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Abstract
In this paper, we use variational methods to investigate the solutions of impulsive
differential equations with Sturm-Liouville boundary conditions. The conditions for
the existence and multiplicity of solutions are established. The main results are also
demonstrated with examples.
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1 Introduction
Impulsive differential equations arising from the real world describe the dynamics of a
process in which sudden, discontinuous jumps occur. Such processes are naturally seen
in biology, medicine, mechanics, engineering, chaos theory, and so on. Due to its signifi-
cance, a great deal of work has been done in the theory of impulsive differential equations
[–].
In this paper, we consider the following second-order impulsive differential equations

with Sturm-Liouville boundary conditions:

⎧⎪⎨
⎪⎩
–(p(t)u′(t))′ + q(t)u(t) = f (t,u(t)), t �= tj, t ∈ [, ],
–�(p(tj)u′(tj)) = Ij(u(tj)), j = , , . . . ,n,
u′() + au() = , u′() – bu() = ,

(.)

where  = t < t < t < · · · < tn < tn+ = , p ∈ C′[, ], q ∈ C[, ], p(t) > , q(t) > , �u′(tj) =
u′(t+j ) – u′(t–j ) for u′(t±j ) = limt→t±j

u′(t), j = , , . . . ,n.
In recent years, boundary value problems for impulsive and Sturm-Liouville equations

have been studied extensively in the literature. There have been many approaches to the
study of positive solutions of differential equations, such as fixed point theory, topological
degree theory and the comparison method [–]. On the other hand, many researchers
have used variationalmethods to study the existence of solutions for boundary value prob-
lems [–]. However, to our knowledge, the study of solutions for impulsive differen-
tial equations as (.) using variational methods has received considerably less of atten-
tion.
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More precisely, Tian and Ge [] studied a linear impulsive problem with Sturm-
Liouville boundary conditions:

⎧⎪⎨
⎪⎩
–u′′(t) – λu(t) = g(t), t �= tj, t ∈ [,T],
–�u′(tj) = dj, j = , , . . . , l,
αu′() – βu() = , ru′(T) + σu(T) = 

(.)

and a nonlinear impulsive problem:

⎧⎪⎨
⎪⎩
–u′′(t) – λu(t) = f (t,u(t)), t �= tj, t ∈ [,T],
–�u′(tj) = Ij(u(tj)), j = , , . . . , l,
αu′() – βu() = , ru′(T) + σu(T) = .

(.)

They obtained the existence of positive solutions for problems (.) and (.) by using the
variational method.
Inspired by thework [], in this paperwe use critical point theory and variationalmeth-

ods to investigate the multiple solutions of (.). Our main results extend the study made
in [], in the sense that we deal with a class of problems that is not considered in those
papers.
We need the following conditions.
(H) There existM >m > , and β > M

m , such that for all (t,u) ∈ [, ]× R,

 < βF(t,u)≤ uf (t,u),

 < β

∫ u


Ij(s)ds≤ uIj(u), j = , , . . . ,n,

where F(t,u) =
∫ u
 f (t, ξ )dξ .

(H) limu→
F(t,u)
|u|β =  uniformly for t ∈ [, ], limu→

∫ u
 Ij(t)dt

|u|β = , j = , , . . . ,n.
(H) f (t,u) and Ij(u) are odd with respect to u.

2 Preliminaries and statements
Firstly, we introduce some notations and some necessary definitions.
In the Sobolev space X =H

(, ), consider the inner product

(u, v) =
∫ 


u′(t)v′(t)dt +

∫ 


u(t)v(t)dt,

inducing the norm

‖u‖ =
(∫ 



∣∣u′(t)
∣∣ dt + ∫ 



∣∣u(t)∣∣ dt) 

.

We also consider the inner product

(u, v)X =
∫ 


p(t)u′(t)v′(t)dt +

∫ 


q(t)u(t)v(t)dt
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and the norm

‖u‖X =
(∫ 


p(t)

∣∣u′(t)
∣∣ dt + ∫ 


q(t)

∣∣u(t)∣∣ dt) 

.

Then the norm ‖ · ‖X is equivalent to the usual norm ‖ · ‖ inH
(, ). Hence, X is reflexive.

Denote ‖u‖∞ =maxt∈(,) |u(t)|.
For u ∈H(, ), we find that u and u′ are both absolutely continuous, and u′′ ∈ L(, ),

hence �u′(tj) = u′(t+j ) –u′(t–j ) =  for any t ∈ [, ]. If u ∈H
(, ), then u is absolutely con-

tinuous and u′ ∈ L[, ]. In this case,�u′(tj) = u′(t+j )–u′(t–j ) =  is not necessarily valid for
every t ∈ (, ) and the derivative u′ may present some discontinuities. This leads to the
impulsive effects. As a consequence, we need to introduce a different concept of solution.
We say that u ∈ C[, ] is a classical solution of IBVP (.) if it satisfies the following condi-
tions: u satisfies the first equation of (.) a.e. on [, ]; the limits u′(t+j ), u′(t–j ), j = , , . . . ,n
exist and the impulsive condition of (.) holds; u satisfies the boundary condition of (.);
for every j = , , , . . . ,n, uj = u|(tj ,tj+) ∈H(, ).
We multiply the two sides of the first equation of (.) by v ∈ X and integrate from  to

, and we have

–
∫ 



(
p(t)u′(t)

)′v(t)dt +
∫ 


q(t)u(t)v(t)dt =

∫ 


f
(
t,u(t)

)
v(t)dt.

Moreover,

–
∫ 



(
p(t)u′(t)

)′v(t)dt

= –
n∑
j=

∫ tj+

tj

(
p(t)u′(t)

)′v(t)dt

= –
n∑
j=

(
p
(
t–j+

)
u′(t–j+)v(t–j+) – p

(
t+j

)
u′(t+j )v(t+j ) –

∫ tj+

tj
p(t)u′(t)v′(t)dt

)

=
n∑
j=

�
(
p(tj)u′(tj)

)
v(tj) + p()u′()v() – p()u′()v() +

∫ 


p(t)u′(t)v′(t)dt

= –
n∑
j=

Ij
(
u(tj)

)
v(tj) – ap()u()v() – bp()u()v() +

∫ 


p(t)u′(t)v′(t)dt.

Hence,

∫ 



(
p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt –

∫ 


f
(
t,u(t)

)
v(t)dt

=
n∑
j=

Ij
(
u(tj)

)
v(tj) + ap()u()v() + bp()u()v().

Considering the above, we need to introduce a different concept of solution for prob-
lem (.).
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Definition . We say that a function u ∈ H
(, ) is a weak solution of problem (.) if

the identity
∫ 



(
p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt –

∫ 


f
(
t,u(t)

)
v(t)dt

=
n∑
j=

Ij
(
u(tj)

)
v(tj) + ap()u()v() + bp()u()v()

holds for any v ∈H
(, ).

We consider the functional ϕ : X → R, defined by

ϕ(u) =
∫ 



(


(
p(t)

∣∣u′(t)
∣∣ + q(t)

∣∣u(t)∣∣))dt –
∫ 


F
(
t,u(t)

)
dt –

n∑
j=

∫ u(tj)


Ij(t)dt

–
a

p()u() –

b

p()u()

=


‖u‖X –

∫ 


F
(
t,u(t)

)
dt –

n∑
j=

∫ u(tj)


Ij(t)dt –

a

p()u() –

b

p()u(), (.)

where F(t,u) =
∫ u
 f (t, ξ )dξ . Using the continuity of f and Ij, j = , , . . . ,n, one has ϕ ∈

C(X,R). For any v ∈ X, we have

ϕ′(u)v =
∫ 



(
p(t)u′(t)v′(t) + q(t)u(t)v(t)

)
dt –

∫ 


f
(
t,u(t)

)
v(t)dt

–
n∑
j=

Ij
(
u(tj)

)
v(tj) – ap()u()v() – bp()u()v(). (.)

Thus, the solutions of problem (.) are the corresponding critical points of ϕ.

Lemma . If u ∈ X is a weak solution of (.), then u is a classical solution of (.).

Proof The proof is similar to []. For any j ∈ {, , . . . ,n} and v ∈ X with v(t) = , for every
t ∈ [, tj]∪ [tj+, ]. Then

∫ tj+

tj

[
p(t)u′(t)v′(t) + q(t)u(t)v(t) – f

(
t,u(t)

)
v(t)

]
dt = . (.)

By the definition of weak derivative, the above equality implies

–
(
p(t)u′(t)

)′ + q(t)u(t) = f
(
t,u(t)

)
, a.e. t ∈ (tj, tj+). (.)

Hence uj ∈H(tj, tj+) and u satisfies the first equation of (.) a.e. on [, ].
Now, multiplying by v ∈H

(, ) and integrating between  and , we get

n∑
j=

[
�

(
p(tj)u′(tj)

)
+ Ij

(
u(tj)

)]
v(tj) + p()

[
au() + u′()

]
v()

+ p()
[
bu() – u′()

]
v() = . (.)
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Next we will show that u satisfies the impulsive conditions in (.). If not, without loss of
generality, we assume that there exists j ∈ {, , . . . ,n} such that

Ij
(
u(tj)

)
+�

(
p(tj)u′(tj)

) �= . (.)

Let v(t) =
∏n+

i=,i�=j(t – ti), then by (.), we get

[
�

(
p(tj)u′(tj)

)
+ Ij

(
u(tj)

)]
v(tj) = ,

which contradicts (.), so u satisfies the impulsive conditions of (.). Similarly, u satisfies
the boundary conditions. Therefore, u is a classical solution of problem (.). �

Lemma . Let u ∈ X, then

‖u‖∞ ≤ C‖u‖X , (.)

where C =
√
max{ 

(mint∈[,] p(t))


, 

(mint∈[,] q(t))


}.

Proof By using the same methods as [], we can obtain the result, here we omit it. �

Defining

a(u, v) =
∫ 



[
p(t)u′(t)v′(t) + q(t)u(t)v(t)

]
dt – ap()u()v() – bp()u()v(),

then we have the following.

Lemma . If a < 
p()C


and b ≤ , or a ≤  and b < 

p()C

, there exist constants  <m <M

such that

m‖u‖X ≤ a(u, v)≤M‖u‖X . (.)

Proof Firstly we prove the left part of (.),

a(u,u) =
∫ 



(
p(t)

∣∣u′(t)
∣∣ + q(t)

∣∣u(t)∣∣)dt – ap()u() – bp()u().

(i) If a ≤  and b≤ , then a(u,u) ≥ ‖u‖X .
(ii) If  ≤ a < 

p()C

and b ≤ , then

a(u,u) ≥ ‖u‖X – ap()u() ≥ ‖u‖X – ap()‖u‖∞
≥ ‖u‖X – ap()C

 ‖u‖X =
(
 – ap()C


)‖u‖X .

(iii) If a ≤  and  ≤ b < 
p()C


, then

a(u,u) ≥ ‖u‖X – bp()u() ≥ ‖u‖X – bp()‖u‖∞
≥ ‖u‖X – bp()C

 ‖u‖X =
(
 – bp()C


)‖u‖X .
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From (i), (ii), and (iii), set m =max{,  – ap()C
 ,  – bp()C

 }, and we have

a(u,u) ≥m‖u‖X .

On the other hand,

a(u,u) = ‖u‖X – ap()u() – bp()u()

≤ ‖u‖X + |a|p()‖u‖∞ + |b|p()‖u‖∞
≤ [

 + |a|p()C
 + |b|p()C


]‖u‖X .

SetM =  + |a|p()C
 + |b|p()C

 , then

a(u,u) ≤M‖u‖X .

This is the end of the proof. �

We state some basic notions and celebrated results from critical points theory.

Definition . Let X be a real Banach space (in particular a Hilbert space) and ϕ ∈
C(X,R). ϕ is said to be satisfying the P.S. condition on X if any sequence {xn} ∈ X for
which ϕ(xn) is bounded and ϕ′(xn) →  as n → ∞, possesses a convergent subsequence
in X.

Lemma . (see []) Let ϕ ∈ C(X,R), and let ϕ satisfy the P.S. condition. Assume that
there exist u,u ∈ X and a bounded neighborhood 	 of u such that u is not in 	 and

inf
v∈∂	

ϕ(v) >max
{
ϕ(u),ϕ(u)

}
.

Then there exists a critical point u of ϕ, i.e., ϕ′(u) = , with

ϕ(u) >max
{
ϕ(u),ϕ(u)

}
.

Note that if either u or u is a critical point of ϕ, then we obtain the existence of at least
two critical points for ϕ.

Lemma . (see []) Let E be an infinite dimensional real Banach space. Let ϕ ∈ C(E,R)
be an even functional which satisfies the P.S. condition, and ϕ() = . Suppose that E =
V ⊕X, where V is finite dimensional, and ϕ satisfies:

(i) there exist α >  and ρ >  such that ϕ|∂Bρ∩X ≥ α;
(ii) for any finite dimensional subspace W ⊂ E, there is an R = R(W ) such that ϕ(u) ≤ 

for every u ∈W with ‖u‖ > R.
Then ϕ possesses an unbounded sequence of critical values.

Lemma . (see []) For the functional F :M ⊆ X → R withM not empty,minu∈M F(u) =
a has a solution in case the following hold:

(i) X is a real reflexive Banach space;
(ii) M is bounded and weak sequentially closed;

http://www.advancesindifferenceequations.com/content/2014/1/49
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(iii) F is weak sequentially lower semi-continuous onM, i.e., by definition, for each
sequence {un} inM such that un ⇀ u as n→ ∞, we have F(u) ≤ limn→∞F(un).

3 Main results
To prove our main results, we need the following lemmas.

Lemma . The function ϕ : X → R defined by (.) is continuous, continuously differen-
tiable and weakly lower semi-continuous.Moreover, if a < 

p()C

, b ≤ , or a≤ , b < 

p()C

,

and (H) holds, then ϕ satisfies the P.S. condition.

Proof From the continuity of f and Ij, j = , , . . . ,n, we obtain the continuity and differen-
tiability of ϕ and ϕ′.
To show that ϕ is weakly lower semi-continuous, let {uk} be a weakly convergent se-

quence to u in X. Then ‖u‖ ≤ limk→∞‖uk‖, and {uk} converges uniformly to u in C[, ],
and

lim
k→∞




∫ 


q(t)

∣∣uk(t)∣∣ dt –
∫ 


F
(
t,uk(t)

)
dt

–
n∑
j=

∫ uk (tj)


Ij(t)dt –

a

p()uk() –

b

p()uk()

=



∫ 


q(t)

∣∣u(t)∣∣ dt – ∫ 


F
(
t,u(t)

)
dt

–
n∑
j=

∫ u(tj)


Ij(t)dt –

a

p()uk() –

b

p()uk().

We conclude that ϕ(u)≤ limk→∞ϕ(uk). Then ϕ is weakly lower semi-continuous.
Next we show that ϕ satisfies the P.S. condition. Let {ϕ(uk)} be a bounded sequence such

that limk→∞ ϕ′(uk) = , then there exists a constant C >  such that

∥∥ϕ(uk)
∥∥
X ≤ C,

∥∥ϕ′(uk)
∥∥
X ≤ C.

By (.) and (.), we get

∫ 


f
(
t,uk(t)

)
uk(t)dt +

n∑
j=

Ij
(
uk(tj)

)
uk(tj)

=
∫ 


p(t)

∣∣u′
k(t)

∣∣ + q(t)
∣∣uk(t)∣∣ dt – ap()uk() – bp()uk() – ϕ′(uk)uk

≤M‖uk‖X – ϕ′(uk)uk . (.)

From (.) and (.), we have

ϕ(uk) ≥ m


‖uk‖X –
∫ 


F
(
t,uk(t)

)
dt –

n∑
j=

∫ uk (tj)


Ij(t)dt

≥ m


‖uk‖X –

β

∫ 


f
(
t,uk(t)

)
uk(t)dt –


β

n∑
j=

Ij
(
uk(tj)

)
uk(tj)

http://www.advancesindifferenceequations.com/content/2014/1/49
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≥ m


‖uk‖X –
M
β

‖uk‖X –

β

ϕ′(uk)uk

≥
(
m

–
M
β

)
‖uk‖X –

C

β
‖uk‖X . (.)

Since {ϕ(uk)} is bounded, from (.) we see that ‖uk‖X is bounded.
From the reflexivity of X, we may extract a weakly convergent subsequence, which, for

simplicity, we call {uk}, uk ⇀ u in X. In the following we will verify that {uk} strongly
converges to u. We have

(
ϕ′(uk) – ϕ′(u)

)
(uk – u)

= ‖uk – u‖X –
n∑
j=

[
Ij
(
uk(tj)

)
– Ij

(
u(tj)

)](
uk(tj) – u(tj)

)

–
∫ 



[
f
(
t,uk(t)

)
– f

(
t,u(t)

)](
uk(t) – u(t)

)
dt

–
[
ap()uk() – ap()u()

]
–

[
bp()uk() – bp()u()

]
.

By uk ⇀ u in X, we see that {uk} uniformly converges to u in C[, ]. So

n∑
j=

[
Ij
(
uk(tj)

)
– Ij

(
u(tj)

)](
uk(tj) – u(tj)

) → ,

∫ 



[
f
(
t,uk(t)

)
– f

(
t,u(t)

)](
uk(t) – u(t)

)
dt → ,

[
ap()uk() – ap()u()

] → ,[
bp()uk() – bp()u()

] → ,(
ϕ′(uk) – ϕ′(u)

)
(uk – u) → , as k → +∞.

So we obtain ‖uk –u‖X → , as k → +∞. That is, {uk} strongly converges to u in X, which
means ϕ satisfies the P.S. condition. �

Lemma . Assume that (H) holds, then there exist l,d,dj,kj > , j = , , . . . ,n, such that

F(t,u) ≥ l|u|β + d, ∀u ∈ R, (.)∫ u


Ij(t)dt ≥ kj|u|β + dj, ∀u ∈ R. (.)

Proof From (H), we get

β

u
≤ f (t,u)

F(t,u)
, ∀u > ,

β

u
≥ f (t,u)

F(t,u)
, ∀u < .

http://www.advancesindifferenceequations.com/content/2014/1/49
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Integrating the above two inequalities from  to u and u to –, respectively, we have

β lnu≤ ln
F(t,u)
F(t, )

, ∀u > ,

β lnu≥ ln
F(t, –)
F(t,u)

, ∀u < –.

That is,

F(t,u) ≥ F(t, )uβ , ∀u > ,

F(t,u) ≥ F(t, –)(–u)β , ∀u < –.

So there exists a constant l >  such that

F(t,u) ≥ l|u|β , ∀|u| > . (.)

From the continuity of F(t,u), there exists a constant d > , such that

F(t,u) ≥ d, ∀|u| ≤ . (.)

It follows from (.) and (.) that

F(t,u) ≥ l|u|β + d, ∀u ∈ R.

Using the same methods, we know that there exist two constants kj >  and dj >  such
that

∫ u


Ij(t)dt ≥ kj|u|β + dj, ∀u ∈ R.

This is the end of the proof. �

Now we get the main results of this paper.

Theorem . Suppose a < 
p()C


, b ≤ , or a ≤ , b < 

p()C

, and (H) and (H) hold, then

(.) has at least two solutions.

Proof In our case it is clear that ϕ() = , Lemma . has shown that ϕ satisfies the P.S.
condition.
Firstly, we will show that there exists k >  such that the functional ϕ has a local mini-

mum u ∈ Bk = {u ∈H
(, ) : ‖u‖X < k}.

Let k > , which will be determined later. Since X =H
(, ) is a Hilbert space, it is easy

to deduce that B̄k is bounded and weak sequentially closed. Lemma . has shown that ϕ

is weak sequentially lower semi-continuous on B̄k . So by Lemma ., we know that ϕ has
a local minimum u ∈ B̄k .
Without loss of generality, we assume that ϕ(u) =minu∈B̄k ϕ(u). Now we will show that

ϕ(u) < infu∈∂Bk ϕ(u).

http://www.advancesindifferenceequations.com/content/2014/1/49
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In fact, by (H), we can choose k > , then there exist h,hj >  satisfying

F(t,u) ≤ h|u|β ,
∫ u


Ij(t)dt ≤ hj|u|β , for ‖u‖X ≤ k,

m

k –

(
h +

n∑
j=

hj

)
(Ck)β > .

For any u ∈ ∂Bk , ‖u‖X = k, we have

ϕ(u) =
∫ 



(


(
p(t)

∣∣u′(t)
∣∣ + q(t)

∣∣u(t)∣∣))dt –
∫ 


F
(
t,u(t)

)
dt

–
n∑
j=

∫ u(tj)


Ij(t)dt –

a

p()u() –

b

p()u()

≥ m


‖u‖X –
∫ 


F
(
t,u(t)

)
dt –

n∑
j=

∫ u(tj)


Ij(t)dt

≥ m


‖u‖X – h
∫ 


|u|β dt –

n∑
j=

hj
∣∣u(tj)∣∣β

≥ m


‖u‖X – h
∫ 


|u|β dt –

n∑
j=

hj
∣∣u(tj)∣∣β

≥ m

k –

(
h +

n∑
j=

hj

)
(Ck)β > . (.)

So ϕ(u) >  for any u ∈ ∂Bk . Besides, ϕ(u) ≤ ϕ() = . Then ϕ(u) >  = ϕ() ≥ ϕ(u) for
any u ∈ ∂Bk . So ϕ(u) ≤ inf{ϕ(u) : u ∈ ∂Bk}. Hence, ϕ has a local minimum u ∈ Bk = {u ∈
X : ‖u‖X < k}.
Next we will verify that there exists a u with ‖u‖ > k such that ϕ(u) < inf∂Bk ϕ(u).
Let r ∈ R \ {}, e(t) = . From (.) and (.), we have

ϕ(re) =
∫ 



(
r


(
p(t)

∣∣e′(t)
∣∣ + q(t)

∣∣e(t)∣∣))dt –
∫ 


F
(
t, re(t)

)
dt

–
n∑
j=

∫ re(tj)


Ij(t)dt –

ar


p()e() –

br


p()e()

≤ Mr


–

∫ 



(
l
∣∣re(t)∣∣β + d

)
dt –

n∑
j=

(
kj

∣∣re(tj)∣∣β + dj
)

≤ Mr


– rβ

(
l
∫ 



∣∣e(t)∣∣β dt + n∑
j=

kj
∣∣e(tj)∣∣β

)
– d –

n∑
j=

dj.

Since
∫ 
 |e(t)|β dt > ,

∑n
j= kj|e(tj)|β > , β > , then we get lim|r|→+∞ ϕ(re) = –∞. Hence,

there exists a sufficiently large r >  with ‖re‖X > k such that ϕ(re) < infu∈∂Bk ϕ(u). Set
u = re, then ϕ(u) < infu∈∂Bk ϕ(u). Hence, by Lemma ., there exists u ∈ X such that
ϕ′(u) = . Therefore, u and u are two critical points of ϕ, and they are classical solutions
of (.). �
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Theorem. Suppose a < 
p()C


, b ≤ , or a≤ , b < 

p()C

, and (H), (H), and (H) hold,

then (.) has infinitely many classical solutions.

Proof By (H), we know that f (t,u) and Ij(u) are odd about u, then ϕ is even. Moreover,
by Lemma ., we know that ϕ ∈ C(X,R), ϕ() = , and ϕ satisfies the P.S. condition.
Next, we will verify the conditions (i) and (ii) of Lemma ..
Let V ⊂ H

(, ) is a finite dimensional subspace, for any u ∈ V⊥, by (.), we can easily
verify (i) in the same way as in Theorem ..
For each finite dimensional subspace V ⊂ H

(, ), for any r ∈ R \ {} and u ∈ V \ {},
the inequality

ϕ(ru) =
∫ 



(
r


(
p(t)

∣∣u′(t)
∣∣ + q(t)

∣∣u(t)∣∣))dt –
∫ 


F
(
t, ru(t)

)
dt

–
n∑
j=

∫ ru(tj)


Ij(t)dt –

ar


p()u() –

br


p()u()

≤ Mr


–

∫ 



(
l
∣∣ru(t)∣∣β + d

)
dt –

n∑
j=

(
kj

∣∣ru(tj)∣∣β + dj
)

≤ Mr


– rβ

(
l
∫ 



∣∣u(t)∣∣β dt + n∑
j=

kj
∣∣u(tj)∣∣β

)
– d –

n∑
j=

dj (.)

holds. Take w ∈ V such that ‖w‖ = , since
∫ 
 |u(t)|β dt > ,

∑n
j= kj|u(tj)|β > , β > , (.)

implies that there exists rw >  such that ‖rw‖ > R and ϕ(rw) <  for every r ≥ rw > . Since
V is a finite dimensional subspace, we can choose an R = R(V) >  such that ϕ(u) < ,
∀u ∈ V \ BR.
According to Lemma ., ϕ possesses infinitely many critical points, i.e., the impulsive

problem (.) has infinitely many solutions. �

4 Example
Example . Let p(t) = t + , q(t) = t + , a = 

 , b = – 
 , β = , we consider the Sturm-

Liouville boundary value problem with impulse⎧⎪⎨
⎪⎩
–[(t + )u′(t)]′ + (t + )u(t) = u(t) + u(t), t �= tj, t ∈ [, ],
–�[(tj + )u′(tj)] = 

u

 (tj), j = , , . . . ,n,

u′() + 
u() = , u′() + 

u() = .
(.)

Compared with (.), f (t,u) = u(t) + u(t), Ij(u) = 
u


 .

The conditions (H), (H) are satisfied. Applying Theorem ., problem (.) has at least
two solutions.

Example . Let p(t) = et , q(t) = sin t + , a = 
 , b = – 

 , β = , consider the Sturm-
Liouville boundary value problem with impulse⎧⎪⎨

⎪⎩
–[etu′(t)]′ + (sin t + )u(t) = u(t) + u(t), t �= tj, t ∈ [, ],
–�[etju′(tj)] = u(tj), j = , , . . . ,n,
u′() + 

u() = , u′() + 
u() = .

(.)

Compared with (.), f (t,u) = u(t) + u(t), Ij(u) = u.

http://www.advancesindifferenceequations.com/content/2014/1/49
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The conditions (H), (H), (H) are satisfied. Applying Theorem ., problem (.) has
infinitely many solutions.
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