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Abstract
This paper is concerned with oscillations of the second-order delay nonlinear
dynamic equation (a(t)(x�(t))α)� + q(t)xβ (τ (t)) = 0 on a time scale T, where a and q
are real-valued rd-continuous positive functions on T, α and β are ratios of odd
positive integers, τ : T → T, τ (t)≤ t, ∀t ∈ T, and limt→∞ τ (t) = ∞. We establish some
new sufficient conditions for this equation.
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1 Introduction
The study of dynamic equations on time scales, which goes back to Hilger [], provides a
rapidly expanding body of literature where themain idea is to unify, extend, and generalise
concepts from continuous, discrete and quantumcalculus to arbitrary time scales analysis,
where a time scale T is simply any nonempty closed subset of the reals.
For detailed information regarding calculus on time scales, we refer the reader to Bohner

and Peterson [, ].
Now we consider the second-order delay nonlinear dynamic equation

(
a(t)

(
x�(t)

)α)� + q(t)xβ
(
τ (t)

)
=  (.)

on an arbitrary time scale T, where a and q are real-valued rd-continuous positive func-
tions defined on T; α and β >  are ratios of odd positive integers; τ : T → T, τ (t) ≤ t,
∀t ∈ T and limt→∞ τ (t) = ∞.
We shall also consider the case

∫ ∞

t

�s
a/α(s)

=∞. (.)

Since we are interested in the oscillatory and asymptotic behavior of solutions near in-
finity, we assume that supT = ∞, and we define the time scale interval [t,∞)T by
[t,∞)T := [t,∞) ∩ T. By a solution of (.) we mean a nontrivial real-valued function
x ∈ C

rd[Tx,∞), Tx ≥ t which has the property that a(t)(x�(t))α ∈ C
rd[Tx,∞) and satisfies

(.) on [Tx,∞); here Crd is the space of rd-continuous functions. The solutions vanishing
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in some neighborhood of infinity will be excluded from our consideration. A solution x
of (.) is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is nonoscillatory.
If T = R then σ (t) = t, μ(t) = , f �(t) = f ′(t),

∫ b
a f (t)�t =

∫ b
a f (t)dt and when α = β (.)

becomes the half-linear delay differential equation

(
a(t)

(
x′(t)

)α)′ + q(t)xα
(
τ (t)

)
= . (.)

When a(t) =  and α = , (.) becomes

x′′(t) + q(t)x
(
τ (t)

)
= . (.)

Ohriska [] proved that every solution of (.) oscillates if

lim sup
t→∞

t
∫ ∞

t
q(s)

(
τ (s)
s

)
ds >  (.)

holds. Agarwal et al. [] considered (.) and extended the condition (.) and proved that
if

lim sup
t→∞

tα
∫ ∞

t
q(s)

(
τ (s)
s

)α

ds > , (.)

then every solution of (.) oscillates.
IfT = Z, then σ (t) = t+,μ(t) = , f �(t) = �f (t),

∫ b
a f (t)�t =

∑b–
t=a f (t), and (.) becomes

the quasi-linear difference equation

�
(
a(t)

(
�x(t)

)α)
+ q(t)xβ

(
τ (t)

)
= . (.)

When α = β , (.) becomes the half-linear delay dynamic equation which has been consid-
ered by some authors and some oscillation and nonoscillation results have been obtained
[, , –]. As a special case of (.) Agarwal et al. [] considered the second-order delay
dynamic equations on time scales

x��(t) + q(t)x
(
τ (t)

)
=  (.)

and established some sufficient conditions for oscillations of (.) when
∫ ∞

t
τ (t)q(t)�t =∞. (.)

Saker [] studied (.) to extend the result of Lomtatidze []. Recently Higgins []
proved oscillation results for (.). Saker [] examined oscillations for the half-linear dy-
namic equation

(
a(t)

(
x�(t)

)α)� + q(t)xα(t) =  (.)

on time scales, where α >  is an odd positive integer and Agarwal et al. [] and Grace et
al. [] studied oscillations for the same equation, (.), where α >  is the quotient of odd
positive integers which cannot be applied when  < α ≤ . Han et al. [] and Hassan []
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solved this problem and improved Agarwal’s and Saker’s results. Erbe et al. [] considered
the half-linear delay dynamic equation

(
a(t)

(
x�(t)

)α)� + q(t)xα
(
τ (t)

)
=  (.)

on time scales, where α >  is the quotient of odd positive integers and

a�(t)≥  and
∫ ∞

t
τα(t)q(t)�t =∞ (.)

and utilised a Riccati transformation technique and established some oscillation criteria
for (.). Erbe et al. [] considered the half-linear delay dynamic equation (.) on time
scales, where  < α ≤  is the quotient of odd positive integers and established some suf-
ficient conditions for oscillations when (.) holds. Han et al. [] considered (.) and
followed the proof that has been used in [] and established some sufficient conditions
for oscillations when a�(t) ≥ . For oscillations of quasi-linear dynamic equations, Grace
et al. [] considered the equation

(
a(t)

(
x�(t)

)α)� + q(t)xβ (t) = ; (.)

and Saker and Grace [] considered the delay equation

(
a(t)

(
x�(t)

)α)� + q(t)xβ
(
τ (t)

)
=  (.)

on an arbitrary time scale T where τ (t) ≤ t or τ (t) ≥ t. The special case of (.) where
 < α = β ≤  has been studied in [] by Erbe et al.
In this paper, we establish some new sufficient conditions for oscillations of (.).

2 Preliminary result
For a function f : T → R, the (delta) derivative f �(t) at t ∈ T is defined to be the number
(if it exists) such that for all ε >  there is a neighborhood U of t with

∣∣f (σ (t)) – f (s) – f �
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣ (.)

for all s ∈ U . If the (delta) derivative f �(t) exists for all t ∈ T, then we say that f is (delta)
differentiable on T. For two (delta) differentiable functions f and g , the derivative of the
product fg and the quotient f /g (where ggσ 
= ) are given as in [, Theorem .]

(fg)� = f �g + f σ g� = fg� + f �gσ , (.)
(
f
g

)�

=
f �g – fg�

ggσ
(.)

as well as of the chain rule [, Theorem .] for the derivative of the composite func-
tion fog for a continuously differentiable function f : R → R and a (delta) differentiable
function g : T →R

(fog)� =
[∫ 


f ′(g + hμg�

)
dh

]
g�. (.)
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For b, c ∈ T and a differentiable function f , the Cauchy integral of f � is defined by

∫ c

b
f �(t)�t = f (c) – f (b) (.)

and the improper integral is defined as

∫ ∞

b
f (t)�t = lim

c→∞

∫ c

b
f (t)�t. (.)

Lemma . If A and B are nonnegative real numbers and λ > , then

Aλ – λABλ– + (λ – )Bλ ≥ ,

where the equality holds if and only if A = B.

3 Themain results
In this section, by employing a Riccati transformation technique, we establish oscillation
criteria for (.). To prove our main result, we will use the formula

(
xα(t)

)� = α

{∫ 



[
hxσ (t) + ( – h)x(t)

]α– dh
}
x�(t), (.)

which is a simple consequence of the Pötzsche chain rule [].
In the following theorems, we assume that (.) holds.

Theorem . Assume that there exists a positive nondecreasing delta differentiable func-
tion ξ (t) such that, for all sufficiently large T ≥ t, and for τ (t) > g(T), we have

lim sup
t→∞

∫ t

t

[
θβ

(
s, g(T)

)
ξ (s)q(s) –

( α
β
)αa(s)(ξ�(s))α+

(α + )α+(ξ (s)δ(s))α

]
�s =∞, (.)

where (ξ�(s))+ :=max{, ξ�(s)},

δ(t) =

⎧⎪⎪⎨
⎪⎪⎩
c is any positive constant, if β > α,

, if β = α,

c(ησ (t))
α–β
α , c is any positive constant, if β < α,

(.)

and

θ
(
t, g(T)

)
=

∫ τ (t)
g(T)

�s
a

α (s)∫ t

g(T)
�s

a

α (s)

, η(t) =
(∫ t

t

�s
a 

α (s)

)–

. (.)

Then every solution of (.) is oscillatory on [t,∞)T.

Proof Let x be a nonoscillatory solution of (.) on [t,∞)T. Then, without loss of general-
ity, there is a t ∈ [t,∞)T, sufficiently large, such that x(t) >  and x(τ (t)) >  on [t,∞)T.
Since a(x�)α is a strictly decreasing function, it is of one sign. We claim that x� >  on
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[t,∞)T. If not, then there is a t ∈ [t,∞)T such that x�(t) < . Using the fact a(x�)α is
strictly decreasing, we get

x(t)≤ x(t) +
[
a(t)

(
x�(t)

)α]/α ∫ t

t

�s
a/α(s)

→ –∞, as t → ∞,

which implies that x(t) is eventually negative. This is a contradiction. Hence x� >  on
[t,∞)T. Consider the generalized Riccati substitution

w(t) =
ξ (t)a(t)(x�(t))α

xβ (t)
, (.)

then w(t) > . By the product rule and then the quotient rule, we have

w�(t) =
(

ξ (t)
xβ (t)

)(
a(t)

(
x�(t)

)α)� +
(
a(t)

(
x�(t)

)α)σ

(
ξ (t)
xβ(t)

)�

= –q(t)ξ (t)
(
x(τ (t))
x(t)

)β

+ ξ�(t)
(a(t)(x�(t))α)σ

xβ (σ (t))

– ξ (t)
(a(t)(x�(t))α)σ (xβ (t))�

xβ (t)xβ(σ (t))
. (.)

Using the fact that x(t) is increasing and a(x�)α is decreasing, we have

x(t) – x
(
τ (t)

)
=

∫ t

τ (t)

(a(s)(x�(s))α)
a 

α (s)


α

�s

≤
∫ t

τ (t)

(a(τ (t))(x�(τ (t)))α)
a 

α (s)


α

�s

= a

α
(
τ (t)

)
x�

(
τ (t)

)∫ t

τ (t)

�s
a 

α (s)

and so

x(t)
x(τ (t))

≤  +
a 

α (τ (t))x�(τ (t))
x(τ (t))

∫ t

τ (t)

�s
a 

α (s)
(.)

for t ≥ t. Also, we see that

x
(
τ (t)

)
> x

(
τ (t)

)
– x

(
g(T)

)
=

∫ τ (t)

g(T)

(a(s)(x�(s))α)
a 

α (s)


α

�s

≥ a

α
(
τ (t)

)
x�

(
τ (t)

)∫ τ (t)

g(T)

�s
a 

α (s)
,

a 
α (τ (t))x�(τ (t))

x(τ (t))
≤

(∫ τ (t)

g(T)

�s
a 

α (s)

)–

. (.)
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Therefore, (.) and (.) imply that

x(τ (t))
x(t)

≥
∫ τ (t)
g(T)

�s
a

α (s)∫ t

g(T)
�s

a

α (s)

= θ
(
t, g(T)

)
. (.)

In view of (.), we get

(
xβ (t)

)� = βx�(t)
∫ 



[(
x(t) + hμ(t)x�(t)

)]β– dh

≥
⎧⎨
⎩

β(xσ (t))β–x�(t),  < β ≤ ,

β(x(t))β–x�(t), β > .
(.)

From (.), (.), the fact that x(t) is an increasing function and the definition of w(t), if
 < β ≤ , we have

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

wσ (t)
ξσ (t)

– βξ (t)
(a(t)(x�(t))α)σ

(xσ (t))β+
x�(t)

= –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

wσ (t)
ξσ (t)

– βξ (t)
wσ (t)
ξσ (t)

x�(t)
xσ (t)

,

whereas, if β > , we have

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

wσ (t)
ξσ (t)

– βξ (t)
(a(t)(x�(t))α)σ

(xσ (t))β+
x�(t)

= –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

wσ (t)
ξσ (t)

– βξ (t)
wσ (t)
ξσ (t)

x�(t)
xσ (t)

.

Using the fact that a(t)(x�(t))α is strictly decreasing on [t,∞)T, we find

x�(t)
xσ (t)

≥ ((a(t)(x�(t))α)σ ) 
α

a 
α (t)(xσ (t))

β
α

(
xσ (t)

) β–α
α =

(
wσ (t)
ξσ (t)

) 
α (xσ (t))

β–α
α

a 
α (t)

.

Thus for β > , we have

w�(t)≤ –q(t)ξ (t)θβ
(
t, g(T)

)

+ ξ�(t)
wσ (t)
ξσ (t)

–
βξ (t)
a 

α (t)

(
wσ (t)
ξσ (t)

) α+
α (

xσ (t)
) β–α

α . (.)

We consider the following three cases:
Case (i). β > α.
In this case, since x�(t) > , there exists t ≥ t such that xσ (t) ≥ x(t)≥ c > . This implies

that (xσ (t))
β–α
α ≥ c, where c = c

β–α
α .

Case (ii). β = α.
In this case, we see that (xσ (t))

β–α
α = .

Case (iii). β < α.

http://www.advancesindifferenceequations.com/content/2014/1/45
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Then there exists a positive constant b := a(t)(x�(t))α . Using the decreasing of a(x�)α ,
we have

x�(t) ≤ b

α a

–
α (t) for t ≥ t.

Integrating this inequality from t to t, we have

x(t)≤ x(t) + b

α

∫ t

t
a

–
α (s)�s.

Thus, there exist a constant b >  and t ≥ t such that

x(t)≤ bη–(t) for t ≥ t

and hence

(
xσ (t)

) β–α
α ≥ c

(
ησ

) α–β
α (t) for t ≥ t,

where c = b
β–α
α

 .
By (.), we get

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

wσ (t)
ξσ (t)

– βa–

α (t)ξ (t)

(
wσ (t)
ξσ (t)

) α+
α

δ(t) (.)

for t ≥ t. Defining A≥  and B≥  by

A =
(
βδ(t)ξ (t)

) α
α+ a

–
α+ (t)

wσ (t)
ξσ (t)

,

B =
(

α

α + 

)α(
ξ�(t)
ξσ (t)

)α[(
βδ(t)ξ (t)

) –α
α+ ξσ (t)a


α+ (t)

]α

and using Lemma . we get

βδ(t)ξ (t)a
–
α (t)

(
wσ (t)
ξσ (t)

) α+
α

– ξ�(t)
wσ (t)
ξσ (t)

≥ –
( α
β
)αa(t)(ξ�(t))α+

(α + )α+(δ(t)ξ (t))α
,

where λ = α+
α
. Therefore, by (.), we have

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+

( α
β
)αa(t)(ξ�(t))α+

(α + )α+(δ(t)ξ (t))α
. (.)

Integrating (.) from t to t, we get as t → ∞

w(t) ≤ w(t) –
∫ t

t

[
q(s)ξ (s)θβ

(
s, g(T)

)
–

( α
β
)αa(s)(ξ�(s))α+

(α + )α+(δ(s)ξ (s))α

]
�s

= –∞,

which contradicts (.). �
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Theorem . Assume that there exists a positive nondecreasing delta differentiable func-
tion ξ (t) such that, for all sufficiently large T ≥ t, and for τ (t) > g(T), we have

lim sup
t→∞

∫ t

t

[
q(s)ξ (s)θβ

(
s, g(T)

)
– δ(s)ηα(s)ξ�(s)

]
�s =∞, (.)

where

δ(t) =

⎧⎪⎪⎨
⎪⎪⎩
c is any positive constant, if β > α,

, if β = α,

cηβ–α(t), c is any positive constant, if β < α,

(.)

and θ is as in Theorem .. Then (.) is oscillatory on [t,∞)T.

Proof Let x be a nonoscillatory solution of (.) on [t,∞)T. Then, without loss of gener-
ality, there is a t ∈ [t,∞)T, sufficiently large, such that x(t) >  and x(τ (t)) >  on [t,∞).
Proceeding as in the proof of Theorem ., we obtain (.). Therefore

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

wσ (t)
ξσ (t)

. (.)

Using the definition of w(t), it follows from (.) that

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

(a(t)(x�(t))α)σ

xβ (σ (t))

≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

a(t)(x�(t))α

xβ (t)

= –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)a(t)

(
x�(t)
x(t)

)α

xα–β (t). (.)

Now, from

x(t) = x(t) +
∫ t

t

(a(s)(x�(s))α)
a 

α (s)


α

�s

≥ a

α (t)x�(t)

∫ t

t

�s
a 

α (s)

it follows that
(
x�(t)
x(t)

)α

≤ a–(t)
(∫ t

t

�s
a 

α (s)

)–α

=
ηα(t)
a(t)

. (.)

Using (.) in (.), we have

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ ξ�(t)

(
η(t)

)αxα–β(t). (.)

Next as in the proof of Theorem ., we consider the Cases (i), (ii) and (iii).
Case (i). β > α.

http://www.advancesindifferenceequations.com/content/2014/1/45


Güvenilir and Nizigiyimana Advances in Difference Equations 2014, 2014:45 Page 9 of 16
http://www.advancesindifferenceequations.com/content/2014/1/45

In this case, since x�(t) > , there exists t ≥ t such that xσ (t)≥ x(t)≥ c > . This implies
that xα–β(t) ≤ c, where c = cα–β .
Case (ii). β = α.
In this case, we see that xα–β(t) = .
Case (iii). β < α.
Proceeding as in the proof of Theorem ., there exist a constant b >  and t ≥ t such

that

x(t)≤ bη–(t) for t ≥ t

and hence

xα–β (t)≥ cηβ–α(t) for t ≥ t,

where c = bα–β
 .

Using these three cases in (.) and the definition of δ(t), we get

w�(t) ≤ –q(t)ξ (t)θβ
(
t, g(T)

)
+ δ(t)

(
η(t)

)α
ξ�(t)

for t ≥ t. Integrating the above inequality from t to t, we have

 < w(t)≤ w(t) –
∫ t

t

[
q(s)ξ (s)θβ

(
s, g(T)

)
– δ(s)ηα(s)ξ�(s)

]
�s

which gives a contradiction using (.). �

We next state and prove a Philos-type oscillation criterion for (.).

Theorem . Assume that there exist functions H and h such that for each fixed t, H(t, s)
and h(t, s) are rd-continuous with respect to s on D = {(t, s), t ≥ s ≥ t} such that

H(t, t) = , t ≥ t, H(t, s) > , t > s ≥ t (.)

and H has a non-positive continuous �-partial derivative H�s (t, s) with respect to the sec-
ond variable, and that it satisfies

–H�s (t, s) –H(t, s)
ξ�(s)
ξσ (s)

=
h(t, s)
ξσ (s)

(
H(t, s)

) α
α+ (.)

and for all sufficiently large T ≥ t, and for ∀t ≥ T , τ (t) > g(T), we have

lim sup
t→∞


H(t,T)

×
∫ t

T

[
q(s)ξ (s)θβ

(
s, g(T)

)
H(t, s) –

( α
β
)α(h–(t, s))α+a(s)

(α + )α+ξα(s)(δ(s))α

]
�s

=∞, (.)

where ξ (s) is a positive �-differentiable function and h–(t, s) :=max{,–h(t, s)}. Then every
solution of (.) is oscillatory on [t,∞)T.

http://www.advancesindifferenceequations.com/content/2014/1/45
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Proof Let x be a nonoscillatory solution of (.) on [t,∞)T. Then, without loss of gener-
ality, there is a t ∈ [t,∞)T, sufficiently large, such that x(t) >  and x(τ (t)) >  on [t,∞).
Again we define w(t) function as in the proof of Theorem .. Then, proceeding as in the
proof of Theorem ., we obtain (.). Multiplying both sides of inequality (.), with t
replaced by s, by H(t, s) and integrating with respect to s from t to t, we get

∫ t

t
H(t, s)q(s)ξ (s)θβ

(
s, g(T)

)
�s

≤ –
∫ t

t
H(t, s)w�(s)�s +

∫ t

t
H(t, s)ξ�(s)

wσ (s)
ξσ (s)

�s

– β

∫ t

t
H(t, s)a–


α (s)ξ (s)

(
wσ (s)
ξσ (s)

) α+
α

δ(s)�s. (.)

Integrating (.) by parts and using (.) and (.), we obtain

∫ t

t
H(t, s)θβ

(
s, g(T)

)
q(s)ξ (s)�s

≤H(t, t)w(t) +
∫ t

t

h(t, s)
ξσ (s)

(
H(t, s)

) α
α+wσ (s)�s

– β

∫ t

t
H(t, s)a–


α (s)ξ (s)

(
wσ (s)
ξσ (s)

) α+
α

δ(s)�s. (.)

Again, defining A≥  and B ≥  by

A =
[

βH(t, s)δ(s)ξ (s)
a/α(s)

] α
α+ wσ (s)

ξσ (s)
, B =

(h–(t, s))αa
α

α+ (s)

( α+
α
)α(βδ(s)ξ (s))

α
α+

and using Lemma . where λ = α+
α
, we get

βH(t, s)ξ (s)δ(s)(wσ (s)) α+
α

a/α(s)(ξσ (s)) α+
α

–
h–(t, s)
ξσ (s)

(
H(t, s)

) α
α+wσ (s)

≥

α
(h–(t, s))α+a(s)

βα( α+
α
)α+ξα(s)(δ(s))α

. (.)

From (.) and (.), we have


H(t, t)

∫ t

t

[
H(t, s)θβ

(
s, g(T)

)
q(s)ξ (s) –

( α
β
)α(h–(t, s))α+a(s)

(α + )α+ξα(s)(δ(s))α

]
�s≤ w(t),

which contradicts assumption (.).
Now we introduce the following notation for T ∈ [t,∞)T. For all sufficiently large T

such that g(T) < τ (T),

p∗ := lim inf
t→∞

tα

a(t)

∫ ∞

σ (t)
θβ

(
s, g(T)

)
q(s)�s, (.)

q∗ := lim inf
t→∞


t

∫ t

T

sα+

a(s)
θβ

(
s, g(T)

)
q(s)�s, (.)
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r∗ := lim inf
t→∞

tαwσ (t)
a(t)

, (.)

R∗ := lim sup
t→∞

tαwσ (t)
a(t)

. (.)

Assume that l = lim inft→∞ t
σ (t) . Note that ≤ l ≤ . We assume that

∫ ∞

T
θβ

(
s, g(T)

)
q(s)�s <∞, T ∈ [t,∞)T . (.)

�

Theorem . Let β ≥ α and assume a(t) is a delta differentiable function such that
a�(t)≥  and (.) holds. Furthermore, assume l >  and

p∗ >
( α

βc
)α

(α + )α+lα
(.)

or

p∗ + q∗ >
(

α

βc

)α 
lα(α+)

(.)

for all large T . Then every solution of (.) is oscillatory on [t,∞)T.

Proof Let x be a nonoscillatory solution of (.).Without loss of generality we assume that
there is a t ∈ [t,∞)T, sufficiently large, such that x(t) >  and x(τ (t)) >  on [t,∞). Again
we define w(t) as in the proof of Theorem . by putting ξ (t) =  and δ(t) = c. Proceeding
as in the proof of Theorem ., we obtain from (.)

w�(t) ≤ –q(t)θβ
(
t, g(T)

)
–

βc(wσ (t)) α+
α

a 
α (t)

. (.)

First, we assume that inequality (.) holds. It follows from (.) and a(t)(x�(t))α being
strictly decreasing that

x(t) = x(t) +
∫ t

t

(a(s)(x�(s))α)
a 

α (s)


α

�s

≥ x(t) +
∫ t

t

(a(t)(x�(t))α)
a 

α (s)


α

�s≥ a

α (t)x�(t)

∫ t

t

�s
a 

α (s)

and it follows that

a(t)
(
x�(t)
x(t)

)α

≤
(∫ t

t

�s
a 

α (s)

)–α

and hence

w(t) = a(t)
(
x�(t)
x(t)

)α

xα–β(t) ≤ c
(∫ t

t

�s
a 

α (s)

)–α

. (.)
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Using (.), we have limt→∞ w(t) = . Integrating (.) from σ (t) to ∞ and using
limt→∞ w(t) = , we have

wσ (t) ≥
∫ ∞

σ (t)
q(s)θβ

(
s, g(T)

)
�s + βc

∫ ∞

σ (t)

(wσ (s)) α+
α

a 
α (s)

�s. (.)

Multiplying (.) by tα
a(t) we get

tα

a(t)
wσ (t) ≥ tα

a(t)

∫ ∞

σ (t)
q(s)θβ

(
s, g(T)

)
�s + βc

tα

a(t)

∫ ∞

σ (t)

(wσ (s)) α+
α

a 
α (s)

�s. (.)

Let  < ε < l. Then by the definition of p∗ and r∗ we can pick t ∈ [T ,∞)T sufficiently large,
so we have

tαwσ (t)
a(t)

≥ (p∗ – ε) + βc
tα

a(t)

∫ ∞

σ (t)

s(wσ (s)) 
α sαwσ (s)a(s)

a 
α (s)a(s)sα+

�s

≥ (p∗ – ε) + βc(r∗ – ε)
α+
α

tα

a(t)

∫ ∞

σ (t)

a(s)
sα+

�s

≥ (p∗ – ε) +
βc
α

(r∗ – ε)
α+
α tα

∫ ∞

σ (t)

α�s
sα+

; (.)

for σ (t) ∈ [t,∞)T. Using the Pötzsche chain rule we get

(
–
sα

)�

= α

∫ 




[s +μh]α+

dh

≤
∫ 



(
α

sα+

)
dh =

α

sα+
. (.)

Then from (.) and (.), we have t ∈ [t,∞)T, and

tαwσ (t)
a(t)

≥ (p∗ – ε) +
βc
α

(r∗ – ε)
α+
α

(
t

σ (t)

)α

.

Taking the lim inf of both sides as t → ∞ we get

r∗ ≥ p∗ – ε +
βc
α

(r∗ – ε)
α+
α lα .

Since ε >  is arbitrary, we get

p∗ ≤ r∗ –
βc
α

(r∗)λlα , (.)

where λ = α+
α
. By using Lemma ., with

A :=
(

βc
α

) α
α+

r∗l
α
α+ and B :=



( α+
α
)α( βc

α
) α

α+ l α
α+
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we get

βc
α

(r∗)
α+
α lα – r∗ ≥ –

( α

βc
)α

(α + )α+lα
. (.)

It follows from (.) and (.) that

p∗ ≤ ( α

βc
)α

(α + )α+lα
,

which contradicts (.). Next, we assume that (.) holds. Multiplying both sides of
(.) by tα+

a(t) , and integrating from T to t (t ≥ T ) we get

∫ t

T

sα+w�(s)
a(s)

�s ≤ –
∫ t

T

sα+q(s)θβ (s, g(T))
a(s)

�s – βc
∫ t

T

sα+(wσ (s)) α+
α

a α+
α (s)

�s.

Using integration by parts, the quotient rule and applying the Pötzsche chain rule, we
obtain

tα+w(t)
a(t)

≤ Tα+w(T)
a(T)

+ (α + )
∫ t

T

(σ (s))
a(s)

α

wσ (s)�s

–
∫ t

T

sα+q(s)θβ (s, g(T))
a(s)

�s

– βc
∫ t

T

(
sαwσ (s)
a(s)

) α+
α

�s.

Let  < ε < l be given. Then using the definition of l, we can assume without loss of gener-
ality that T is sufficiently large so that

s
σ (s)

≥ l – ε, s ≥ t.

It follows that

σ (s)≤ Ls, s ≥ T , where L :=


l – ε
> .

Therefore

tα+w(t)
a(t)

≤ Tα+w(T)
a(T)

–
∫ t

T

sα+q(s)θβ(s, g(T))
a(s)

�s

+
∫ t

T

[
(α + )

Lαsαwσ (s)
a(s)

– βc
(
sαwσ (s)
a(s)

) α+
α

]
�s. (.)

It follows that

tα+w(t)
a(t)

≤ Tα+w(T)
a(T)

–
∫ t

T

sα+q(s)θβ(s, g(T))
a(s)

�s

+
∫ t

T

[
(α + )Lαu(s) – βcuλ(s)

]
�s,
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where u(s) = sαwσ (s)
a(s) and λ = α+

α
. Using the inequality of Lemma . with

Aλ = βcuλ(s) and Bλ– =
α

(βc)

λ

Lα

we get

βcuλ(s) – (α + )Lαu(s) ≥ –(λ – )
(

α

(βc)

λ

Lα

) λ
λ–

= –

α

(
α

(βc)

λ

Lα

)α+

= –
(

α

βc

)α

Lα(α+). (.)

Then we have

tα+w(t)
a(t)

≤ Tα+w(T)
a(T)

–
∫ t

T

sα+q(s)θβ (s, g(T))
a(s)

�s +
(

α

βc

)α

Lα(α+)(t – T).

Since w�(t) ≤  and dividing the last inequality by t we have

tαwσ (t)
a(t)

≤ Tα+w(T)
ta(T)

–

t

∫ t

T

sα+q(s)θβ (s, g(T))
a(s)

�s +
(

α

βc

)α

Lα(α+)
(
 –

T
t

)
.

Taking the lim sup of both sides as t → ∞ we obtain

R∗ ≤ –q∗ +
(

α

βc

)α

Lα(α+).

Since  < ε < l is arbitrary, we get

R∗ ≤ –q∗ +
(

α

βc

)α 
lα(α+)

.

Using (.), we have

p∗ ≤ r∗ –
βc
α

(r∗)
α+
α lα ≤ r∗ ≤ R∗ ≤ –q∗ +

(
α

βc

)α 
lα(α+)

.

Therefore

p∗ + q∗ ≤
(

α

βc

)α 
lα(α+)

,

which contradicts (.). �

4 Examples
In this section, we give some examples to illustrate our main results. To obtain the condi-
tions for oscillations, we will use the following fact:

∫ ∞

t

�t
tp

=∞, ≤ p ≤ , t ∈ [t,∞)T .
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Example . Consider the second-order delay half-linear dynamic equation on times
scales

(


(t+σ (t))
(
x�(t)

))�

+
(t + )

t
x(

√
t) = , t ∈ [,∞)T , (.)

where a(t) = 
(t+σ (t)) , q(t) =

(t+)
t , τ (t) =

√
t and α = β = . We see that

∫ ∞

t

�s
a/α(s)

=
∫ ∞

t

(
t + σ (t)

)
�t =

∫ ∞

t

(
t

)�
�t =∞, t ∈ [t,∞)T.

Taking T ≥ t such that g(T) = , we get ∀t > t, τ (t) > . Then

θ
(
t, g(T)

)
=

∫ t/


�s
a/α (s)∫ t


�s

a/α (s)

=
t – 
t – 

=


t + 
.

Then, taking ξ (t) = t by Theorem ., we have

lim sup
t→∞

∫ t

T

[
θα(s, )ξ (s)q(s) –

a(s)(ξ�(s)+)α+

(α + )α+ξα(s)

]
�s

= lim sup
t→∞

∫ t



[


(s + )
· s · (s + )

s
–


s(s+σ (s))

]
�s

≥ lim sup
t→∞

∫ t



[

s
–


s(s)

]
�s =∞, t ∈ [,∞)T .

Then (.) is oscillatory.

Example . Consider the second-order delay half-linear dynamic equation on times
scales

(


(t+σ (t))
(
x�(t)

))�

+
(Tt – )

t(Tt – )
x(

√
t) = , t ∈ [,∞)T , (.)

where T is sufficiently large, a(t) = 
(t+σ (t)) , q(t) =

(Tt–)
t(Tt–) , α = β =  and τ (t) = t/.

If we choose g(T) = 
T , we get

θ

(
t,


T

)
=

∫ t/

T

�s
a/α (s)∫ t


T

�s
a/α (s)

=
t – 

T

t – 
T

=
Tt – 
Tt – 

.

When ξ (t) = t by Theorem ., we have

lim sup
t→∞

∫ t



[(
Ts – 
Ts – 

) (Ts – )

s(Ts – )
s –


s(s+σ (s))

]
�s

≥ lim sup
t→∞

∫ t



[

s
–


s(s)

]
�s =∞.

Then (.) is oscillatory on [,∞)T.
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