
Kim and Kim Advances in Difference Equations 2014, 2014:4
http://www.advancesindifferenceequations.com/content/2014/1/4

RESEARCH Open Access

Poly-Cauchy and Peters mixed-type
polynomials
Dae San Kim1 and Taekyun Kim2*

*Correspondence: tkkim@kw.ac.kr
2Department of Mathematics,
Kwangwoon University, Seoul,
139-701, Republic of Korea
Full list of author information is
available at the end of the article

Abstract
The Peters polynomials are a generalization of Boole polynomials. In this paper, we
consider Peters and poly-Cauchy mixed-type polynomials and investigate the
properties of those polynomials which are derived from umbral calculus. Finally, we
give various identities of those polynomials associated with special polynomials.

1 Introduction
The Peters polynomials are defined by the generating function to be

∞∑
n=

Sn(x;λ,μ)
tn

n!
=

(
 + ( + t)λ

)–μ( + t)x (see []). ()

The first few of them are given by

S(x;λ,μ) = –μ, S(x;λ,μ) = –(μ+)(x – λμ), . . . .

If μ = , then Sn(x;λ) = Sn(x : λ, ) are called Boole polynomials.
In particular, for μ = , λ = , Sn(x; , ) = Chn(x) are Changhee polynomials which are

defined by

∞∑
n=

Chn(x)
tn

n!
=


t + 

( + t)x (see []).

The generating functions for the poly-Cauchy polynomials of the first kind C(k)
n (x) and

of the second kind Ĉ(k)
n (x) are, respectively, given by

Lifk
(
log( + t)

)
( + t)–x =

∞∑
n=

C(k)
n (x)

tn

n!
()

and

Lifk
(
– log( + t)

)
( + t)x =

∞∑
n=

Ĉ(k)
n (x)

tn

n!
, ()

where Lifk(t) =
∑∞

n=
tn

n!(n+)k (k ∈ Z) (see [, ]).
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In this paper, we consider the poly-Cauchy of the first kind and Peters (respectively the
poly-Cauchy of the second kind and Peters) mixed-type polynomials as follows:

(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)
( + t)–x =

∞∑
n=

CP(k)
n (x;λ,μ)

tn

n!
()

and

(
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

)
( + t)x =

∞∑
n=

ĈP(k)
n (x;λ,μ)

tn

n!
. ()

For α ∈ Z≥, the Bernoulli polynomials of order α are defined by the generating function
to be

(
t

et – 

)α

ext =
∞∑
n=

B(α)
n (x)

tn

n!
(see [, –]). ()

As is well known, the Frobenius-Euler polynomials of order α are given by

(
 – λ

et – λ

)α

ext =
∞∑
n=

H (α)
n (x | λ) t

n

n!
(see [–]), ()

where λ ∈C with λ �=  and α ∈ Z≥.
When x = , CP(k)

n (;λ,μ) (or ĈP(k)
n (;λ,μ)) are called the poly-Cauchy of the first kind

and Peters (or the poly-Cauchy of the second kind and Peters) mixed-type numbers.
The higher-order Cauchy polynomials of the first kind are defined by the generating

function to be

(
t

log( + t)

)α

( + t)–x =
∞∑
n=

C
(α)
n (x)

tn

n!
(α ∈ Z≥), ()

and the higher-order Cauchy polynomials of the second kind are given by

(
t

( + t) log( + t)

)α

( + t)x =
∞∑
n=

Ĉ
(α)
n (x)

tn

n!
(α ∈ Z≥). ()

The Stirling number of the first kind is given by

(x)n = x(x – ) · · · (x – n + ) =
n∑
l=

S(n, l)xl. ()

Thus, by (), we get

(
log( + t)

)m =m!
∞∑
l=m

S(l,m)
tl

l!
, m ∈ Z≥ (see []). ()

It is easy to show that

x(n) = x(x + ) · · · (x + n – ) = (–)n(–x)n =
n∑
l=

S(n, l)(–)n–lxl. ()
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Let C be the complex number field and let F be the algebra of all formal power series in
the variable t over C as follows:

F =

{
f (t) =

∞∑
k=

ak
tk

k!

∣∣∣ ak ∈C

}
. ()

LetP =C[x] and letP∗ be the vector space of all linear functionals onP. 〈L | p(x)〉 denotes
the action of the linear functional L on the polynomial p(x), and we recall that the vector
space operations on P

∗ are defined by 〈L +M | p(x)〉 = 〈L | p(x)〉 + 〈M | p(x)〉, 〈cL | p(x)〉 =
c〈L | p(x)〉, where c is a complex constant in C.
For f (t) ∈ F , let us define the linear functional on P by setting

〈
f (t) | xn〉 = an (n≥ ). ()

Then, by () and (), we get

〈
tk | xn〉 = n!δn,k (n,k ≥ ) (see [, ]), ()

where δn,k is the Kronecker symbol.
Let fL(t) =

∑∞
k=

〈L|xk 〉
k! tk . Then, by (), we see that 〈fL(t) | xn〉 = 〈L | xn〉. The map L 	−→

fL(t) is a vector space isomorphism from P
∗ ontoF . Henceforth,F denotes both the alge-

bra of formal power series in t and the vector space of all linear functionals on P, and so an
element f (t) of F will be thought of as both a formal power series and a linear functional.
We callF the umbral algebra, and the umbral calculus is the study of umbral algebra. The
order O(f ) of the power series f (t) ( �= ) is the smallest integer for which the coefficient of
tk does not vanish. If O(f (t)) = , then f (t) is called a delta series; if O(f (t)) = , then f (t) is
called an invertible series. For f (t), g(t) ∈ F with O(f (t)) =  and O(g(t)) = , there exists a
unique sequence sn(x) of polynomials such that 〈g(t)f (t)k | sn(x)〉 = n!δn,k (n,k ≥ ).
The sequence sn(x) is called the Sheffer sequence for (g(t), f (t)) which is denoted by

sn(x)∼ (g(t), f (t)).
For f (t), g(t) ∈F and p(x) ∈ P, we have

〈
f (t)g(t) | p(x)〉 = 〈

f (t) | g(t)p(x)〉 = 〈
g(t) | f (t)p(x)〉

and

f (t) =
∞∑
k=

〈
f (t) | xk 〉 tk

k!
, p(x) =

∞∑
k=

〈
tk | p(x)〉xk

k!
. ()

By (), we get

p(k)() =
〈
tk | p(x)〉 = 〈

 | p(k)(x)〉 (k ≥ ), ()

where p(k)() = dkp(x)
dxk |x=.

Thus, by (), we have

tkp(x) = p(k)(x) =
dkp(x)
dxk

(see [–]). ()
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Let sn(x)∼ (g(t), f (t)). Then the following equations are known in []:


g(f (t))

exf (t) =
∞∑
n=

sn(x)
tn

n!
for all x ∈C, ()

where f (t) is the compositional inverse for f (t) with f (f (t)) = t,

sn(x) =
n∑
j=


j!

〈
(f (t))j

g(f (t))

∣∣∣ xn〉xj, ()

sn(x + y) =
n∑
j=

(
n
j

)
sj(x)Pn–j(y), where Pn(x) = g(t)sn(x), ()

and

sn+(x) =
(
x –

g ′(t)
g(t)

)


f ′(t)
sn(x), f (t)sn(x) = nsn–(x) (n≥ ), ()

and

d
dx

sn(x) =
n–∑
l=

(
n
l

)〈
f (t) | xn–l〉sl(x). ()

As is well known, the transfer formula for pn(x)∼ (, f (t)), qn(x)∼ (, g(t)) (n≥ ) is given
by

qn(x) = x
(
f (t)
g(t)

)n

x–pn(x). ()

For sn(x)∼ (g(t), f (t)), rn(x)∼ (h(t), l(t)), let

sn(x) =
∞∑
m=

Cn,mrn(x), ()

where

Cn,m =

m!

〈
h(f (t))
g(f (t))

(
l
(
f (t)

))m ∣∣∣ xn〉 (see []). ()

It is known that

〈
f (t) | xp(x)〉 = 〈

∂t f (t) | p(x)
〉
, eytp(x) = p(x + y), ()

where f (t) ∈F and p(x) ∈ P (see [–]).
In this paper, we consider Peters and poly-Cauchymixed-type polynomials with umbral

calculus viewpoint and investigate the properties of those polynomials which are derived
from umbral calculus. Finally, we give some interesting identities of those polynomials
associated with special polynomials.
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2 Poly-Cauchy and Peters mixed-type polynomials
From (), (), and (), we note that

CP(k)
n (x;λ,μ)∼

((
 + e–λt)μ 

Lifk(–t)
, e–t – 

)
()

and

ĈP(k)
n (x;λ,μ)∼

((
 + eλt)μ 

Lifk(–t)
, et – 

)
. ()

It is not difficult to show that

(
 + e–λt)μ = μ

(
 +




∞∑
j=

(–λt)j

j!

)μ

=
∞∑
i=

∞∑
j=

∑
j+···+ji=j

μ–i
(

μ

i

)(
j + i

j + , . . . , ji + 

)
(–λt)j+i

(j + i)!
()

and

(
 + ( + t)λ

)–μ = –μ

(
 +




∞∑
j=

(
λ

j + 

)
tj+

)–μ

=
∞∑
i=

∞∑
j=

∑
j+···+ji=j

–(μ+i)
(
–μ

i

)(
λ

j + 

)
· · ·

(
λ

ji + 

)
tj+i. ()

From (), we have

CP(k)
n (y;λ,μ)

=

〈 ∞∑
l=

CP(k)
l (y;λ,μ)

tl

l!

∣∣∣ xn
〉

=
〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)
( + t)–y | xn〉

=

〈(
 + ( + t)λ

)–μ
∣∣∣ n∑

l=

(
n
l

)
C(k)
l (y)xn–l

〉

=
n∑
l=

(
n
l

)
C(k)
l (y)

〈 ∞∑
m=

Sm(;λ,μ)
tm

m!

∣∣∣ xn–l
〉

=
n∑
l=

(
n
l

)
Sn–l(;λ,μ)C(k)

l (y). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ) =

n∑
l=

(
n
l

)
Sn–l(;λ,μ)C(k)

l (x).
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Alternatively,

CP(k)
n (y;λ,μ) =

〈 ∞∑
l=

CP(k)
l (y;λ,μ)

tl

l!

∣∣∣ xn
〉

=
〈
Lifk

(
log( + t)

) | ( + ( + t)λ
)–μ( + t)–yxn

〉
=

〈
Lifk

(
log( + t)

) ∣∣∣ n∑
l=

(
n
l

)
Sl(–y;λ,μ)xn–l

〉

=
n∑
l=

(
n
l

)
Sl(–y;λ,μ)

〈
Lifk

(
log( + t)

) | xn–l〉

=
n∑
l=

(
n
l

)
Sl(–y;λ,μ)C(k)

n–l(). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n ≥ , let C(k)
n–l() = C(k)

n–l . Then we have

CP(k)
n (x;λ,μ) =

n∑
l=

(
n
l

)
C(k)
n–lSl(–x;λ,μ).

Remark By the same method, we get

ĈP(k)
n (x;λ,μ) =

n∑
l=

(
n
l

)
Sn–l(;λ,μ)Ĉ(k)

l (x) ()

and

ĈP(k)
n (x;λ,μ) =

n∑
l=

(
n
l

)
Ĉ(k)
n–lSl(x;λ,μ). ()

From () and (), we have

CP(k)
n (x;λ,μ) ()

=
n∑
j=


j!
〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)(
– log( + t)

)j | xn〉xj.
From (), we note that

〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)(
– log( + t)

)j | xn〉

=
n–j∑
m=

(–)j

m!(m + )k

n–j–m∑
l=

(m + j)!
(l +m + j)!

S(l +m + j,m + j)

× (n)l+m+j
〈(
 + ( + t)λ

)–μ | xn–l–m–j〉

=
n–j∑
m=

(–)j

m!(m + )k

n–j–m∑
l=

(m + j)!
(l +m + j)!

http://www.advancesindifferenceequations.com/content/2014/1/4
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× S(l +m + j,m + j)(n)l+m+j

n–j–m–l∑
i=

∞∑
r=

∑
r+···+ri=r

–(μ+i)

×
(
–μ

i

)(
λ

r + 

)
· · ·

(
λ

ri + 

)〈
tr+i | xn–l–m–j〉

= –μn!
n–j∑
m=

n–j–m∑
l=

n–j–m–l∑
i=

∑
r+···+ri=n–j–m–l–i

–i(–)j(m + j)!
m!(m + )k(l +m + j)!

×
(
–μ

i

)(
λ

r + 

)
· · ·

(
λ

ri + 

)
S(l +m + j,m + j). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ)

= –μn!
n∑
j=

(–)j

j!

{ n–j∑
m=

n–j–m∑
l=

n–j–m–l∑
i=

∑
r+···+ri=n–j–m–l–i

–i

m!(m + )k

× (m + j)!
(l +m + j)!

(
–μ

i

)(
λ

r + 

)
· · ·

(
λ

ri + 

)
S(l +m + j,m + j)

}
xj.

Remark By the same method as Theorem , we get

ĈP(k)
n (x;λ,μ)

= –μn!
n∑
j=


j!

{ n–j∑
m=

n–j–m∑
l=

n–j–m–l∑
i=

∑
r+···+ri=n–j–m–l–i

–i(–)m

m!(m + )k

× (m + j)!
(l +m + j)!

(
–μ

i

)

×
(

λ

r + 

)
· · ·

(
λ

ri + 

)
S(l +m + j,m + j)

}
xj. ()

From (), we note that

(
 + e–λt)μ 

Lifk(–t)
CP(k)

n (x;λ,μ)∼ (
, e–t – 

)
()

and

xn ∼ (, t). ()

By (), (), and (), we get

(
 + e–λt)μ 

Lifk(–t)
CP(k)

n (x;λ,μ)

= x
(

t
e–t – 

)n

xn–

http://www.advancesindifferenceequations.com/content/2014/1/4
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= (–)nx
(

–t
e–t – 

)n

xn–

= (–)n
n–∑
l=

(–)lB(n)
l

(
n – 
l

)
xn–l. ()

Thus, by (), we see that

CP(k)
n (x;λ,μ)

= (–)n
n–∑
l=

(–)l
(
n – 
l

)
B(n)
l

(
 + e–λt)–μ

Lifk(–t)xn–l

= (–)n
n–∑
l=

(–)l
(
n – 
l

)
B(n)
l

n–l∑
m=

(–)m
(n–l
m

)
(m + )k

(
 + e–λt)–μxn–l–m

= (–)n
n–∑
l=

(–)l
(
n – 
l

)
B(n)
l

n–l∑
m=

(–)m
(n–l
m

)
(m + )k

∞∑
i=

∞∑
j=

∑
j+···+jn=j

–μ–i
(
–μ

i

)

×
(

j + i
j + , . . . , ji + 

)
(–λt)j+i

(j + i)!
xn–l–m

= (–)n
n∑
l=

n–l∑
m=

n–l–m∑
i=

n–l–m–i∑
j=

∑
j+···+ji=n–l–m–i–r

(–)n–r
–μ–iλn–l–m–r

(m + )k

(
n – 
l

)

×
(
n – l
m

)(
–μ

i

)(
n – l –m – r
j + , . . . , ji + 

)(
n – l –m

r

)
B(n)
l xr . ()

Therefore, by (), we obtain the following theorem.

Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ)

=
λn

μ

n∑
r=

(
–λ–)r{ n–r∑

l=

n–r–l∑
m=

n–r–l–m∑
i=

∑
j+···+ji=n–r–l–m–i

–iλ–l–m

(m + )k

(
n – 
l

)

×
(
n – l
m

)(
–μ

i

)(
n – r – l –m
j + , . . . , ji + 

)(
n – l –m

r

)
B(n)
l

}
xr .

Remark By the same method as Theorem , we get

ĈP(k)
n (x;λ,μ)

=
λn

μ

n∑
r=

λ–r

{ n–r∑
l=

n–l–r∑
m=

n–l–m–r∑
i=

∑
j+···+ji=n–r–l–m–i

(–)m–iλ–l–m

(m + )k

(
n – 
l

)

×
(
n – l
m

)(
–μ

i

)(
n – r – l –m
j + , . . . , ji + 

)(
n – l –m

r

)
B(m)
l

}
xr . ()

http://www.advancesindifferenceequations.com/content/2014/1/4
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From (), we note that

x(n) = x(x + ) · · · (x + n – ) ∼ (
,  – e–t

)
. ()

Thus, by (), we see that

(–)nx(n) = (–x)n =
n∑

m=

S(n,m)(–x)m ∼ (
, e–t – 

)
()

and

(
 + e–λt)μ 

Lifk(–t)
CP(k)

n (x;λ,μ)∼ (
, e–t – 

)
. ()

From () and (), we have

(
 + e–λt)μ 

Lifk(–t)
CP(k)

n (x;λ,μ)

= (–)nx(n)

=
n∑
l=

S(n, l)(–x)l. ()

Thus, by (), we get

CP(k)
n (x;λ,μ)

=
n∑
l=

S(n, l)(–)l
(
 + e–λt)–μ

Lifk(–t)xl

=
n∑
l=

S(n, l)(–)l
l∑

m=

(–)m
( l
m
)

(m + )k
(
 + e–λt)–μxl–m

=
n∑
l=

S(n, l)(–)l
l∑

m=

(–)m
( l
m
)

(m + )k

∞∑
i=

∞∑
j=

∑
j+···+ji=j

–μ–i

×
(
–μ

i

)(
j + i

j + , . . . , ji + 

)
(–λ)j+i

(j + i)!
tj+ixl–m

=
n∑
l=

l∑
m=

l–m∑
i=

l–m–i∑
r=

∑
j+···+ji=l–m–i–r

(–)r
–μ–iλl–m–r

(m + )k

×
(
l
m

)(
–μ

i

)(
l –m – r

j + , . . . , ji + 

)(
l –m
r

)
S(n, l)xr

= –μ

n∑
r=

(
–λ–)r{ n∑

l=r

l–r∑
m=

l–r–m∑
i=

∑
j+···+ji=l–r–m–i

–iλl–m

(m + )k

×
(
l
m

)(
–μ

i

)(
l –m – r

j + , . . . , ji + 

)(
l –m
r

)
S(n, l)

}
xr . ()

Therefore, by (), we obtain the following theorem.

http://www.advancesindifferenceequations.com/content/2014/1/4
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Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ)

= –μ

n∑
r=

(
–λ–)r{ n∑

l=r

l–r∑
m=

l–r–m∑
i=

∑
j+···+ji=l–r–m–i

–iλl–m

(m + )k

×
(
l
m

)(
–μ

i

)(
l –m – r

j + , . . . , ji + 

)(
l –m
r

)
S(n, l)

}
xr .

It is easy to see that

(
 + eλt)μ 

Lifk(–t)
ĈP(k)

n (x;λ,μ)∼ (
, et – 

)
()

and

(x)n = x(x – ) · · · (x – n + ) =
n∑
l=

S(n, l)xl ∼
(
, et – 

)
. ()

By the same method as Theorem , we get

ĈP(k)
n (x;λ,μ)

= –μ

n∑
r=

λ–r

{ n∑
l=r

l–r∑
m=

l–r–m∑
i=

∑
j+···+ji=l–r–m–i

(–)m–iλl–m

(m + )k

×
(
l
m

)(
–μ

i

)(
l –m – r

j + , . . . , ji + 

)(
l –m
r

)
S(n, l)

}
xr . ()

From () and (), we have

CP(k)
n (x;λ,μ)

=
n∑
j=


j!
〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)(
– log( + t)

)j | xn〉xj. ()

Now, we observe that

〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)(
– log( + t)

)j | xn〉
= (–)j

〈
log( + t)j

∣∣∣ ∞∑
m=

CP(k)
m (;λ,μ)

tm

m!
xn

〉

= (–)j
n∑

m=

(
n
m

)
CP(k)

m (;λ,μ)
〈(
log( + t)

)j | xn–m〉

= (–)j
n∑

m=

(
n
m

)
CP(k)

m (;λ,μ)j!S(n –m, j). ()

Therefore, by () and (), we obtain the following theorem.
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Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ) =

n∑
j=

(–)j
{ n∑

m=

(
n
m

)
S(n –m, j)CP(k)

m (;λ,μ)

}
xj.

Remark By the same method as Theorem , we get

ĈP(k)
n (x;λ,μ) =

n∑
j=

{ n∑
m=

(
n
m

)
S(n –m, j)ĈP(k)

n (;λ,μ)

}
xj. ()

From (), we have

CP(k)
n (x + y;λ,μ) =

n∑
j=

(–)j
(
n
j

)
CP(k)

n–j(x;λ,μ)y
(j) ()

and

ĈP(k)
n (x + y;λ,μ) =

n∑
j=

(
n
j

)
ĈP(k)

n–j(x;λ,μ)(y)j. ()

By () and (), we get

(
e–t – 

)
CP(k)

n (x;λ,μ) = nCP(k)
n–(x;λ,μ) ()

and

(
e–t – 

)
CP(k)

n (x;λ,μ) = CP(k)
n (x – ;λ,μ) –CP(k)

n (x;λ,μ). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

CP(k)
n (x – ;λ,μ) –CP(k)

n (x;λ,μ) = nCP(k)
n–(x;λ,μ).

Remark By the same method as Theorem , we get

ĈP(k)
n (x + ;λ,μ) – ĈP(k)

n (x;λ,μ) = nĈP(k)
n–(x;λ,μ). ()

From (), (), and (), we have

CP(k)
n+(x; ,μ) = –xCP(k)

n (x + ; ,μ) +μ

n∑
m=

(
–



)m+

(n)mCP(k)
n–m(x; ,μ)

+ –μ

n∑
r=

(–)r
{ n∑

m=r

m∑
l=r

l–r∑
i=

∑
j+···+ji=l–i–r

–i

(m – l + )k

(
m
l

)

×
(
–μ

i

)(
l – r

j + , . . . , ji + 

)(
l
r

)
S(n,m)

}
(x + )r ()

http://www.advancesindifferenceequations.com/content/2014/1/4
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and

ĈP(k)
n+(x; ,μ)

= xĈP(k)
n (x – ; ,μ) +μ

n∑
m=

(
–



)m+

(n)mĈP(k)
n–m(x; ,μ)

– –μ

n∑
r=

{ n∑
m=r

m∑
l=r

l–r∑
i=

∑
j+···+ji=l–i–r

(–)m–l–i

(m – l + )k

(
m
l

)(
–μ

i

)

×
(

l – r
j + , . . . , ji + 

)(
l
r

)
S(n,m)

}
(x – )r . ()

By () and (), we get

CP(k)
n (y;λ,μ)

=

〈 ∞∑
l=

CP(k)
l (y;λ,μ)

tl

l!

∣∣∣ xn
〉

=
〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)
( + t)–y | x · xn–〉

=
〈
∂t

((
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)
( + t)–y

) | xn–〉
=

〈(
∂t

(
 + ( + t)λ

)–μ)
Lifk

(
log( + t)

)
( + t)–y | xn–〉

+
〈(
 + ( + t)λ

)–μ(
∂t Lifk

(
log( + t)

))
( + t)–y | xn–〉

+
〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)(
∂t( + t)–y

) | xn–〉
= –μλ

〈(
 + ( + t)λ

)–μ–
Lifk

(
log( + t)

)
( + t)–(y–λ+) | xn–〉

– y
〈(
 + ( + t)λ

)–μ(
Lifk

(
log( + t)

))
( + t)–y– | xn–〉

+
〈(
 + ( + t)λ

)–μ(
∂t Lifk

(
log( + t)

))
( + t)–y | xn–〉

= –μλCP(k)
n–(y – λ + ;λ,μ + ) – yCP(k)

n–(y + ;λ,μ)

+
〈(
 + ( + t)λ

)–μLifk–(log( + t)) – Lifk(log( + t))
( + t) log( + t)

( + t)–y | xn–
〉
. ()

Now, we observe that

〈(
 + ( + t)λ

)–μLifk–(log( + t)) – Lifk(log( + t))
( + t) log( + t)

( + t)–y
∣∣∣ xn–〉

=
〈(
 + ( + t)λ

)–μLifk–(log( + t)) – Lifk(log( + t))
t

( + t)–y
∣∣∣∣

t
( + t) log( + t)

xn–
〉

=
n–∑
l=

(
n – 
l

)
Ĉ

()
n––l()

×
〈(
 + ( + t)λ

)–μLifk–(log( + t)) – Lifk(log( + t))
t

( + t)–y
∣∣∣ xl〉

http://www.advancesindifferenceequations.com/content/2014/1/4
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=
n–∑
l=

(
n – 
l

)
Ĉ

()
n––l()

×
〈(
 + ( + t)λ

)–μLifk–(log( + t)) – Lifk(log( + t))
t

( + t)–y
∣∣∣∣ t xl+l + 

〉

=

n

n–∑
l=

(
n

l + 

)
Ĉ

()
n––l()

{
CP(k–)

l+ (y;λ,μ) –CP(k)
l+(y;λ,μ)

}
. ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ)

= –μλCP(k)
n–(x – λ + ;λ,μ + ) – xCP(k)

n–(x + ;λ,μ)

+

n

n–∑
l=

(
n

l + 

)
Ĉn––l

{
CP(k–)

l+ (x;λ,μ) –CP(k)
l+(x;λ,μ)

}
,

where Ĉn––l = Ĉ
()
n––l().

Remark By the same method as Theorem , we get

ĈP(k)
n (x;λ,μ)

= –μλĈP(k)
n–(x + λ – ;λ,μ + ) + xĈP(k)

n–(x – ;λ,μ)

+

n

n–∑
l=

(
n

l + 

)
Ĉn––l

(
ĈP(k–)

l+ (x;λ,μ) – ĈP(k)
l+(x;λ,μ)

)
. ()

By (), we get

d
dx

CP(k)
n (x;λ,μ)

=
n–∑
l=

(
n
l

)〈
– log( + t) | xn–l〉CP(k)

l (x;λ,μ)

=
n–∑
l=

(
n
l

)〈 ∞∑
m=

(–)m

m
tm

∣∣∣ xn–l
〉
CP(k)

l (x;λ,μ)

=
n–∑
l=

(
n
l

) ∞∑
m=

(–)m

m
〈
tm | xn–l〉CP(k)

l (x;λ,μ)

=
n–∑
l=

(
n
l

)
(–)n–lCP(k)

l (x;λ,μ)(n – l – )!

= n!
n–∑
l=

(–)n–l

(n – l)l!
CP(k)

l (x;λ,μ). ()

http://www.advancesindifferenceequations.com/content/2014/1/4
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By the same method as (), we get

d
dx

ĈP(k)
n (x;λ,μ)

= n!
n–∑
l=

(–)n–l–

(n – l)l!
ĈP(k)

l (x;λ,μ). ()

Now, we compute the following equation in two different ways:

〈(
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

)(
log( + t)

)m | xn〉.
On the one hand,

〈(
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

)(
log( + t)

)m | xn〉
=

〈(
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

) | (log( + t)
)mxn〉

=
n–m∑
l=

m!
(

n
l +m

)
S(l +m,m)

〈(
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

) | xn–l–m〉

=
n–m∑
l=

m!
(
n
l

)
S(n – l,m)ĈP(k)

l (;λ,μ). ()

On the other hand,

〈(
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

)(
log( + t)

)m | xn〉
=

〈
∂t

((
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

)(
log( + t)

)m) | xn–〉
=

〈(
∂t

(
 + ( + t)λ

)–μ)
Lifk

(
– log( + t)

)(
log( + t)

)m | xn–〉
+

〈(
 + ( + t)λ

)–μ(
∂t Lifk

(
– log( + t)

))(
log( + t)

)m | xn–〉
+

〈(
 + ( + t)λ

)–μ
Lifk

(
– log( + t)

)(
∂t

(
log( + t)

)m) | xn–〉. ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ∈N with n≥ , let n –  ≥m ≥ . Then we have

m
n–m∑
l=

(
n
l

)
S(n – l,m)ĈP(k)

l (;λ,μ)

= –μλm
n––m∑
l=

(
n – 
l

)
S(n –  – l,m)ĈP(k)

l (λ – ;λ,μ + )

+
n–m∑
l=

(
n – 
l

)
S(n –  – l,m – )ĈP(k–)

l (–;λ,μ)

+ (m – )
n–m∑
l=

(
n – 
l

)
S(n –  – l,m – )ĈP(k)

l (–;λ,μ).
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Remark By the same method as Theorem , we get

m
n–m∑
l=

(
n
l

)
S(n – l,m)CP(k)

l (;λ,μ)

= –μλm
n––m∑
l=

(
n – 
l

)
S(n –  – l,m)CP(k)

l ( – λ;λ,μ + )

+
n–m∑
l=

(
n – 
l

)
S(n –  – l,m – )CP(k–)

l (;λ,μ)

+ (m – )
n–m∑
l=

(
n – 
l

)
S(n –  – l,m – )CP(k)

l (–;λ,μ),

where n –  ≥m ≥ .

Let us consider the following two Sheffer sequences:

CP(k)
n (x;λ,μ)∼

((
 + e–λt)μ 

Lifk(–t)
, e–t – 

)
()

and

B(s)
n (x)∼

((
et – 
t

)s

, t
)

(s ∈ Z≥). ()

Let

CP(k)
n (x;λ,μ) =

n∑
m=

Cn,mB(s)
m (x). ()

Then, by (), we get

Cn,m =

m!

〈 ( e– log(+t)–– log(+t) )
s

( + eλ log(+t))μ
Lifk

(
log( + t)

)(
– log( + t)

)m ∣∣∣ xn〉

=
(–)m

m!

〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)

× ( + t)–s
(

t
log( + t)

)s ∣∣∣ (
log( + t)

)mxn〉

=
(–)m

m!

n–m∑
l=

m!
(

n
l +m

)
S(l +m,m)

n–l–m∑
i=

(
n – l –m

i

)
C

(s)
i

× 〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)
( + t)–s | xn–l–m–i〉

= (–)m
n–m∑
l=

(
n
l

)
S(n – l,m)

l∑
i=

(
l
i

)
C

(s)
i CP(k)

l–i(s;λ,μ). ()

Therefore, by () and (), we obtain the following theorem.
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Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ) =

n∑
m=

(–)m
{n–m∑

l=

l∑
i=

(
n
l

)(
l
i

)
S(n – l,m)C(s)

i CP(k)
l–i(s;λ,μ)

}
B(s)
n (x).

Remark By the same method as Theorem , we have

ĈP(k)
n (x;λ,μ)

=
n∑

m=

{n–m∑
l=

l∑
i=

(
n
l

)(
l
i

)
S(n – l,m)Ĉ(s)

i ĈP(k)
l–i(s;λ,μ)

}
B(s)
m (x). ()

For CP(k)
n (x;λ,μ)∼ (( + e–λt)μ 

Lifk (–t)
, e–t –),H (s)

n (x | λ)∼ (( et–λ
–λ

)s, t), s ∈ Z≥, λ ∈Cwith
λ �= , let us assume that

CP(k)
n (x;λ,μ) =

n∑
m=

Cn,mH (s)
m (x;λ). ()

From (), we have

Cn,m =
(–)m

m!

〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)

× ( + t)–s
(
 +

λ

λ – 
t
)s ∣∣∣ (

log( + t)
)mxn〉

=
(–)m

m!

n–m∑
l=

m!
(

n
l +m

)
S(l +m,m)

min{s,n–l–m}∑
i=

(
s
i

)(
λ

λ – 

)i

× 〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)
( + t)–s | tixn–l–m〉

= (–)m
n–m∑
l=

min{s,n–l–m}∑
i=

(
n

l +m

)(
s
i

)

× (n – l –m)i
(

λ

λ – 

)i

S(l +m,m)CP(k)
n–l–m–i(s;λ,μ)

= (–)m
n–m∑
l=

min{s,l}∑
i=

(
n
l

)(
s
i

)
(l)i

(
λ

λ – 

)i

S(n – l,m)CP(k)
l–i(s;λ,μ). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For λ ∈ C with λ �= , n ≥ , we have

CP(k)
n (x;λ,μ)

=
n∑

m=

(–)m
{n–m∑

l=

min{s,l}∑
i=

(
n
l

)(
s
i

)
(l)i

·
(

λ

λ – 

)i

S(n – l,m)CP(k)
l–i(s;λ,μ)

}
H (s)

m (x;λ).
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Remark By the same method as Theorem , we get

ĈP(k)
n (x;λ,μ)

=
n∑

m=

{n–m∑
l=

min{s,l}∑
i=

(
n
l

)(
s
i

)
(l)i

·
(


 – λ

)i

S(n – l,m)ĈP(k)
l–i(;λ,μ)

}
H (s)

m (x;λ).

For CP(k)
n (x;λ,μ)∼ (( + e–λt)μ 

Lifk (–t)
, e–t – ) and x(n) ∼ (,  – e–t), let us assume that

CP(k)
n (x;λ,μ) =

∞∑
m=

Cn,mx(m). ()

By (), we get

Cn,m =

m!

〈


( + eλ log(+t))μ
Lifk

(
log( + t)

)(
 – elog(+t)

)m ∣∣∣ xn〉

=

m!

〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

)
(–t)m | xn〉

=
(–)m

m!
〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

) | tmxn〉
= (–)m

(
n
m

)〈(
 + ( + t)λ

)–μ
Lifk

(
log( + t)

) | xn–m〉

= (–)m
(
n
m

)
CP(k)

n–m(;λ,μ). ()

Therefore, by () and (), we obtain the following theorem.

Theorem  For n ≥ , we have

CP(k)
n (x;λ,μ) =

n∑
m=

(–)m
(
n
m

)
CP(k)

n–m(;λ,μ)x
(m).

Remark By the same method as Theorem , we get

ĈP(k)
n (x;λ,μ) =

n∑
m=

(
n
m

)
ĈP(k)

n–m(;λ,μ)(x)m. ()
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