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Abstract
In this paper, the exponential stability of bidirectional associative memory neural
networks with leakage time-varying delays and sampled-data state feedback input is
considered. By applying the time-delay approach, some conditions for ensuring the
stability of a system are obtained. In addition, a numerical example is given to
demonstrate the effectiveness of the obtained results.
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1 Introduction
In the past few decades, neural networks have been widely investigated by researchers. In
, bidirectional associative memory (BAM) neural networks were firstly introduced by
Kosko [, ]. Due to its better abilities as information associativememory, the BAMneural
network has attracted considerable attention in different fields such as signal processing,
pattern recognition, optimization, and so on.
It is well known that time delay is unavoidable in the hardware implementation of neural

networks due to the finite switching speed of neurons and amplifiers. The delay can cause
instability, oscillation, or poor dynamical behavior. In practical applications, there exist
many types of time delays such as discrete delays [], time-varying delays [], distributed
delays [, ], random delays [] and leakage delays (or forgetting delays) [, ]. Up to now,
a large number of results about delay BAM neural networks have been reported [–].
All of the conclusions could be roughly summarized into two types: in terms of the stabil-
ity analysis of equilibrium points, and of the existence and stability of periodic or almost
periodic solutions.
The leakage delay, which exists in the negative feedback term of a neural network sys-

tem, emerges as a research topic of primary importance recently. Gopalsamy [] inves-
tigated the stability of the BAM neural networks with constant leakage delays. Further,
Liu [] discussed the global exponential stability for BAM neural networks with time-
varying leakage delays, which extend and improve the main results of Gopalsamy. Peng et
al. [–] derived the stability criteria for the BAM neural networks with leakage delays,
unbounded distributed delays and probabilistic time-varying delays.
Sampled-data state feedback is a practical and useful control scheme and has been stud-

ied extensively over the past decades. There are some results dealing with synchroniza-
tion [, ], state estimate [–] and stability [–]. Recently, the work in [] has
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studied the problem of the stability of sampled-data piecewise affine systems via the in-
put delay approach. Although the importance of the stability of neural networks has been
widely recognized, no related results have been established for the sampled-data stability
of BAMneural networks with leakage time-varying delays. Motivated by the works above,
we consider the sampled-data stability of BAMneural networks with leakage time-varying
delays under variable sampling with a known upper bound on the sampling intervals.
The organization of this paper is as follows. In Section , the problem is formulated and

some basic preliminaries and assumptions are given. The main results are presented in
Section . In Section , a numerical example is given to demonstrate the effectiveness of
the obtained results. Some conclusions are proposed in Section .

2 Preliminaries
In this paper, we consider the following BAM neural networks with leakage time-varying
delays and sampled-data state feedback inputs:{

ẋi(t) = –aixi(t – ρi(t)) +
∑n

j= b
()
ij gj(yj(t)) +

∑n
j= b

()
ij gj(yj(t – τij(t))) + ũi(t),

ẏi(t) = –ciyi(t – ri(t)) +
∑n

j= d
()
ij fj(xj(t)) +

∑n
j= d

()
ij fj(xj(t – σij(t))) + ṽi(t),

()

where i ∈ Ñ = {, , . . . ,n}, the xi(t) and yi(t) are neuron state variables, the positive con-
stants ai and ci denote the time scales of the respective layers of the networks, b()ij , b

()
ij ,

d()
ij , d

()
ij are connection weights of the network. ρi(t) and ri(t) denote the leakage de-

lays, τij(t) and σij(t) are time-varying delays, fj(·), gj(·) are neuron activation functions,
ũi(t) = –kixi(tk), ṽi(t) = –liyi(tk) are sampled-data state feedback inputs, tk denotes the
sample time point, tk ≤ t < tk+, k ∈N, N denotes the set of all natural numbers.
Assume that there exists a positive constant L such that the sample interval tk+ – tk ≤ L,

k ∈N. Let dk(t) = t – tk , for t ∈ [tk , tk+), then tk = t – dk(t) with ≤ dk(t) ≤ L.
For the sake of convenience, we give the following notations:

ρi = sup
t∈R

ρi(t), ρi = inf
t∈Rρi(t),

ri = sup
t∈R

ri(t), ri = inf
t∈R ri(t),

τ ij = sup
t∈R

τij(t), τij = inf
t∈R τij(t),

σ ij = sup
t∈R

σij(t), σij = inf
t∈Rσij(t),

ρ∗ = sup
t∈R

ρ̇i(t), r∗ = sup
t∈R

ṙi(t).

Before ending this section, we introduce two assumptions, which will be used in next
section.

Assumption  There exist constants Lfj > , Lgj >  such that

 ≤ fj(x) – fj(y)
x – y

≤ Lfj ,  ≤ gj(x) – gj(y)
x – y

≤ Lgj ,

for all x, y ∈ R, x �= y and j ∈ Ñ .
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Assumption  Let aiρi < , ciri < , for all i ∈ Ñ . There exist positive constants ξ, ξ, . . . , ξn
and η,η, . . . ,ηn such that, for t >  and i ∈ Ñ , the following inequalities hold:⎧⎨⎩–[ai( – aiρi) – aiρ∗ – ki] 

–aiρi
ξi + [

∑n
j= |b()ij | +∑n

j= |b()ij |]Lgj 
–cjrj

ηj < ,
–[ci( – ciri) – cir∗ – li] 

–ciri
ηi + [

∑n
j= |d()

ij | +∑n
j= |d()

ij |]Lfj 
–ajρj

ξj < .
()

3 Main results
In this section, we investigate the exponential stability of (). By using the input delay
approach [], () can be rewritten in the following form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋi(t) = –aixi(t – ρi(t)) +

∑n
j= b

()
ij gj(yj(t))

+
∑n

j= b
()
ij gj(yj(t – τij(t))) – kixi(t – dk(t)),

ẏi(t) = –ciyi(t – ri(t)) +
∑n

j= d
()
ij fj(xj(t))

+
∑n

j= d
()
ij fj(xj(t – σij(t))) – liyi(t – dk(t)).

()

The initial conditions of () are: xi(s) = φi(s), yi(s) = ϕi(s), s ∈ (–∞, ], i ∈ Ñ , where φi(s)
and ϕi(s) are continuous functions on (–∞, ].
The main results are stated as follows.

Theorem  Let Assumptions  and  hold; then the BAM neural network () is exponen-
tially stable, i.e., there exists a positive constantλ such that |xi(t)| =O(e–λt), |yi(t)| =O(e–λt),
i ∈ Ñ .

Proof Define the continuous functions

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i(ω) = –[(ai –ω)( – aiρi) – ai(eωρi – ( – ρ∗) – kieωL)] 

–aiρi
ξi

+ [
∑n

j= |b()ij | + eωτ ij
∑n

j= |b()ij |]Lgj 
–cjrj

ηj,

n+i(ω) = –[(ci –ω)( – ciri) – ci(eωri – ( – r∗) – lieωL)] 

–ciri
ηi

+ [
∑n

j= |d()
ij | + eωσ ij

∑n
j= |d()

ij |]Lfj 
–ajρj

ξj,

()

where ω ≥ , i ∈ Ñ .
By Assumption , we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i() = –[ai( – aiρi) – aiρ∗ – ki] 

–aiρi
ξi + [

∑n
j= |b()ij | +∑n

j= |b()ij |]
× Lgj


–cjrj

ηj < ,

n+i() = –[ci( – ciri) – cir∗ – li] 

–ciri
ηi + [

∑n
j= |d()

ij | +∑n
j= |d()

ij |]
× Lfj


–ajρj

ξj < .

()

Because 
i(ω) and 
n+i(ω) are continuous functions, we can choose a small positive con-
stant λ such that, for all i ∈ Ñ ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i(λ) = –[(ai – λ)( – aiρi) – ai[eλρi – ( – ρ∗)] – kieλL] 

–aiρi
ξi

+ [
∑n

j= |b()ij | + eλτ ij
∑n

j= |b()ij |]Lgj 
–cjrj

ηj < ,

n+i(λ) = –[(ci – λ)( – ciri) – ci[eλri – ( – r∗)] – lieλL] 

–ciri
ηi

+ [
∑n

j= |d()
ij | + eλσ ij

∑n
j= |d()

ij |]Lfj 
–ajρj

ξj < .

()

http://www.advancesindifferenceequations.com/content/2014/1/39


Li et al. Advances in Difference Equations 2014, 2014:39 Page 4 of 10
http://www.advancesindifferenceequations.com/content/2014/1/39

Let

Xi(t) = eλtxi(t) –
∫ t

t–ρi(t)
aieλsxi(s)ds, Yi(t) = eλtyi(t) –

∫ t

t–ri(t)
cieλsyi(s)ds, i ∈ Ñ .

Calculating the derivative of Xi and Yi along the solution of (), we have

Ẋi(t) = λeλtxi(t) + eλt ẋi(t) – ai
[
eλtxi(t) –

(
 – ρ̇i(t)

)
eλ(t–ρi(t))xi

(
t – ρi(t)

)]
= λeλtxi(t) + eλt

[
–aixi

(
t – ρi(t)

)
+

n∑
j=

b()ij gj
(
yj(t)

)
+

n∑
j=

b()ij gj
(
yj

(
t – τij(t)

))

– kixi
(
t – dk(t)

)]
– aieλtxi(t) + ai

(
 – ρ̇i(t)

)
eλ(t–ρi(t))xi

(
t – ρi(t)

)
= λeλtxi(t) – aieλtxi(t) + ai

(
 – ρ̇i(t)

)
eλ(t–ρi(t))xi

(
t – ρi(t)

)
– aieλtxi

(
t – ρi(t)

)
– kieλtxi

(
t – dk(t)

)
+ eλt

[ n∑
j=

b()ij gj
(
yj(t)

)
+

n∑
j=

b()ij gj
(
yj

(
t – τij(t)

))]

= –(ai – λ)Xi(t) – (ai – λ)
∫ t

t–ρi(t)
aieλsxi(s)ds

–
[
ai – ai

(
 – ρ̇i(t)

)
e–λρi(t)

]
eλtxi

(
t – ρi(t)

)
– kieλtxi

(
t – dk(t)

)
+ eλt

[ n∑
j=

b()ij gj
(
yj(t)

)
+

n∑
j=

b()ij gj
(
yj

(
t – τij(t)

))]

and

Ẏi(t) = λeλtyi(t) + eλt ẏi(t) – ci
[
eλtyi(t) –

(
 – ṙi(t)

)
eλ(t–ri(t))yi

(
t – ri(t)

)]
= λeλtyi(t) + eλt

[
–ciyi

(
t – ri(t)

)
+

n∑
j=

d()
ij fj

(
xj(t)

)
+

n∑
j=

d()
ij fj

(
xj

(
t – σij(t)

))

– liyi
(
t – dk(t)

)]
– ci

[
eλtyi(t) –

(
 – ṙi(t)

)
eλ(t–ri(t))yi

(
t – ri(t)

)]
= –(ci – λ)Yi(t) – (ci – λ)

∫ t

t–ri(t)
cieλsyi(s)ds

–
[
ci – ci

(
 – ṙi(t)

)
e–λri(t)

]
eλtyi

(
t – ri(t)

)
– lieλtyi

(
t – dk(t)

)
+ eλt

[ n∑
j=

d()
ij fj

(
xj(t)

)
+

n∑
j=

d()
ij fj

(
xj

(
t – σij(t)

))]
.

We define a positive constantM as follows:

M = max
≤i≤n

{
sup

t∈(–∞,]

∣∣Xi(t)
∣∣, sup
t∈(–∞,]

∣∣Yi(t)
∣∣}, M > .
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Let K be a positive number such that{
|Xi(t)| ≤M < Kξi,
|Yi(t)| ≤M < Kηi,

for all t ∈ (–∞, ]. ()

Now, we will prove that{
|Xi(t)| ≤M < Kξi,
|Yi(t)| ≤M < Kηi,

for all t > . ()

Let t = , we firstly prove{
|Xi(t)| ≤M < Kξi,
|Yi(t)| ≤M < Kηi,

for t ∈ [t, t). ()

In fact, if it is not valid, there exist i ∈ Ñ , t∗ ∈ [t, t) such that at least one of the following
cases occurs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Xi(t∗) = Kξi, Ẋi(t∗) ≥ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗), j ∈ Ñ ,

(b) Xi(t∗) = –Kξi, Ẋi(t∗) ≤ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗), j ∈ Ñ ,

(c) Yi(t∗) = Kηi, Ẏi(t∗) ≥ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗), j ∈ Ñ ,

(d) Yi(t∗) = –Kηi, Ẏi(t∗) ≤ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗), j ∈ Ñ .

()

For t ∈ (–∞, t∗], j ∈ Ñ ,

eλt∣∣xj(t)∣∣ ≤
∣∣∣∣eλtxj(t) –

∫ t

t–ρj(t)
ajeλsxj(s)ds

∣∣∣∣ + ∣∣∣∣∫ t

t–ρj(t)
ajeλsxj(s)ds

∣∣∣∣
≤ Kξj + ajρ j sup

s∈(–∞,t∗]
eλs∣∣xj(s)∣∣.

Hence

eλt∣∣xj(t)∣∣ ≤ sup
s∈(–∞,t∗]

eλs∣∣xj(s)∣∣ ≤ Kξj

 – ajρ j
. ()

Similarly, we have

eλt∣∣yj(t)∣∣ ≤ sup
s∈(–∞,t∗]

eλs∣∣yj(s)∣∣ ≤ Kηj

 – cjrj
.

If (a) holds, we get

Ẋi
(
t∗

)
= –(ai – λ)Xi

(
t∗

)
– (ai – λ)

∫ t∗

t∗–ρi(t∗)
aieλsxi(s)ds

–
[
ai – ai

(
 – ρ̇i

(
t∗

))
e–λρi(t∗)

]
eλt∗xi

(
t∗ – ρi

(
t∗

))
– kieλt∗xi

(
t∗ – dk

(
t∗

))
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+ eλt∗

[ n∑
j=

b()ij gj
(
yj

(
t∗

))
+

n∑
j=

b()ij gj
(
yj

(
t∗ – τij

(
t∗

)))]

≤ –(ai – λ)Kξi + (ai – λ)aiρi
Kξi

 – aiρi

+
[
ai – ai

(
 – ρ̇i

(
t∗

))
e–λρi(t∗)

]
eλρi(t∗)eλ(t∗–ρi(t∗))xi

(
t∗ – ρi

(
t∗

))
+ kieλdk (t∗)eλ(t∗–dk (t∗))xi

(
t∗ – dk

(
t∗

))
+ eλt∗

n∑
j=

∣∣b()ij
∣∣Lgj ∣∣yj(t∗)∣∣

+ eλτij(t∗)
n∑
j=

∣∣b()ij
∣∣Lgj eλ(t∗–τij(t∗))

∣∣yj(t∗ – τij
(
t∗

)∣∣
≤ –(ai – λ)Kξi + (ai – λ)aiρi

Kξi

 – aiρi
+

[
aieλρi(t∗) – ai

(
 – ρ̇i

(
t∗

))] Kξi

 – aiρi

+ kieλL Kξi

 – aiρi
+

n∑
j=

∣∣b()ij
∣∣Lgj Kηj

 – cjrj
+ eλτ ij

n∑
j=

∣∣b()ij
∣∣Lgj Kηj

 – cjrj

≤
{
–
[
(ai – λ)( – aiρi) – ai

(
eλρi –

(
 – ρ∗)) – kieλL] ξi

 – aiρi

+

[ n∑
j=

∣∣b()ij
∣∣ + eλτ ij

n∑
j=

∣∣b()ij
∣∣]Lgj ηj

 – cjrj

}
K =
i(λ)K < ,

which contradicts (a).
If (b) holds, we get

Ẋi
(
t∗

) ≥ (ai – λ)Kξi – (ai – λ)aiρi
Kξi

 – aiρi

–
[
ai – ai

(
 – ρ̇i

(
t∗

))
e–λρi(t∗)

]
eλρi(t∗)eλ(t∗–ρi(t∗))xi

(
t∗ – ρi

(
t∗

))
– kieλL Kξi

 – aiρi
– eλt∗

n∑
j=

∣∣b()ij
∣∣Lgj ∣∣yj(t∗)∣∣

– eλτij(t∗)
n∑
j=

∣∣b()ij
∣∣Lgj eλ(t∗–τij(t∗))

∣∣yj(t∗ – τij
(
t∗

)∣∣
≥ (ai – λ)Kξi – (ai – λ)aiρi

Kξi

 – aiρi
–

[
aieλρi(t∗) – ai

(
 – ρ̇i

(
t∗

))] Kξi

 – aiρi

– kieλL Kξi

 – aiρi
–

n∑
j=

∣∣b()ij
∣∣Lgj Kηj

 – cjrj
– eλτ ij

n∑
j=

∣∣b()ij
∣∣Lgj Kηj

 – cjrj

≥
{
–
[
(ai – λ)( – aiρi) – ai

(
eλρi –

(
 – ρ∗)) – kieλL] ξi

 – aiρi

+

[ n∑
j=

∣∣b()ij
∣∣ + eλτ ij

n∑
j=

∣∣b()ij
∣∣]Lgj ηj

 – cjrj

}
(–K ) = –
i(λ)K > .

This is a contradiction with (b).

http://www.advancesindifferenceequations.com/content/2014/1/39
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Similarly, if (c) or (d) holds, we can also derive contradictory results with respect to (c)
or (d), respectively. So () is correct. From () and (), we have

{
|Xi(t)| ≤M < Kξi,
|Yi(t)| ≤M < Kηi,

for all t ∈ (–∞, t). ()

Next, we will prove

{
|Xi(t)| ≤M < Kξi,
|Yi(t)| ≤M < Kηi,

for t ∈ [t, t), i ∈ Ñ . ()

If it is not like this, there exist i ∈ Ñ , t∗ ∈ [t, t) such that one of the following cases
occurs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Xi(t∗ ) = Kξi, Ẋi(t∗ ) ≥ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗ ), j ∈ Ñ ,

(b) Xi(t∗ ) = –Kξi, Ẋi(t∗ ) ≤ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗ ), j ∈ Ñ ,

(c) Yi(t∗ ) = Kηi, Ẏi(t∗ ) ≥ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗ ), j ∈ Ñ ,

(d) Yi(t∗ ) = –Kηi, Ẏi(t∗ ) ≤ , |Xj(t)| < Kξj, |Yj(t)| < Kηj,
for t ∈ (–∞, t∗ ), j ∈ Ñ .

()

Similar to the proof of (), we can deduce that () holds. Combining () and (), we
have{

|Xi(t)| ≤M < Kξi,
|Yi(t)| ≤M < Kηi,

for all t ∈ (–∞, t). ()

Using mathematical induction, the inequalities () hold. By a similar proof to (), we
have eλt|xi(t)| ≤ Kξi

–aiρi
, eλt|yi(t)| ≤ Kηi

–ciri
, for t > , which implies |xi(t)| = O(e–λt), |yi(t)| =

O(e–λt), i ∈ Ñ . This completes the proof. �

Remark  If the leakage delays in () are constant, that is, ρi(t) = ρ , ri(t) = r. Assumption 
is changed into the following form.

Assumption ′ Let aiρ < , cir < , for all i ∈ Ñ . There exist positive constants ξ, ξ, . . . , ξn
and η,η, . . . ,ηn such that, for t >  and i ∈ Ñ , the following conditions hold:

{
–[ai( – ρai) – ki] 

–aiρ
ξi + [

∑n
j= |b()ij | +∑n

j= |b()ij |]Lgj 
–cjr

ηj < ,
–[ci( – rci) – li] 

–cir
ηi + [

∑n
j= |d()

ij | +∑n
j= |d()

ij |]Lfj 
–ajρ

ξj < .
()

Similar to the proof of Theorem , we get the following result.

Corollary  If Assumptions  and ′ hold, the BAMneural networks with constant leakage
delays and the sampled-data state feedback inputs are exponentially stable.

http://www.advancesindifferenceequations.com/content/2014/1/39
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4 Simulation example
In this section, we give an illustrative example to show the efficiency of our theoretical
results.

Example  Consider the followingBAMneural networkwith leakage delays and sampled-
data state feedback inputs:

{
ẋ(t) = –Ax(t – ρi(t)) + Bg(y(t)) + Bg(y(t – τ (t)) –Kx(tk),
ẏ(t) = –Cy(t – ri(t)) +Df (x(t)) +Df (x(t – σ (t)) – Ly(tk),

()

where

A =

⎡⎢⎣  
  
  

⎤⎥⎦ , C =

⎡⎢⎣.  
 . 
  .

⎤⎥⎦ ,

B =

⎡⎢⎣   –.
–.  .
 . 

⎤⎥⎦ , B =

⎡⎢⎣   .
–.  .
. –. 

⎤⎥⎦ ,

D =

⎡⎢⎣ . –. 
–. . .
  .

⎤⎥⎦ , D =

⎡⎢⎣.  
 . 
  .

⎤⎥⎦ ,

and the sampled-data gain

K = L =

⎡⎢⎣.  
 . 
  .

⎤⎥⎦ .

The activation functions are taken as f (·) = g(·) = . tanh(·). Time-varying delays are
chosen as τ (t) = .| sin t|, σ (t) = .| cos t| and the leakage delays are chosen as ρi(t) =
. + . sin t, ri(t) = . + . cos t, respectively.
It is easy to verify aiρi < , ciri < . Select ξi = , ηi = , i = , , , and we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–[a( – aρ) – aρ∗
 – k] 

–aρ
ξ + [

∑
j= |b()j | +∑

j= |b()j |]Lg 
–cr

η

= –. < ,
–[a( – aρ) – aρ∗

 – k] 
–aρ

ξ + [
∑

j= |b()j | +
∑

j= |b()j |]Lg 
–cr

η

= –. < ,
–[a( – aρ) – aρ∗

 – k] 
–aρ

ξ + [
∑

j= |b()j | +
∑

j= |b()j |]Lg 
–cr

η

= –. < ,
–[c( – cr) – cr∗ – l] 

–cr
η + [

∑
j= |d()

j | +∑
j= |d()

j |]Lf 
–aρ

ξ

= –. < ,
–[c( – cr) – cr∗ – l] 

–cr
η + [

∑
j= |d()

j | +
∑

j= |d()
j |]Lf 

–aρ
ξ

= –. < ,
–[c( – cr) – cr∗ – l] 

–cr
η + [

∑
j= |d()

j | +
∑

j= |d()
j |]Lf 

–aρ
ξ

= –. < .

()
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Figure 1 State trajectory of the system [17].

This means that all conditions in Theorem  are satisfied. Hence, by Theorem  () is
exponentially stable. On the other hand, we have the following simulation result, shown
in Figure .

5 Conclusion
In this paper, we investigate the stability of BAM neural networks with leakage delays
and a sampled-data input. By using the time-delay approach, the conditions for ensuring
the exponential stability of the system are derived. It should be pointed out that there are
many papers focusing on the stability problemof sampled-data systems, leakage delay, and
sampled-data state feedback that have never been taken into consideration in the BAM
neural networks. To the best of our knowledge, this is the first time to consider the stability
of BAM neural networks with both leakage delays and sampled-data state feedback at the
same time. The results of this paper are worthy as complementary to the existing results.
Finally, a numerical example and its computer simulations have been presented to show
the effectiveness of our theoretical results.
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