ≤m, ≤ l ≤ n
}
,

Nq(i, j) and Np(i, j) are similarly specified; xij is the activity of the cell Cij at time t; Lij is the
external input to Cij at time t; aij(t) >  represents the passive decay rate of the cell activ-
ity at time t; Ckl

ij (t) ≥ , Bkl
ij (t) ≥  and Dkl

ij (t) ≥  are the connection or coupling strength
of postsynaptic activity of the cell transmitted to the cell Cij at time t; the activity func-
tions f , g ∈ C(R,R) represent the output or firing rate of the cell Ckl ; τij(t) >  and δ(t) > 
correspond to the transmission delays at time t; kij(·) is the kernel function determining
the distributed delays at cells (i, j); w(t) = (w(t),w(t), . . . ,wmn(t))T ism× n-dimensional
Brownian motions defined on a complete probability space; σij ∈ C(R,R) is a Borel mea-
surable function and σ = (σij)mn×mn is a diffusion coefficient matrix, where i = , , . . . ,m,
j = , , . . . ,n.
In the following, we introduce some notation. Let Rn(Rn

+) be the space of n-dimensional
(nonnegative) real column vectors and Rmn be the space of m × n-dimensional real col-
umn vectors. We denote (�,F , {Ft}t≥,P) by a complete probability space with a filtration
{Ft}t≥, where F is a σ -algebra on a given set �, P is the probability measure and the filtra-
tion {Ft}t≥ satisfies the usual conditions, that is, {Ft}t≥ is right continuous and F con-
tains all P-null sets. Denote by BCb

F (R,R
mn) the family of bounded F-measurable, Rmn-

valued random variables x(t), that is, the value of x(t) is anm× n-dimensional real vector
and can be decided from the values of w(s) for s ≤ . Then BCb

F (R,R
mn) is a Banach space

with the norm ‖x‖ = sup≤t≤ω(E|x(t)|p )

p , where p >  is an integer, |x(t)| =max(i,j) |xij(t)|,

and E(·) stands for the correspondent expectation operator with respect to the given
probability measure P. For convenience, for an ω-periodic continuous function f : R →
R, denote f = max≤t≤ω |f (t)|, f = min≤t≤ω |f (t)|; for any φ ∈ BCb

F ([–τ , ],Rmn), denote
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[φ(t)]+τ = (|φ|τ , |φ|τ , . . . , |φmn|τ )T , where |φij|τ = sup–τ≤s≤ |φij(t + s)|, i = , , . . . ,m, j =
, , . . . ,n.
The initial value of (.) is

xij(s) = ϕij(s), s ∈ [t – τ , t], (.)

where ϕij(s) ∈ BCb
F ([t – τ , t],R), τ = max{max(i,j)maxt∈[,ω] τij(t),maxt∈[,ω] δ(t)}, t ∈ R.

The main aim of this paper is to obtain some sufficient conditions on the existence and
p-exponential stability of periodic solutions for (.) with initial condition (.).
Throughout this paper, we assume that

(H) aij(t), Ckl
ij (t), Bkl

ij (t), Dkl
ij (t), Lij(t) are all periodic continuous functions with period ω

for t ∈ R, i = , , . . . ,m, j = , , . . . ,n;
(H) f , g,σij ∈ C(R,R) are all Lipschitz-continuous with positive Lipchitz constants Lf , Lg

and lij, respectively and there exist positive constants Mf and Mg such that |f (u)| ≤
Mf , |g(u)| ≤ Mg , for all u ∈ R, i = , , . . . ,m, j = , , . . . ,n;

(H) kij ∈ C(R, (,∞)) satisfies
∫ τ ij
 kij(s) ds ≤ kij, i = , , . . . ,m, j = , , . . . ,n.

This paper is organized as follows: In Section , we introduce some definitions and state
some preliminary results which are needed in later sections. In Section , we establish
some sufficient conditions for the existence of periodic solutions of (.). In Section ,
we prove that the periodic solution obtained in Section  is p-exponentially stable. In Sec-
tion , we give an example to illustrate the feasibility of our results obtained in the previous
sections.

2 Preliminaries
In this section, we recall some definitions and make some preparations.

Definition . (Definition . []) A stochastic process x(t) is said to be periodic with
period ω if its finite-dimensional distributions are periodic with period ω, that is, for any
positive integerm and any moments of time t, t, . . . , tm, the joint distribution of the ran-
dom variables x(t + kω),x(t + kω), . . . ,x(tm + kω) are independent of k, k =±,±, . . . .

Lemma . (p. []) If x(t) is an ω-periodic stochastic process, then its mathematical
expectation and variance are ω-periodic.

Definition . A function x(t) = (x(t),x(t), . . . ,xmn(t))T defined on [t – τ ,∞] is said
to be a solution of (.) with initial condition (.) if

(i) xij(t) is absolutely continuous on [t – τ ,∞], i = , , . . . ,m, j = , , . . . ,n;
(ii) xij(t) satisfies (.) for almost everywhere t ∈ [t,∞), i = , , . . . ,m, j = , , . . . ,n;
(iii) xij(s) = ϕij(s), s ∈ [t – τ , t], i = , , . . . ,m, j = , , . . . ,n.

Throughout this paper, we assume that there exists a unique solution of (.) with initial
condition (.). In the following, we denote the solution of (.) by x(t) = x(t, t,ϕ) for all
ϕ ∈ BCb

F ([t – τ , t],Rmn) and t ∈ R.

Definition . (Definition . []) The solution x(t, t,ϕ) of (.) is said to be

http://www.advancesindifferenceequations.com/content/2014/1/37
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(i) p-uniformly bounded, if for each α > , t ∈ R, there exists a positive constant
θ = θ (α) which is independent of t such that ‖ϕ‖p ≤ α implies E(‖x(t, t,ϕ)‖p) ≤ θ ,
t ≥ t;

(ii) p-point dissipative, if there exists a constant N >  such that for any point ϕ ∈
BCb

F ([–τ , ],Rn), there exists T(t,ϕ) such that E(‖x(t, t,ϕ)‖p) ≤N ,
t ≥ t + T(t,ϕ).

Lemma . (Theorem . []) Under conditions (H)-(H), assume that the solution of
(.) is p-uniformly bounded and p-point dissipative for p > , then (.) has an ω-periodic
solution.

Lemma . (Lemma . []) For any x ∈ Rn
+ and p > ,

|x|p ≤ n(
p
 –)∨

n∑
i=

xpi ,

( n∑
i=

xi

)p

≤ n(p–)∨
n∑
i=

xpi .

Definition . (Definition . []) The periodic solution x(t, t,ϕ) with initial value ϕ ∈
BCb

F ([–τ , ],Rn) of (.) is said to be p-exponentially stable, if there are constants λ > 
and M >  such that for any solution y(t, t,ϕ) with initial value ϕ ∈ BCb

F ([–τ , ],Rn) of
(.) satisfies

E
(|x – y|p

) ≤M‖ϕ – ϕ‖pe–λ(t–t), t ≥ t.

Lemma . (Lemma . []) Let u(t) ∈ C(R,Rn
+) be a solution of the delay integral in-

equality

⎧⎪⎪⎨
⎪⎪⎩
u(t)≤Me–δ(t–t)[ϕ]+τ +

∫ t
t
e–C(t–s)Au(s) ds

+
∫ t
t
e–C(t–s)B[u(s)]+τ ds + J, t ≥ t,

u(t)≤ ϕ(t), ∀t ∈ [t – τ , t],

(.)

where A,B,C,M ∈ Rn×n
+ , J ≥  is a constant vector, ϕ(t) ∈ C([t – τ , t],Rn

+). If ρ() < ,
where  = C–

 (A + B), then there are constants  < λ ≤ δ and N ≥  such that

u(t) ≤Nze–λ(t–t) + (I –)–J, t ≥ t,

where z satisfies [ϕ]+τ ≤ z.

Lemma . (Corollary . []) Assume that all conditions of Lemma . hold. If J = ,
then all solutions of inequality of (.) exponentially convergent to zero.

By Lemma . and Lemma ., we have the following corollary.

Corollary . Let u(t) ∈ C(R,R+) be a solution of the delay integral inequality

⎧⎪⎪⎨
⎪⎪⎩
u(t)≤Me–δ(t–t)[ϕ]+τ +

∫ t
t
e–C(t–s)Au(s) ds

+
∫ t
t
e–C(t–s)B[u(s)]+τ ds + J, t ≥ t,

u(t)≤ ϕ(t), ∀t ∈ [t – τ , t],

(.)

http://www.advancesindifferenceequations.com/content/2014/1/37


Yang and Li Advances in Difference Equations 2014, 2014:37 Page 5 of 14
http://www.advancesindifferenceequations.com/content/2014/1/37

where A,B,C,M ∈ R+, J ≥  is a constant, ϕ(t) ∈ C([t – τ , t],R+). If A+B
C

< , then
there are constants  < λ ≤ δ and N ≥  such that

u(t) ≤Nze–λ(t–t) +
(
 –

A + B

C

)–

J, t ≥ t,

where z satisfies [ϕ]+τ ≤ z.Moreover, if J = , then all solutions of the inequality of (.) are
exponentially convergent to zero.

3 Existence of periodic solution
In this section, we will state and prove the existence of periodic solutions of (.).

Theorem . Let (H)-(H) hold. Suppose further that

(H) there exists an integer p >  such that εθ– < , where θ =min(i,j){aij}, lp = ( p(p–) )
p
 ,

ε = max
(i,j)

{
p–

(
(aij)

–p
[(

Mf
∑

Ckl∈Nr(i,j)

Ckl
ij

)p

+
(
Mg

∑
Ckl∈Nq(i,j)

Bkl
ij kij

)p]

+ lp(mn)
p


(aij(p – )
p – 

)– p

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

)p)}
.

Then (.) has an ω-periodic solution.

Proof By the method of variation parameter, for t ≥ t, from (.), we have the following:

xij(t) = xij(t)e
–

∫ t
t

aij(ϑ) dϑ –
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

[ ∑
Ckl∈Nr(i,j)

Ckl
ij (s)f

(
xkl

(
s – δ(s)

))
xij(s)

+
∑

Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)g

(
xkl(u)

)
duxij(s) – Lij(s)

]
ds

+
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Np(i,j)

Dkl
ij (s)σij

(
xij(s)

)
dwij(s), i = , , . . . ,m, j = , , . . . ,n.

For i = , , . . . ,m, j = , , . . . ,n, denote

F ()
ij = xij(t)e

–
∫ t
t

aij(ϑ) dϑ ,

F ()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nr(i,j)

Ckl
ij (s)f

(
xkl

(
s – δ(s)

))
xij(s) ds,

F ()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)g

(
xkl(u)

)
duxij(s) ds,

F ()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑLij(s) ds, F ()

ij =
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Np(i,j)

Dkl
ij (s)σij

(
xij(s)

)
dwij(s).

Taking expectations and using Lemma ., we have

E
∣∣xij(t)∣∣p ≤ p–E

(∣∣F ()
ij

∣∣p + ∣∣F ()
ij

∣∣p + ∣∣F ()
ij

∣∣p + ∣∣F ()
ij

∣∣p + ∣∣F ()
ij

∣∣p). (.)
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For i = , , . . . ,m, j = , , . . . ,n, we evaluate the first term of (.) as follows:

E
∣∣F ()

ij
∣∣p = E

∣∣xij(t)e– ∫ t
t

aij(ϑ) dϑ ∣∣p ≤ E
∣∣xij(t)e–aij(t–t)∣∣p ≤ e–paij(t–t)E

∣∣xij(t)∣∣p.
For the second term of (.), by the Hölder inequality, for i = , , . . . ,m, j = , , . . . ,n, we
have

E
∣∣F ()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nr(i,j)

Ckl
ij (s)f

(
xkl

(
s – δ(s)

))
xij(s) ds

∣∣∣∣
p

≤ E
(∫ t

t
e–aij(t–s)

∑
Ckl∈Nr(i,j)

Ckl
ij
∣∣f (xkl(s – δ(s)

))∣∣∣∣xij(s)∣∣ds
)p

≤ E
(∫ t

t
e–aij(t–s)

∑
Ckl∈Nr(i,j)

Ckl
ij Mf

∣∣xij(s)∣∣ds
)p

= E
(∫ t

t

(
e–aij(t–s)

) p–
p

(
e–aij(t–s)

) 
p

∑
Ckl∈Nr(i,j)

Ckl
ij Mf

∣∣xij(s)∣∣ds
)p

≤ E
((∫ t

t
e–aij(t–s) ds

)p– ∫ t

t
e–aij(t–s)

( ∑
Ckl∈Nr(i,j)

Ckl
ij Mf

∣∣xij(s)∣∣
)p

ds
)

≤ (aij)
–p

∫ t

t
e–aij(t–s)

(
Mf

∑
Ckl∈Nr(i,j)

Ckl
ij

)p

E
∣∣xij(s)∣∣p ds.

As to the third term of (.), by the Hölder inequality, for i = , , . . . ,m, j = , , . . . ,n, we
also have

E
∣∣F ()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)g

(
xkl(u)

)
duxij(s) ds

∣∣∣∣
p

≤ E
(∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

∣∣Bkl
ij (s)

∣∣∣∣∣∣
∫ s

s–τij(s)
kij(s – u)g

(
xkl(u)

)
du

∣∣∣∣∣∣xij(s)∣∣ds
)p

≤ E
(∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

Bkl
ij Mgkij

∣∣xij(s)∣∣ds
)p

≤ E
((∫ t

t
e–aij(t–s) ds

)p– ∫ t

t
e–aij(t–s)

( ∑
Ckl∈Nq(i,j)

Bkl
ij Mgkij

∣∣xij(s)∣∣
)p

ds
)

≤ (aij)
–p

∫ t

t
e–aij(t–s)

(
Mg

∑
Ckl∈Nq(i,j)

Bkl
ij kij

)p

E
∣∣xij(s)∣∣p ds.

For the fourth term of (.), for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣F ()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑLij(s) ds

∣∣∣∣
p

≤ E
∣∣∣∣
∫ t

t
e–aij(t–s)Lij(s) ds

∣∣∣∣
p

≤
(
Lij
aij

)p

.
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As to the last term of (.), using Proposition . in [] and the Hölder inequality, for
i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣F ()

ij
∣∣p

= E
∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Np(i,j)

Dkl
ij (s)σij

(
xij(s)

)
dwij(s)

∣∣∣∣
p

≤ lp
[∫ t

t

(
e–paij(t–s)E

∣∣∣∣ ∑
Ckl∈Np(i,j)

(
Dkl

ij (s)
)

σ 
ij
(
xij(s)

)∣∣∣∣
p

) 

p
ds

] p


≤ lp(mn)
p


[∫ t

t

(
e–paij(t–s)E

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

∣∣xij(s)∣∣
)p) 

p
ds

] p


= lp(mn)
p


[∫ t

t

(
e–(p–)aij(t–s)e–aij(t–s)E

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

∣∣xij(s)∣∣
)p) 

p
ds

] p


≤ lp(mn)
p


(∫ t

t
e–

aij(p–)
p– (t–s) ds

) p
 –

(∫ t

t
e–aij(t–s)E

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

∣∣xij(s)∣∣
)p

ds
)

≤ lp(mn)
p


(aij(p – )
p – 

)– p

(∫ t

t
e–aij(t–s)E

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

∣∣xij(s)∣∣
)p

ds
)

≤ lp(mn)
p


(aij(p – )
p – 

)– p

(∫ t

t
e–aij(t–s)

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

)p

E
∣∣xij(s)∣∣p ds

)
.

Therefore, for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣xij(t)∣∣p ≤ p–

{
e–paij(t–t)E

∣∣xij(t)∣∣p +
(
Lij
aij

)p

+ (aij)
–p

∫ t

t
e–aij(t–s)

[(
Mf

∑
Ckl∈Nr(i,j)

Ckl
ij

)p

+
(
Mg

∑
Ckl∈Nq(i,j)

Bkl
ij kij

)p]

× E
∣∣xij(s)∣∣p ds + lp(mn)

p


(aij(p – )
p – 

)– p


×
(∫ t

t
e–aij(t–s)

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

)p

E
∣∣xij(s)∣∣p ds

)}
. (.)

Set V (t) = (V(t),V(t), . . . ,Vmn(t))T , where Vij(t) = E|xij(t)|p, i = , , . . . ,m, j = , , . . . ,n.
By (.), we have

Vij(t) ≤ p–e–θ (t–t)Vij(t) +
∫ t

t
e–θ (t–s)εVij(s) ds + J ,

where J = max(i,j){( Lijaij
)p}. By (H) and Lemma ., the solutions of (.) are p-uniformly

bounded and it also show that the family of all solutions of (.) is p-point dissipative.
Then it follows from Lemma . that (.) has an ω-periodic solution. This completes the
proof of Theorem .. �
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4 p-Exponential stability of periodic solution
In this section, we will study the p-exponential stability of periodic solutions of (.).

Theorem . Let (H)-(H) hold. Suppose further that

(H) there exists an integer p >  such that (ε + ε)θ– < , where

ε = max
(i,j)

{
p–

(
(aij)

–p
[(

Mf
∑

Ckl∈Nr(i,j)

Ckl
ij

)p

+
(
Mg

∑
Ckl∈Nq(i,j)

Bkl
ij kij

)p

+
(
Lg

∑
Ckl∈Nr(i,j)

Bkl
ij kij

)p]
+ lp(mn)

p


(aij(p – )
p – 

)– p

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

)p)}

and

ε =max
(i,j)

{
p–(aij)

–pN
(
Lf

∑
Ckl∈Nr(i,j)

Ckl
ij

)p}
.

Then the periodic solution of (.) is p-exponentially stable.

Proof It is obvious that if (H) holds, then (H) must hold. By Theorem ., (.) has
an ω-periodic solution x∗(t) = {x∗

ij(t)} with initial condition ϕ(t) = {ϕij(t)}, i = , , . . . ,m,
j = , , . . . ,n. It follows that x∗(t) is p-uniform, that is, there exists a positive constant N
such that E|x∗

ij(t)|p < N , i = , , . . . ,m, j = , , . . . ,n. Suppose that x(t) = {xij(t)} is an arbi-
trary solution of (.) with the initial condition ψ(t) = {ψij(t)}, i = , , . . . ,m, j = , , . . . ,n.
Denote y(t) = {yij(t)}, where yij(t) = xij(t) – x∗

ij(t), i = , , . . . ,m, j = , , . . . ,n. Then from
(.), for i = , , . . . ,m, j = , , . . . ,n and t ≥ t, we have

dyij(t) =
[
–aij(t)yij(t) –

∑
Ckl∈Nr(i,j)

Ckl
ij (t)

(
f
(
xkl

(
t – δ(t)

))
xij(t) – f

(
x∗
kl
(
t – δ(t)

))
x∗
ij(t)

)

–
∑

Ckl∈Nq(i,j)

Bkl
ij (t)

∫ t

t–τij(t)
kij(t – u)

(
g
(
xkl(u)

)
xij(t) – g

(
x∗
kl(u)

)
x∗
ij(t)

)
du

]
dt

+
∑

Ckl∈Np(i,j)

Dkl
ij (t)

(
σij

(
xij(t)

)
– σij

(
x∗
ij(t)

))
dwij(t). (.)

The initial condition of (.) is

φij(s) = ψij(s) – ϕij(s), s ∈ [–τ , t], i = , , . . . ,m, j = , , . . . ,n.

By the method of variation parameter, for i = , , . . . ,m, j = , , . . . ,n and t ≥ t, we have
the following:

yij(t) = yij(t)e
–

∫ t
t

aij(ϑ) dϑ

–
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

[ ∑
Ckl∈Nr(i,j)

Ckl
ij (s)

(
f
(
xkl

(
s – δ(s)

))
xij(s) – f

(
x∗
kl
(
s – δ(s)

))
x∗
ij(s)

)

http://www.advancesindifferenceequations.com/content/2014/1/37
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+
∑

Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)

(
g
(
xkl(u)

)
xij(s) – g

(
x∗
kl(u)

)
x∗
ij(s)

)
du

]
ds

+
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Np(i,j)

Dkl
ij (s)

(
σij

(
xij(s)

)
– σij

(
x∗
ij(s)

))
dwij(s)

= yij(t)e
–

∫ t
t

aij(ϑ) dϑ –
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

[ ∑
Ckl∈Nr(i,j)

Ckl
ij (s)

(
f
(
xkl

(
s – δ(s)

))
yij(s)

+
(
f
(
xkl

(
s – δ(s)

))
– f

(
x∗
kl
(
s – δ(s)

)))
x∗
ij(s)

)
+

∑
Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)

(
g
(
xkl(u)

)
yij(s)

+
(
g
(
xkl(u)

)
– g

(
x∗
kl(u)

))
x∗
ij(s)

)
du

]
ds

+
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Np(i,j)

Dkl
ij (s)

(
σij

(
xij(s)

)
– σij

(
x∗
ij(s)

))
dwij(s).

For i = , , . . . ,m, j = , , . . . ,n, denote H ()
ij = yij(t)e

–
∫ t
t

aij(ϑ) dϑ ,

H ()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nr(i,j)

Ckl
ij (s)f

(
xkl

(
s – δ(s)

))
yij(s) ds,

H ()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nr(i,j)

Ckl
ij (s)

(
f
(
xkl

(
s – δ(s)

))
– f

(
x∗
kl
(
s – δ(s)

)))
x∗
ij(s) ds,

H()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)g

(
xkl(u)

)
duyij(s) ds,

H ()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)

(
g
(
xkl(u)

)
– g

(
x∗
kl(u)

))
dux∗

ij(s) ds,

H ()
ij =

∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Np(i,j)

Dkl
ij (s)

(
σij

(
xij(t)

)
– σij

(
x∗
ij(t)

))
dwij(s).

Taking expectations and using Lemma ., for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣yij(t)∣∣p ≤ p–E

(∣∣H ()
ij

∣∣p + ∣∣H ()
ij

∣∣p + ∣∣H ()
ij

∣∣p + ∣∣H ()
ij

∣∣p + ∣∣H ()
ij

∣∣p + ∣∣H ()
ij

∣∣p). (.)

Proceeding as in the proof of Theorem ., we evaluate the first term of (.) as follows:

E
∣∣H()

ij
∣∣p ≤ e–paij(t–t)E

∣∣yij(t)∣∣p, i = , , . . . ,m, j = , , . . . ,n.

For the second term of (.), for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣H()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nr(i,j)

Ckl
ij (s)f

(
xkl

(
s – δ(s)

))
yij(s) ds

∣∣∣∣
p

≤ (aij)
–p

∫ t

t
e–aij(t–s)

(
Mf

∑
Ckl∈Nr(i,j)

Ckl
ij

)p

E
∣∣yij(s)∣∣p ds.
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As to the third term of (.), for i = , , . . . ,m, j = , , . . . ,n, we also have

E
∣∣H ()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nr(i,j)

Ckl
ij (s)

(
f
(
xkl

(
s – δ(s)

))

– f
(
x∗
kl
(
s – δ(s)

)))
x∗
ij(s) ds

∣∣∣∣
p

≤ E
(∫ t

t
e–aij(t–s)

∑
Ckl∈Nr(i,j)

Ckl
ij NLf

∣∣ykl(s – δ(s)
)∣∣ds)p

≤ (aij)
–p

∫ t

t
e–aij(t–s)

(
NLf

∑
Ckl∈Nr(i,j)

Ckl
ij

)p

E
∣∣ykl(s – δ(s)

)∣∣p ds.
For the fourth term of (.), for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣H ()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)g

(
xkl(u)

)
duyij(s) ds

∣∣∣∣
p

≤ (aij)
–p

∫ t

t
e–aij(t–s)

(
Mg

∑
Ckl∈Nq(i,j)

Bkl
ij kij

)p

E
∣∣yij(s)∣∣p ds.

As to the fifth term of (.), for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣H ()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Nq(i,j)

Bkl
ij (s)

∫ s

s–τij(s)
kij(s – u)

(
g
(
xkl(u)

)

– g
(
x∗
kl(u)

))
dux∗

ij(s) ds
∣∣∣∣
p

≤ (aij)
–p

∫ t

t
e–aij(t–s)

(
NLg

∑
Ckl∈Nr(i,j)

Bkl
ij kij

)p

E
∣∣ykl(s)∣∣p ds.

As to the last term of (.), for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣H()

ij
∣∣p = E

∣∣∣∣
∫ t

t
e–

∫ t
s aij(ϑ) dϑ

∑
Ckl∈Np(i,j)

Dkl
ij (s)

(
σij

(
xij(t)

)
– σij

(
x∗
ij(t)

))
dwij(s)

∣∣∣∣
p

≤ lp(mn)
p


(aij(p – )
p – 

)– p

(∫ t

t
e–aij(t–s)

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

)p

E
∣∣yij(s)∣∣p ds

)
.

Therefore, for i = , , . . . ,m, j = , , . . . ,n, we have

E
∣∣yij(t)∣∣p ≤ p–

{
e–paij(t–t)E

∣∣yij(t)∣∣p + (aij)
–p

∫ t

t
e–aij(t–s)

[(
Mf

∑
Ckl∈Nr(i,j)

Ckl
ij

)p

+
(
Mg

∑
Ckl∈Nq(i,j)

Bkl
ij kij

)p

+
(
Lg

∑
Ckl∈Nr(i,j)

Bkl
ij kij

)p]
E
∣∣yij(s)∣∣p ds

+ (aij)
–pN

∫ t

t
e–aij(t–s)

(
Lf

∑
Ckl∈Nr(i,j)

Ckl
ij

)p

E
∣∣ykl(s – δ(s)

)∣∣p ds
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+ lp(mn)
p


(aij(p – )
p – 

)– p


×
(∫ t

t
e–aij(t–s)

( ∑
Ckl∈Np(i,j)

Dkl
ij lij

)p

E
∣∣yij(s)∣∣p ds

)}
. (.)

Define U(t) = (U(t),U(t), . . . ,Umn(t))T , where Uij(t) = E|yij(t)|p, i = , , . . . ,m, j =
, , . . . ,n. By (.), we have

Uij(t) ≤ p–e–θ (t–t)Uij(t) +
∫ t

t
e–θ (t–s)εUij(s) ds +

∫ t

t
e–θ (t–s)ε

∣∣Uij(s)
∣∣+
τ
ds.

By (H) and Lemma ., the periodic solution x∗(t) of (.) is p-exponentially stable. This
completes the proof of Theorem .. �

5 An example
In this section, we will give an example to illustrate the feasibility of our results.

Example . Let n =m = . Consider the following stochastic SICNNs:

dxij(t) =
[
–aij(t)xij(t) –

∑
Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl

(
t – δ(t)

))
xij(t)

–
∑

Ckl∈Nq(i,j)

Bkl
ij (t)

∫ t

t–τij(t)
kij(t – u)g

(
xkl(u)

)
duxij(t) + Lij(t)

]
dt

+
∑

Ckl∈Np(i,j)

Dkl
ij (t)σij

(
xij(t)

)
dwij(t), (.)

where

(
aij(t)

)
× =

⎛
⎜⎝
. + . sin π

 t . + . sin π
 t . + . sin π

 t
. + . sin π

 t . + . sin π
 t . + . cos π

 t
. + . cos π

 t . + . cos π
 t . + . cos π

 t

⎞
⎟⎠ ,

(
Cij(t)

)
× =

⎛
⎜⎝
.| sin π

 t| .| sin π
 t| .| sin π

 t|
.| sin π

 t| .| sin π
 t| .| sin π

 t|
.| sin π

 t| .| sin π
 t| .| sin π

 t|

⎞
⎟⎠ ,

(
Bij(t)

)
× =

(
Dij(t)

)
× =

⎛
⎜⎝
.| cos π

 t| .| cos π
 t| .| cos π

 t|
.| cos π

 t| .| cos π
 t| .| cos π

 t|
.| cos π

 t| .| cos π
 t| .| cos π

 t|

⎞
⎟⎠ ,

(
Lij(t)

)
× =

⎛
⎜⎝
. sin π

 t . sin π
 t . cos π

 t
. sin π

 t . cos π
 t . cos π

 t
. cos π

 t . cos π
 t . cos π

 t

⎞
⎟⎠ ,

(
σij(u)

)
× =

⎛
⎜⎝
. cosu . sinu . cosu
. sinu . sinu . cosu
. cosu . cosu . cosu

⎞
⎟⎠ ,

f (u) = g(u) = . cosu, kij(u) = e–u, i, j = , , .
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Figure 1 Phase responses of states x11, x12, x13, x14 in Example 5.1.

By calculating, we have

(aij)× =

⎛
⎜⎝
. . .
. . .
. . .

⎞
⎟⎠ , (Cij)× =

⎛
⎜⎝
. . .
. . .
. . .

⎞
⎟⎠ ,

(Bij)× = (Dij)× =

⎛
⎜⎝
. . .
. . .
. . .

⎞
⎟⎠ , (Lij)× =

⎛
⎜⎝
. . .
. . .
. . .

⎞
⎟⎠ ,

(lij)× =

⎛
⎜⎝
. . .
. . .
. . .

⎞
⎟⎠ , Lf = Lg =Mf =Mg = .,

k̄ij = ., i, j = , , .

Taking p = , r = q = , we get ε ≈ ., ε ≈ ., ε ≈ ., θ = ., that is, all
conditions in Theorem . and Theorem . are satisfied. Therefore, we see that (.) has
a -periodic solution, which is -exponentially stable (simulations in Figure  show that
our result is feasible).
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