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Abstract
This paper studies the robust stability of uncertain neural networks with multiple time
delays with respect to the class of nondecreasing activation functions. By using the
Lyapunov functional and homeomorphism mapping theorems, we derive a new
delay-independent sufficient condition the existence, uniqueness, and global
asymptotic stability of the equilibrium point for delayed neural networks with
uncertain network parameters. The condition obtained for the robust stability
establishes a matrix-norm relationship between the network parameters of the neural
system, and therefore it can easily be verified. We also present some constructive
numerical examples to compare the proposed result with results in the previously
published corresponding literature. These comparative examples show that our new
condition can be considered as an alternative result to the previous corresponding
literature results as it defines a new set of network parameters ensuring the robust
stability of delayed neural networks.

Keywords: stability analysis; delayed neural networks; interval matrices; Lyapunov
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1 Introduction
Dynamical neural networks have recently received a great deal of attention due to their po-
tential applications in image and signal processing, combinatorial optimization problems,
pattern recognition, control engineering, and some other related areas. In the electronic
implementation of analog neural networks, during the processing and transmission of sig-
nals in the network, due to the finite switching speed of amplifiers, some time delays occur
which may change the dynamical behavior of the network from stable to unstable. There-
fore, it is important to take into account the effects of the time delays in the dynamical
analysis of neural networks. On the other hand, it is well known that unavoidably some
disturbances are to be considered in the modeling and stability analysis neural networks.
The major disturbances occur within the network, which is mainly due to the deviations
in the values of the electronic components during the process of implementation. There-
fore, in recent years, many papers have focused on studying the existence, uniqueness,
and global robust asymptotic stability of the equilibrium point in the presence of time de-
lays and parameter uncertainties for various classes of nonlinear neural networks, and one
reported some robust stability results [–].
In the current paper, we aim to study the robust stability of a class of uncertain neural

networks with multiple time delays. By using the Lyapunov functional and homeomor-
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phismmapping theorems, a new delay-independent sufficient condition for global robust
asymptotic stability of the equilibrium point for this class of neural networks is derived.
Meanwhile, three numerical examples are presented to demonstrate the applicability of
the condition and to show the advantages of our result over the previously published ro-
bust stability results.
We use the following notation. Throughout this paper, the superscript T represents

the transpose. I stands for the identity matrix of appropriate dimension. For the vector
v = (v, v, . . . , vn)T , |v|will denote |v| = (|v|, |v|, . . . , |vn|)T . For any real matrixQ = (qij)n×n,
|Q| will denote |Q| = (|qij|)n×n, and λm(Q) and λM(Q) will denote the minimum and max-
imum eigenvalues of Q, respectively. If Q = (qij)n×n is a symmetric matrix, then Q >  will
imply thatQ is positive definite, i.e.,Q has all eigenvalues real and positive. Let P = (pij)n×n

and Q = (qij)n×n be two symmetric matrices. Then, P <Q will imply that vTPv < vTQv for
any real vector v = (v, v, . . . , vn)T . A realmatrix P = (pij)n×n is said to be a nonnegativema-
trix if pij ≥ , i, j = , , . . . ,n. Let P = (pij)n×n and Q = (qij)n×n be two real matrices. Then,
P �Q will imply that pij ≤ qij, i, j = , , . . . ,n. We also recall the following vector and ma-
trix norms:

‖v‖ =
n∑
i=

|vi|, ‖v‖ =
√√√√ n∑

i=

vi , ‖v‖∞ = max
≤i≤n

|vi|,

‖Q‖ = max
≤i≤n

n∑
j=

|qji|, ‖Q‖ =
√

λmax
(
QTQ

)
, ‖Q‖∞ = max

≤i≤n

n∑
j=

|qij|.

2 Preliminaries
The delayed neural network model we consider in this paper is described by the set of
nonlinear differential equations of the form

dxi(t)
dt

= –cixi(t) +
n∑
j=

aijfj
(
xj(t)

)
+

n∑
j=

bijfj
(
xj(t – τij)

)
+ ui, (.)

where i = , , . . . ,n, n is the number of the neurons, xi(t) denotes the state of the neuron i
at time t, fi(·) denote activation functions, aij and bij denote the strengths of connectivity
between neurons j and i at time t and t – τij, respectively; τij represents the time delay
required in transmitting a signal from the neuron j to the neuron i, ui is the constant
input to the neuron i, ci is the charging rate for the neuron i.
In order to accomplish the objectives of this paper in the sense of robust stability of

dynamical neural networks, we will first define the class of the activation functions that
we will employ in the neural network model (.) and the parametric uncertainties of the
system matrices A, B, and C.
The activation functions fi are assumed to be nondecreasing and slope-bounded, that

is, there exist some positive constants ki such that the following conditions hold:

 ≤ fi(x) – fi(y)
x – y

≤ ki, i = , , . . . ,n,∀x, y ∈ R,x 	= y.

This class of functions will be denoted by f ∈K.
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Wewill set intervals for the systemmatrices A = aij, B = bij and C = ci in (.) as follows:

CI :=
{
C = diag(ci) :  � C � C � C, i.e.,  < ci ≤ ci ≤ ci, i = , , . . . ,n

}
,

AI :=
{
A = (aij) : A� A � A, i.e.,aij ≤ aij ≤ aij, i, j = , , . . . ,n

}
, (.)

BI :=
{
B = (bij) : B� B � B, i.e.,bij ≤ bij ≤ bij, i, j = , , . . . ,n

}
.

In what follows, wewill give some basic definitions and lemmas that will play an important
role in the proof of our robust stability results.

Definition . (See []) Let x∗ = (x∗
 ,x∗

, . . . ,x∗
n)T be an equilibrium point of neural sys-

tem (.). The neural network model (.) with the parameter ranges defined by (.) is
globally asymptotically robust stable if x∗ is a unique and globally asymptotically stable
equilibrium point of system (.) for all C ∈ CI , A ∈ AI , and B ∈ BI .

Lemma . (See []) If H(x) ∈ C satisfies the conditions H(x) 	= H(y) for all x 	= y and
‖H(x)‖ → ∞ as ‖x‖ → ∞, then H(x) is a homeomorphism of Rn.

Lemma . (See []) Let x = (x,x, . . . ,xn)T ∈ Rn. If

A ∈ AI :=
{
A = (aij) : A� A� A, i.e., aij ≤ aij ≤ aij, i, j = , , . . . ,n

}

then, for any positive diagonalmatrix P andanonnegative diagonalmatrixϒ , the following
inequality holds:

xT
(
PA +ATP

)
x ≤ xT

(
P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP)
x

+ xT
(∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP

∥∥
I

)
x,

where A∗ = 
 (A +A), A∗ = 

 (A –A).

3 Robust stability analysis
In this section, we will present a new sufficient condition that guarantees the global robust
asymptotic stability of the equilibrium point of the neural network model (.), which is
stated in the following theorem.

Theorem . For the neural network model (.), assume that f ∈K and the network pa-
rameters satisfy (.).Then the neural networkmodel (.) has a unique and globally robust
asymptotically stable equilibrium point for each u, if there exist a positive diagonal matrix
P and a nonnegative diagonal matrix ϒ such that the following condition holds:

� = CPK– – P
(
A∗ –ϒ

)
–

(
A∗ –ϒ

)TP –
∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP

∥∥
I

– 
√
npM

(
ρ

√‖R‖∞ + ρ
√‖R‖

)
I > ,

where K = diag(ki > ), A∗ = 
 (A+A), A∗ = 

 (A–A), pM =max(pi), R = (rij)n×n with rij = b̂ij
with b̂ij =max{|bij|, |bij|}, ρ and ρ are positive constants such that ρ +ρ =  and ρρ = .
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Proof We will first prove the existence and uniqueness of the equilibrium point of system
(.) by making use of the homeomorphism mapping theorem defined in Lemma .. To
this end, we define the mapping associated with system (.) as

H(x) = –Cx +Af (x) + Bf (x) + u. (.)

We point out here that if x∗ is an equilibrium point of the neural network model (.),
then, by definition, x∗ satisfies the following equilibrium equation:

–Cx∗ +Af
(
x∗) + Bf

(
x∗) + u = .

Therefore, every solution of the equation H(x) =  is an equilibrium point of system (.).
Hence, if we shaw thatH(x) is homeomorphismof Rn, thenwewill conclude thatH(x∗) = 
has a unique solution for each u. In order to prove that H(x) is a homeomorphism of Rn,
we choose two real vectors x ∈ Rn and y ∈ Rn such that x 	= y. In this case, we can write the
following equation for H(x) given by (.):

H(x) –H(y) = –C(x – y) +A
(
f (x) – f (y)

)
+ B

(
f (x) – f (y)

)
. (.)

Let x 	= y. If f (x) – f (y) =  when x 	= y, then (.) takes the form

H(x) –H(y) = –C(x – y)

from which it follows that H(x) 	=H(y) if x – y 	=  as C is a positive diagonal matrix. Now
assume that f (x) – f (y) 	=  when x– y 	= . In this case, if we multiply both sides of (.) by
(f (x) – f (y))TP, we obtain


(
f (x) – f (y)

)TP(
H(x) –H(y)

)
= –

(
f (x) – f (y)

)TPC(x – y)

+ 
(
f (x) – f (y)

)TPA(
f (x) – f (y)

)
+ 

(
f (x) – f (y)

)TPB(
f (x) – f (y)

)
= –

(
f (x) – f (y)

)TPC(x – y)

+
(
f (x) – f (y)

)T(
PA +ATP

)(
f (x) – f (y)

)
+ 

(
f (x) – f (y)

)TPB(
f (x) – f (y)

)
, (.)

where P = diag(pi > ) is a positive diagonal matrix.
In the light of Lemma ., we can write

(
f (x) – f (y)

)T(
PA +ATP

)(
f (x) – f (y)

)
≤ (

f (x) – f (y)
)T(

P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP)(
f (x) – f (y)

)
+

(
f (x) – f (y)

)T(∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP
∥∥
I

)(
f (x) – f (y)

)
, (.)

where ϒ is a nonnegative diagonal matrix.
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f ∈K implies that

–
(
f (x) – f (y)

)TPC(x – y) = –
n∑
i=

pici
(
fi(xi) – fi(yi)

)
(xi – yi)

≤ –
n∑
i=

pici
ki

(
fi(xi) – fi(yi)

)

= –
(
f (x) – f (y)

)TCPK–(f (x) – f (y)
)
. (.)

We also note the following inequality:


(
f (x) – f (y)

)TPB(
f (x) – f (y)

)

=
n∑
i=

n∑
j=

pibij
(
fi(xi) – fi(yi)

)(
fj(xj) – fj(yj)

)

≤ (ρ + ρ)pM
n∑
i=

n∑
j=

b̂ij
∣∣fi(xi) – fi(yi)

∣∣∣∣fj(xj) – fj(yj)
∣∣

= ρpM
n∑
i=

n∑
j=

b̂ij
∣∣fi(xi) – fi(yi)

∣∣∣∣fj(xj) – fj(yj)
∣∣

+ ρpM
n∑
i=

n∑
j=

b̂ji
∣∣fi(xi) – fi(yi)

∣∣∣∣fj(xj) – fj(yj)
∣∣, (.)

where ρ and ρ are positive constants such that ρ + ρ =  and ρρ = , pM = max(pi)
and b̂ij =max{|bij|, |bij|}.
Equation (.) can be written in the following form:


(
f (x) – f (y)

)TPB(
f (x) – f (y)

)

≤ ρpM
n∑
i=

n∑
j=

(
αb̂ij

(
fi(xi) – fi(yi)

) + 
α

(
fj(xj) – fj(yj)

))

+ ρpM
n∑
i=

n∑
j=

(
βb̂ji

(
fi(xi) – fi(yi)

) + 
β

(
fj(xj) – fj(yj)

))

= ρpM
n∑
i=

n∑
j=

(
αrij

(
fi(xi) – fi(yi)

) + 
α

(
fj(xj) – fj(yj)

))

+ ρpM
n∑
i=

n∑
j=

(
βrji

(
fi(xi) – fi(yi)

) + 
β

(
fj(xj) – fj(yj)

))

≤ ρpM
(

α‖R‖∞
∥∥f (x) – f (y)

∥∥
 +


α
n
∥∥f (x) – f (y)

∥∥


)

+ ρpM
(

β‖R‖
∥∥f (x) – f (y)

∥∥
 +


β
n
∥∥f (x) – f (y)

∥∥


)
, (.)
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where α and β are some positive constants. Letting α =
√
n√‖R‖∞ and β =

√
n√‖R‖ in (.) yields


(
f (x) – f (y)

)TPB(
f (x) – f (y)

)
≤ 

√
npMρ

√‖R‖∞
(
f (x) – f (y)

)T(
f (x) – f (y)

)
+ 

√
npMρ

√‖R‖
(
f (x) – f (y)

)T(
f (x) – f (y)

)
. (.)

Using (.), (.), and (.) in (.) results in


(
f (x) – f (y)

)TP(
H(x) –H(y)

)
≤ –

(
f (x) – f (y)

)TCPK–(f (x) – f (y)
)

+
(
f (x) – f (y)

)T(
P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP)(
f (x) – f (y)

)
+

(
f (x) – f (y)

)T∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP
∥∥


(
f (x) – f (y)

)
+ 

√
npMρ

√‖R‖∞
(
f (x) – f (y)

)T(
f (x) – f (y)

)
+ 

√
npMρ

√‖R‖
(
f (x) – f (y)

)T(
f (x) – f (y)

)
,

which can be written in the form


(
f (x) – f (y)

)TP(
H(x) –H(y)

)
≤ –

(
f (x) – f (y)

)T
�

(
f (x) – f (y)

)
. (.)

For the activations functions belonging to the classK, it has been shown in [] that for the
inequality in the form of (.), if � > , thenH(x) 	=H(y), for all x 	= y, and ‖H(x)‖ → ∞ as
‖x‖ → ∞. Hence, we have proved that the mapH(x) : Rn → Rn is a homomorphism of Rn,
meaning that the condition of Theorem . implies the existence and uniqueness of the
equilibrium point for neural network model (.).
It will be now shown that the condition obtained for the existence and uniqueness of the

equilibrium point of neural network model (.) in Theorem . also implies the global
asymptotic stability of the equilibrium point. To this end, we will shift the equilibrium
point x∗ of system (.) to the origin. The transformation zi(·) = xi(·) – x∗

i , i = , , . . . ,n,
puts the network model (.) into the following form:

żi(t) = –cizi(t) +
n∑
j=

aijgj
(
zj(t)

)
+

n∑
j=

bijgj
(
zj(t – τij)

)
, i = , , . . . ,n, (.)

where gi(zi(·)) = fi(zi(·) + x∗
i ) – fi(x∗

i ), i = , , . . . ,n, satisfies the following property:

 ≤ gi(z)
z

≤ ki, ∀z ∈ R, z 	=  and gi() = , i = , , . . . ,n.

Note that equilibrium and stability properties of the neural network models are identical.
Therefore, proving the asymptotic stability of the origin of system (.) will directly im-
ply the asymptotic stability of x∗. Now, consider the following positive definite Lyapunov

http://www.advancesindifferenceequations.com/content/2014/1/41
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functional for system (.):

V
(
z(t)

)
=

n∑
i=

zi (t) + ε
n∑
i=

∫ zi(t)


pigi(s)ds

+
n∑
i=

n∑
j=

(
γ +

n
ci
b̂ij + ρ

ε

α
pM + ρεβpMb̂ij

)∫ t

t–τij

gj
(
zj(ξ )

)
dξ ,

where the pi, α, β , γ , and ε are positive constants to be determined later. The time deriva-
tive of the functional along the trajectories of system (.) is obtained as follows:

V̇
(
z(t)

)
= –

n∑
i=

cizi (t) +
n∑
i=

n∑
j=

aijzi(t)gj
(
zj(t)

)
+

n∑
i=

n∑
j=

bijzi(t)gj
(
zj(t – τij)

)

– ε
n∑
i=

picizi(t)gi
(
zi(t)

)
+ ε

n∑
i=

n∑
j=

piaijgi
(
zi(t)

)
gj
(
zj(t)

)

+ ε

n∑
i=

n∑
j=

pibijgi
(
zi(t)

)
gj
(
zj(t – τij)

)

+ ρεpM
n∑
i=

n∑
j=


α
gj

(
zj(t)

)
– ρεpM

n∑
i=

n∑
j=


α
gj

(
zj(t – τij)

)

+ γ

n∑
i=

n∑
j=

gj
(
zj(t)

)
– γ

n∑
i=

n∑
j=

gj
(
zj(t – τij)

)

+ ρεpM
n∑
i=

n∑
j=

βb̂ijg

j
(
zj(t)

)
– ρεpM

n∑
i=

n∑
j=

βb̂ijg

j
(
zj(t – τij)

)

+
n∑
i=

n∑
j=

n
ci
b̂ijg


j
(
zj(t)

)
–

n∑
i=

n∑
j=

n
ci
b̂ijg


j
(
zj(t – τij)

)
. (.)

We note that the following inequalities hold:

n∑
i=

n∑
j=

aijzi(t)gj
(
zj(t)

) ≤
n∑
i=

cizi (t) +
n∑
i=

n∑
j=

n
ci
âijg


j
(
zj(t)

)
, (.)

n∑
i=

n∑
j=

bijzi(t)gj
(
zj(t – τij)

) ≤
n∑
i=

cizi (t) +
n∑
i=

n∑
j=

n
ci
b̂ijg


j
(
zj(t – τij)

)
, (.)

n∑
i=

n∑
j=

pibijgi
(
zi(t)

)
gj
(
zj(t – τij)

)

≤ ρpM
n∑
i=

n∑
j=

(
αb̂ijg


i
(
zi(t)

)
+


α
gj

(
zj(t – τij)

))

+ ρpM
n∑
i=

n∑
j=

(

β
gj

(
zj(t)

)
+ βb̂jig


i
(
zi(t – τji)

))
. (.)
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For g ∈K, we have

–
n∑
i=

picizi(t)gi
(
zi(t)

) ≤ –
n∑
i=

pici
ki

gi
(
zi(t)

)

≤ –gT
(
z(t)

)
CPK–g

(
z(t)

)
. (.)

In the light of Lemma ., we can write

n∑
i=

n∑
j=

piaijgi
(
zi(t)

)
gj
(
zj(t)

)

= gT
(
z(t)

)(
PA +ATP

)
g
(
z(t)

)
≤ gT

(
z(t)

)(
P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP)
g
(
z(t)

)
+ gT

(
z(t)

)(∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP
∥∥
I

)
g
(
z(t)

)
. (.)

Using (.)-(.) in (.) yields

V̇
(
z(t)

) ≤
n∑
i=

n∑
j=

n
cm

âMg

j
(
zj(t)

)
+

n∑
i=

n∑
j=

n
cm

b̂Mgj
(
zj(t)

)

– εgT
(
z(t)

)
CPK–g

(
z(t)

)
+ εgT

(
z(t)

)(
P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP)
g
(
z(t)

)
+ εgT

(
z(t)

)(∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP
∥∥
I

)
g
(
z(t)

)

+ ερpM
n∑
i=

n∑
j=

αrijgi
(
zi(t)

)
+ ερpM

n∑
i=

n∑
j=


α
gj

(
zj(t)

)

+ ερpM
n∑
i=

n∑
j=


β
gj

(
zj(t)

)
+ ερpM

n∑
i=

n∑
j=

βrjigi
(
zi(t)

)

+ γ

n∑
i=

n∑
j=

gj
(
zj(t)

)
– γ

n∑
i=

n∑
j=

gj
(
zj(t – τij)

)
, (.)

where cm =min{ci}, âM =max{âij}, b̂M =max{b̂ij}. We now note the following inequalities:

n∑
i=

n∑
j=

rjigi
(
zi(t)

) ≤ ‖R‖
n∑
i=

gi
(
zi(t)

)
= ‖R‖gT

(
z(t)

)
g
(
z(t)

)
, (.)

n∑
i=

n∑
j=

rijgi
(
zi(t)

) ≤ ‖R‖∞
n∑
i=

gi
(
zi(t)

)
= ‖R‖∞gT

(
z(t)

)
g
(
z(t)

)
, (.)

n∑
i=

n∑
j=

gj
(
zj(t)

)
= ngT

(
z(t)

)
g
(
z(t)

)
. (.)
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Using (.)-(.) in (.) leads to

V̇
(
z(t)

) ≤
n∑
i=

n∑
j=

n
cm

âMg

j
(
zj(t)

)
+

n∑
i=

n∑
j=

n
cm

b̂Mgj
(
zj(t)

)

– εgT
(
z(t)

)
CPK–g

(
z(t)

)
+ γ

n∑
i=

n∑
j=

gj
(
zj(t)

)

+ εgT
(
z(t)

)(
P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP)
g
(
z(t)

)
+ εgT

(
z(t)

)(∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP
∥∥
I

)
g
(
z(t)

)
+ ερpMα‖R‖∞gT

(
z(t)

)
g
(
z(t)

)

+ ερpM

α
ngT

(
z(t)

)
g
(
z(t)

)

+ ερpM

β
ngT

(
z(t)

)
g
(
z(t)

)

+ ερpMβ‖R‖gT
(
z(t)

)
g
(
z(t)

)
. (.)

Let γ = n
cm (â


M + b̂M), α =

√
n√‖R‖∞ and β =

√
n√‖R‖ . Then (.) takes the form

V̇
(
z(t)

) ≤ n

cm

(
âM + b̂M

)
gT

(
z(t)

)
g
(
z(t)

)
– εgT

(
z(t)

)
CPK–g

(
z(t)

)

+ εgT
(
z(t)

)(
P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP)
g
(
z(t)

)
+ εgT

(
z(t)

)(∥∥P(A∗ +ϒ) + (A∗ +ϒ)TP
∥∥
I

)
g
(
z(t)

)
+ ερpM

√
n
√‖R‖∞gT

(
z(t)

)
g
(
z(t)

)
+ ερpM

√
n
√‖R‖gT

(
z(t)

)
g
(
z(t)

)

=
n

cm

(
âM + b̂M

)
gT

(
z(t)

)
g
(
z(t)

)
– εgT

(
z(t)

)
�g

(
z(t)

)

≤ n

cm

(
âM + b̂M

)∥∥g(z(t))∥∥
 – ελm(�)

∥∥g(z(t))∥∥


=
[
n

cm

(
âM + b̂M

)
– ελm(�)

]∥∥g(z(t))∥∥
. (.)

It has been shown in [] that, for the Lyapunov functional defined above, if its time deriva-
tive is in the formof (.) and ε > n(âM+b̂M)

cmλm(�) with� being positive definite, then the origin
system (.), or equivalently the equilibrium point of system (.) is globally asymptoti-
cally stable. Hence, we have shown that the condition of Theorem . implies the global
robust asymptotic stability of system (.). �

4 Comparison and examples
In this section, we present some constructive numerical materials to demonstrate the ef-
fectiveness and applicability of the proposed conditions and to show the advantages of our
results over the previous corresponding robust stability result derived in the literature. In
order to make a precise comparison between the results, we will first restate results from
the previous literature.
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Theorem . (See []) For the neural network model (.), assume that f ∈ K and the
network parameters satisfy (.). Then the neural network model (.) is globally asymp-
totically robust stable if there exists a positive diagonal matrix P = diag(pi > ) such that

� = CPK– + S – 
√
npM

(
ρ

√‖R‖∞ + ρ
√‖R‖

)
I > ,

where K = diag(ki > ) is a positive diagonal matrix, S = (sij)n×n with sii = –piaii, sij =
–max (|piaij + pjaji|, |piaij + pjaji|) for i 	= j, pM =max(pi), R = (rij)n×n with rij = b̂ij, and b̂ij =
max{|bij|, |bij|}, and ρ and ρ are positive constants such that ρ + ρ =  and ρρ = .

Theorem . (See []) For the neural network model (.), assume that f ∈ K and the
network parameters satisfy (.). Then the neural network model (.) is globally asymp-
totically robust stable, if there exists a positive diagonal matrix P = diag(pi > ) such that


 = CPK– – PA∗ –A∗TP –
∥∥PA∗ +AT

∗ P
∥∥
I – 

√
npM

(
ρ

√‖R‖∞ + ρ
√‖R‖

)
I > ,

where K = diag(ki > ) is a positive diagonal matrix, pM =max(pi), R = (rij)n×n with rij = b̂ij,
and b̂ij =max{|bij|, |bij|}; ρ and ρ are positive constants such that ρ +ρ =  and ρρ = ,
and A∗ = 

 (A +A), A∗ = 
 (A –A).

Theorem . (See []) For the neural network model (.), assume that f ∈ K and the
network parameters satisfy (.). Then the neural network model (.) is globally asymp-
totically robust stable if there exist positive constants αi, i = , , . . . ,n, such that

αi

(
ci
μi

– aii
)
–

n∑
j=
j 	=i

αjâji –
n∑
j=

αjb̂ji > , i = , , . . . ,n,

where âji =max{|aji|, |aji|} and b̂ji =max{|bji|, |bji|}.

We will now consider the following examples.

Example . Consider the neural system (.) with the following network parameters:

A =

⎡
⎢⎢⎢⎣

 – – –
   –
– –  –
– –  

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣
– – – –
– – – –
– – – –
– – – –

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

k = k = k = k =  and c = c = c = c = cm,

http://www.advancesindifferenceequations.com/content/2014/1/41
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from which we obtain the following matrices:

A∗ =

⎡
⎢⎢⎢⎣

   
   
–   
– –  

⎤
⎥⎥⎥⎦ , A∗ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

B̂ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ .

We note that ‖R‖ =  and ‖R‖∞ = . We consider a special case of Theorem . where
P = I , in which case the matrix S in Theorem . is of the form

S =

⎡
⎢⎢⎢⎣
– – – –
– – – –
– – – –
– – – –

⎤
⎥⎥⎥⎦ .

Then, for ρ =  and ρ = , � in Theorem . is obtained as follows:

� = cmI + S – 
√
n
√‖R‖I = 

⎡
⎢⎢⎢⎣
cm –  –. –. –.
–. cm –  –. –.
–. –. cm –  –.
–. –. –. cm – 

⎤
⎥⎥⎥⎦ .

Note that � >  if and only if cm > .. Hence, the robust stability condition imposed by
Theorem . is cm > .. For the same network parameters of this example, we will obtain
the robust stability condition imposed by Theorem .. Let P = I and

ϒ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ .

Then we obtain

P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP =

⎡
⎢⎢⎢⎣
  – –
   –
–   
– –  

⎤
⎥⎥⎥⎦ ,

P(A∗ +ϒ) + (A∗ +ϒ)TP =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ .
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� in Theorem . takes the form

� =

⎡
⎢⎢⎢⎣
cm –  –  

– cm –  – 
 – cm –  –
  – cm – 

⎤
⎥⎥⎥⎦ .

It can be calculated that � >  if and only if cm > .. Therefore, Theorem . imposes a
less restrictive stability condition on the network parameters than Theorem . does.

Example . Consider the neural system (.) with the following network parameters:

A =

⎡
⎢⎢⎢⎣
– – – –
–  – –
– –  –
– – – 

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣
– – – –
– – – –
– – – –
– – – –

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

k = k = k = k = , and c = c = c = c = cm.

From the above matrices, we can obtain the following matrices:

A∗ =

⎡
⎢⎢⎢⎣
–   
   
   
   

⎤
⎥⎥⎥⎦ , A∗ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

B̂

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

from which we can calculate the norms ‖R‖ =  and ‖R‖∞ = . Let P = I and

ϒ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ .

Then we can write

P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP =

⎡
⎢⎢⎢⎣
–   
 –  
  – 
   –

⎤
⎥⎥⎥⎦ ,
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P(A∗ +ϒ) + (A∗ +ϒ)TP =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ .

For ρ =  and ρ = , the matrix � in Theorem . is in the form

� = 

⎡
⎢⎢⎢⎣
cm –    
 cm –   
  cm –  
   cm – 

⎤
⎥⎥⎥⎦ .

The condition � >  is satisfied if cm > . For the parameters of this example, 
 in Theo-
rem . is in the form


 = cmI –A∗ –A∗T –
∥∥A∗ +AT

∗
∥∥
I – 

√‖R‖I

= 

⎡
⎢⎢⎢⎣
cm – .   

 cm – .  
  cm – . 
   cm – .

⎤
⎥⎥⎥⎦ .

The choice cm > . implies that 
 > , which ensures the global robust stability of neural
system (.). Hence, for the network parameters of this example, if  < cm ≤ ., then the
result of Theorems . does not hold, whereas the result of Theorem . is still applicable.

Example . Assume that the network parameters of neural system (.) are given as
follows:

A =

⎡
⎢⎢⎢⎣

 – – –
–  – –
– –  –
– – – 

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣
– – – –
– – – –
– – – –
– – – –

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

k = k = k = k = , and c = c = c = c = cm.

For the matrices given above, we can obtain the following matrices:

A∗ =

⎡
⎢⎢⎢⎣
   
–   
– –  
– – – 

⎤
⎥⎥⎥⎦ , A∗ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,
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Â =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ , B̂ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

from which we calculate ‖R‖ =  and ‖R‖∞ = . Let P = I and

ϒ =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ .

We have

P
(
A∗ –ϒ

)
+

(
A∗ –ϒ

)TP =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ ,

P(A∗ +ϒ) + (A∗ +ϒ)TP =

⎡
⎢⎢⎢⎣
   
   
   
   

⎤
⎥⎥⎥⎦ .

For ρ =  and ρ = , the matrix � in Theorem . is of the form

� = 

⎡
⎢⎢⎢⎣
cm –    

 cm –   
  cm –  
   cm – 

⎤
⎥⎥⎥⎦ .

Clearly,� >  holds if and only if cm > . Therefore, for this example, Theorem. ensures
the global robust stability of neural system (.) under the condition that cm > .
When checking the condition of Theorem . for the same network parameters of this

example, we search for the existence of the positive constants α, α, α, and α such that
the following conditions hold:

cmα – α – α – α – α > ,

–α + cmα – α – α – α > ,

–α – α + cmα – α – α > ,

–α – α – α + cmα – α > ,

which can be written in form

⎡
⎢⎢⎢⎣
cm –  – – –
– cm –  – –
– – cm –  –
– – – cm – 

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

α

α

α

α

⎤
⎥⎥⎥⎦ > .
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From the properties of the nonsingular M-matrices [], in order to ensure the existence
of α, α, α, and α the symmetricmatrix in the above inequalitymust be positive definite,
which holds if and only if cm > . Obviously, for the interval  < cm ≤ , our condition
obtained in Theorem . is satisfied, but the result of Theorem . does not hold.

5 Conclusions
In this paper, we have focused on the existence, uniqueness, and global robust stability
of an equilibrium point for neural networks with multiple time delays with respect to
the class of nondecreasing activation functions. We have employed a suitable Lyapunov
functional and made use of the homeomorphismmapping theorem to derive a new time-
independent robust stability condition for dynamical neural networks with multiple time
delays. The obtained condition basically establishes a relationship between the network
parameters of the neural system and the number of neurons.We have also presented some
numerical examples, which enabled us to show the advantages of our result over previously
reported robust stability results. We should point here that in the neural network model
we have considered, the delay parameters are constant and the stability condition we ob-
tain is delay independent. However, it is possible to derive some delay-dependent stability
conditions for the same neural network model by employing different classes of Lyapunov
functionals.

Competing interests
The author declares that he has no competing interests.

Received: 11 July 2013 Accepted: 8 January 2014 Published: 27 Jan 2014

References
1. Arik, S: New criteria for global robust stability of delayed neural networks with norm-bounded uncertainties. IEEE

Transactions on Neural Networks Learning Systems (in press). doi:10.1109/TNNLS.2013.2287279
2. Shen, Y, Wang, J: Robustness analysis of global exponential stability of recurrent neural networks in the presence of

time delays and random disturbances. IEEE Trans. Neural Netw. Learn. Syst. 23, 87-96 (2012)
3. Huang, TW, Li, CD, Duan, SK, Starzyk, A: Robust exponential stability of uncertain delayed neural networks with

stochastic perturbation and impulse effects. IEEE Trans. Neural Netw. Learn. Syst. 23, 866-875 (2012)
4. Sakthivel, R, Raja, R, Anthoni, SM: Exponential stability for delayed stochastic bidirectional associative memory neural

networks with Markovian jumping and impulses. J. Optim. Theory Appl. 150, 166-187 (2011)
5. Shen, H, Huang, X, Zhou, J, Wang, Z: Global exponential estimates for uncertain Markovian jump neural networks

with reaction-diffusion terms. Nonlinear Dyn. 69, 473-486 (2012)
6. Wu, ZG, Park, JH, Su, H, Chu, J: Robust dissipativity analysis of neural networks with time-varying delay and randomly

occurring uncertainties. Nonlinear Dyn. 69, 1323-1332 (2012)
7. Wu, ZG, Park, JH, Su, H, Chu, J: Stochastic stability analysis of piecewise homogeneous Markovian jump neural

networks with mixed time-delays. J. Franklin Inst. 349, 2136-2150 (2012)
8. Guo, Z, Huang, L: LMI conditions for global robust stability of delayed neural networks with discontinuous neuron

activations. Appl. Math. Comput. 215, 889-900 (2009)
9. Zhang, Z, Zhou, D: Global robust exponential stability for second-order Cohen-Grossberg neural networks with

multiple delays. Neurocomputing 73, 213-218 (2009)
10. Han, W, Liu, Y, Wang, L: Robust exponential stability of Markovian jumping neural networks with mode-dependent

delay. Commun. Nonlinear Sci. Numer. Simul. 15, 2529-2535 (2010)
11. Yuan, Y, Li, X: New results for global robust asymptotic stability of BAM neural networks with time-varying delays.

Neurocomputing 74, 337-342 (2010)
12. Wang, Z, Liu, Y, Liu, X, Shi, Y: Robust state estimation for discrete-time stochastic neural networks with probabilistic

measurement delays. Neurocomputing 74, 256-264 (2010)
13. Zhang, Z, Yang, Y, Huang, Y: Global exponential stability of interval general BAM neural networks with

reaction-diffusion terms and multiple time-varying delays. Neural Netw. 24, 457-465 (2011)
14. Kao, Y, Wang, C: Global stability analysis for stochastic coupled reaction-diffusion systems on networks. Nonlinear

Anal., Real World Appl. 14, 1457-1465 (2013)
15. Muralisankar, S, Gopalakrishnan, N, Balasubramaniam, P: An LMI approach for global robust dissipativity analysis of

T-S fuzzy neural networks with interval time-varying delays. Expert Syst. Appl. 39, 3345-3355 (2012)
16. Shao, JL, Huang, TZ, Wang, XP: Further analysis on global robust exponential stability of neural networks with

time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 17, 1117-1124 (2012)
17. Lou, X, Ye, Q, Cui, B: Parameter-dependent robust stability of uncertain neural networks with time-varying delay. J.

Franklin Inst. 349, 1891-1903 (2012)

http://www.advancesindifferenceequations.com/content/2014/1/41
http://dx.doi.org/10.1109/TNNLS.2013.2287279


Arik Advances in Difference Equations 2014, 2014:41 Page 16 of 16
http://www.advancesindifferenceequations.com/content/2014/1/41

18. Raja, R, Samidurai, R: New delay dependent robust asymptotic stability for uncertain stochastic recurrent neural
networks with multiple time varying delays. J. Franklin Inst. 349, 2108-2123 (2012)

19. Kao, YG, Guo, JF, Wang, CH, Sun, XQ: Delay-dependent robust exponential stability of Markovian jumping
reaction-diffusion Cohen-Grossberg neural networks with mixed delays. J. Franklin Inst. 349, 1972-1988 (2012)

20. Zhang, H, Liu, Z, Huang, GB: Novel delay-dependent robust stability analysis for switched neutral-type neural
networks with time-varying delays via SC technique. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40, 1480-1491
(2010)

21. Huang, Z, Li, X, Mohamad, S, Lu, Z: Robust stability analysis of static neural network with S-type distributed delays.
Appl. Math. Model. 33, 760-769 (2009)

22. Luo, M, Zhong, S, Wang, R, Kang, W: Robust stability analysis for discrete-time stochastic neural networks systems
with time-varying delays. Appl. Math. Comput. 209, 305-313 (2009)

23. Balasubramaniam, P, Ali, MS: Robust stability of uncertain fuzzy cellular neural networks with time-varying delays and
reaction diffusion terms. Neurocomputing 74, 439-446 (2010)

24. Wang, Z, Liu, Y, Liu, X, Shi, Y: Robust state estimation for discrete-time stochastic neural networks with probabilistic
measurement delays. Neurocomputing 74, 256-264 (2010)

25. Mahmoud, MS, Ismail, A: Improved results on robust exponential stability criteria for neutral-type delayed neural
networks. Appl. Math. Comput. 217, 3011-3019 (2010)

26. Shao, JL, Huang, TZ, Wang, XP: Improved global robust exponential stability criteria for interval neural networks with
time-varying delays. Expert Syst. Appl. 38, 15587-15593 (2011)

27. Faydasicok, O, Arik, S: An analysis of stability of uncertain neural networks with multiple time delays. J. Franklin Inst.
350, 1808-1826 (2013)

28. Chen, A, Cao, J, Huang, L: Global robust stability of interval cellular neural networks with time-varying delays. Chaos
Solitons Fractals 23, 787-799 (2005)

29. Faydasicok, O, Arik, S: Equilibrium and stability analysis of delayed neural networks under parameter uncertainties.
Appl. Math. Comput. 218, 6716-6726 (2012)

30. Sun, C, Feng, CB: Global robust exponential stability of interval neural networks with delays. Neural Process. Lett. 17,
107-115 (2003)

31. Liu, B: Global exponential stability for BAM neural networks with time-varying delays in the leakage terms. Nonlinear
Anal., Real World Appl. 14, 559-566 (2013)

32. Zhang, H, Shao, J: Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms.
Appl. Math. Comput. 219, 11471-11482 (2013)

33. Feng, Z, Lam, J: Stability and dissipativity analysis of distributed delay cellular neural networks. IEEE Trans. Neural
Netw. 22, 976-981 (2011)

34. Berezansky, L, Bastinec, J, Diblik, J, Smarda, Z: On a delay population model with quadratic nonlinearity. Adv. Differ.
Equ. 2012, 230 (2012). doi:10.1186/1687-1847-2012-230,

35. Diblik, J, Khusainov, DY, Grytsay, IV, Smarda, Z: Stability of nonlinear autonomous quadratic discrete systems in the
critical case. Discrete Dyn. Nat. Soc. 2010, Article ID 539087 (2010). doi:10.1155/2010/539087

36. Diblik, J, Koksch, N: Sufficient conditions for the existence of global solutions of delayed differential equations. J.
Math. Anal. Appl. 318, 611-625 (2006)

37. Jia, R, Yang, M: Convergence for HRNNs with unbounded activation functions and time-varying delays in the leakage
terms. Neural Process. Lett. 39, 69-79 (2014). doi:10.1007/s11063-013-9290-0

38. Liu, B, Gong, S: Periodic solution for impulsive cellar neural networks with time-varying delays in the leakage terms.
Abstr. Appl. Anal.. 2013, Article ID 701087 (2013)

39. Liu, B, Shao, J: Almost periodic solutions for SICNNs with time-varying delays in the leakage terms. J. Inequal. Appl.
2013, 494 (2013)

40. Peng, L, Wang, W: Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in
leakage terms. Neurocomputing 111, 27-33 (2013)

41. Xiong, W, Meng, J: Exponential convergence for cellular neural networks with continuously distributed delays in the
leakage terms. Electron. J. Qual. Theory Differ. Equ. 10, 1-12 (2013)

42. Yu, Y, Jiao, W: New results on exponential convergence for HRNNs with continuously distributed delays in the leakage
terms. Neural Process. Lett. 37 (2013). doi:10.1007/s11063-013-9296-7

43. Zhang, H, Shao, J: Almost periodic solutions for cellular neural networks with time-varying delays in leakage terms.
Appl. Math. Comput. 219, 11471-11482 (2013)

44. Horn, RA, Johnson, CR: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

10.1186/1687-1847-2014-41
Cite this article as: Arik: Further analysis of stability of uncertain neural networks with multiple time delays. Advances
in Difference Equations 2014, 2014:41

http://www.advancesindifferenceequations.com/content/2014/1/41
http://dx.doi.org/10.1186/1687-1847-2012-230
http://dx.doi.org/10.1155/2010/539087
http://dx.doi.org/10.1007/s11063-013-9290-0
http://dx.doi.org/10.1007/s11063-013-9296-7

	Further analysis of stability of uncertain neural networks with multiple time delays
	Abstract
	Keywords

	Introduction
	Preliminaries
	Robust stability analysis
	Comparison and examples
	Conclusions
	Competing interests
	References


