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Abstract
In this paper, we investigate the existence and uniqueness of positive solutions to
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1 Introduction
In the past decades, fractional differential equations have been proved to be valuable
tools in the investigation of many phenomena in various fields of science and engineering
such as physics, mechanics, chemistry, biology, engineering, etc. Therefore, the subject of
fractional differential equations has gained considerable attention by many researchers.
Some recent results on fractional boundary value problems can be found in [–] and
references therein. For example, Ahmad and Nieto [] dealt with some existence results
for a boundary value problem involving a nonlinear fractional order integrodifferential
equation with integral boundary conditions based on a contraction mapping principle
and Krasnoselskiii’s fixed-point theorem. Ahmad et al. [] investigated the existence and
uniqueness of solutions for a class of Caputo-type fractional boundary value problems in-
volving four-point nonlocal Riemann-Liouville integral boundary conditions of different
order by means of standard tools of fixed-point theory and Leray-Schauder nonlinear al-
ternative. Ouyang et al. [] considered the following nonlinear system of fractional order
differential equations with delays:

(
Dαiui

)
(t) + fi

(
t,u

(
τi(t)

)
, . . . ,uN

(
τiN (t)

))
= ,  < t < ,

u(j)i () = , j = , , . . . ,ni – , i = , , . . . ,N ,

u(ni–)i () = ηi, i = , , . . . ,N ,

where Dαi is the standard Riemann-Liouville fractional derivative. By using some fixed-
point theorems and some properties of the Green function, the existence of positive solu-
tions was obtained.
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The q-difference calculus or quantum calculus is an old subject that was initially de-
veloped by Jackson [, ]; basic definitions and properties of q-difference calculus can be
found in the book mentioned in [].
The fractional q-difference calculus had its origin in the works by Al-Salam [] and

Agarwal []. Recently, maybe due to the explosion in research within the fractional differ-
ential calculus setting, new developments in this theory of fractional q-difference calculus
were made; for example, q-analogues of the integral and differential fractional operators
properties such as the q-Laplace transform, q-Taylor’s formula, Mittage-Leffler function
[–], just to mention some.
More recently, boundary value problems of nonlinear fractional q-difference equations

have gained popularity and importance. Many researchers pay attention to the existence
and multiplicity of solutions or positive solutions for nonlinear boundary value problems
of fractional q-difference equations by means of upper and lower solutions method and
some fixed-point theorems such as the Krasnoselskii fixed-point theorem, the Leggett-
Williams fixed-point theorem, and the Schauder fixed-point theorem; for examples, see
[–] and the references therein. El-Shahed and Al-Askar [] studied the existence of
multiple positive solutions to the nonlinear q-fractional boundary value problems by us-
ing Guo-Krasnoselskii’s fixed-point theorem in a cone. Graef and Kong [] investigated
the uniqueness, existence, and nonexistence of positive solutions for the boundary value
problem with fractional q-derivatives in terms of different ranges of λ. Ma and Yang []
obtained the existence of solutions for multi-point boundary value problems of nonlinear
fractional q-difference equations by means of the Banach contraction principle and Kras-
noselskii’s fixed-point theorem. Zhao et al. [] showed some existence results of posi-
tive solutions to nonlocal q-integral boundary value problems of a nonlinear fractional
q-derivative equation using the generalized Banach contraction principle, the monotone
iterativemethod, andKrasnoselskii’s fixed-point theorem. Ferreira [] and [] dealt with
the existence of positive solutions to nonlinear q-difference boundary value problems,

(
Dα

qu
)
(t) = –f

(
t,u(t)

)
, ≤ t ≤ ,  < α ≤ ,

u() = u() = ,

and

(
Dα

qu
)
(t) = –f

(
t,u(t)

)
, ≤ t ≤ ,  < α ≤ ,

u() = (Dqu)() = , (Dqu)() = β ≥ ,

respectively. By applying a fixed-point theorem in cones, sufficient conditions for the ex-
istence of nontrivial solutions were enunciated.
In [], Liang and Zhang discussed the following nonlinear q-fractional three-point

boundary value problem:

(
Dα

qu
)
(t) + f

(
t,u(t)

)
= , t ∈ [, ],α ∈ (, ],

u() = (Dqu)() = , (Dqu)() = β(Dqu)(η).
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By using a fixed-point theorem in partially ordered sets, the authors obtained sufficient
conditions for the existence and uniqueness of positive and nondecreasing solutions to
the above boundary value problem.
In [], Ahmad et al. studied the following nonlocal boundary value problems of non-

linear fractional q-difference equations,

(cDα
qu

)
(t) = f

(
t,u(t)

)
, t ∈ [, ],α ∈ (, ],

au() – b(Dqu)() = cu(η), au() + b(Dqu)() = cu(η),

where cDα
q denotes the Caputo fractional q-derivative of order α, and ai,bi, ci,ηi ∈ R (i =

, ). The existence of solutions for the problem was shown by applying some well-known
tools of fixed-point theory, such as Banach contraction principle, Krasnoselskii’s fixed-
point theorem, and Leray-Schauder nonlinear alternative.
In [], Alsaedi et al. were concerned with the following nonlinear fractional q-

difference equations with nonlocal integral boundary conditions:

(cDβ
q u

)
(t) + λu(t) = f

(
t,u(t)

)
, t ∈ [, ],β ∈ (, ],

u() = , u() = (Iqu)(η) =
∫ η


u(s)dqs,  < η < .

The existence results were obtained by applying some well-known fixed-point theorems.
Motivated by the above works, in this paper, we consider the following system of non-

linear fractional q-difference equations with delays:

(
Dαi

q ui
)
(t) + fi

(
t,u

(
τi(t)

)
, . . . ,uN

(
τiN (t)

))
= ,  < t < ,(

Dj
qui

)
() = , j = , , . . . ,ni – , i = , , . . . ,N ,(

Dni–
q ui

)
() = ηi, i = , , . . . ,N ,

(.)

where Dαi
q is the fractional q-derivative of the Riemann-Liouville type, αi ∈ (ni – ,ni] for

some ni > , ηi ≥  for i = , , . . . ,N ,  ≤ τij(t) ≤ t for i, j = , , . . . ,N , and fi is a nonlinear
function from [, ] × R

N
+ to R+ = [,∞). The purpose of this paper is to establish suffi-

cient conditions on the existence of positive solutions for fractional q-difference system
(.) by using some properties of the Green function and some fixed-point theorems such
as the Banach contraction principle, Krasnoselskii’s fixed-point theorem, and the Leray-
Schauder nonlinear alternative. By a positive solution for the fractional q-difference sys-
tem (.) we mean a mapping with positive components on [, ] such that (.) is satis-
fied. Obviously, (.) includes the usual system of fractional q-difference equations when
τij(t) ≡ t for all i and j. Therefore, the obtained results generalize and include some existing
ones.

2 Preliminaries
For convenience of the reader, we present some necessary definitions and lemmas of frac-
tional q-calculus theory to facilitate analysis of problem (.). These details can be found
in the recent literature; see [] and references therein.
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Let q ∈ (, ) and define

[a]q =
qa – 
q – 

, a ∈R.

The q-analogue of the power (a – b)n with n ∈ N is

(a – b)() = , (a – b)(n) =
n–∏
k=

(
a – bqk

)
, n ∈N,a,b ∈R.

More generally, if α ∈ R, then

(a – b)(α) = aα

∞∏
n=

a – bqn

a – bqα+n .

Note that, if b = , then a(α) = aα . The q-gamma function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈R \ {,–,–, . . .},

and satisfies �q(x + ) = [x]q�q(x).
The q-derivative of a function f is here defined by

(Dqf )(x) =
f (x) – f (qx)
( – q)x

, (Dqf )() = lim
x→

(Dqf )(x),

and q-derivatives of higher order by

(
D

qf
)
(x) = f (x) and

(
Dn

qf
)
(x) =Dq

(
Dn–

q f
)
(x), n ∈N.

The q-integral of a function f defined in the interval [,b] is given by

(Iqf )(x) =
∫ x


f (t)dqt = x( – q)

∞∑
n=

f
(
xqn

)
qn, x ∈ [,b].

If a ∈ [,b] and f is defined in the interval [,b], its integral from a to b is defined by

∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt.

Similarly to what is done for derivatives, an operator Inq can be defined, namely,

(
Iq f

)
(x) = f (x) and

(
Inq f

)
(x) = Iq

(
In–q f

)
(x), n ∈N.

The fundamental theorem of calculus applies to these operators Iq and Dq, i.e.,

(DqIqf )(x) = f (x),
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and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f ().

Basic properties of the two operators can be found in the book []. We now point out
three formulas that will be used later (iDq denotes the derivative with respect to variable i)

[
a(t – s)

](α) = aα(t – s)(α), tDq(t – s)(α) = [α]q(t – s)(α–),(
xDq

∫ x


f (x, t)dqt

)
(x) =

∫ x


xDqf (x, t)dqt + f (qx,x).

We note that if α >  and a ≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α) [].

Definition . ([]) Let α ≥  and f be function defined on [, ]. The fractional q-
integral of the Riemann-Liouville type is Iq f (x) = f (x) and

(
Iαq f

)
(x) =


�q(α)

∫ x


(x – qt)(α–)f (t)dqt, α > ,x ∈ [, ].

Definition . ([]) The fractional q-derivative of the Riemann-Liouville type of order
α ≥  is defined by D

qf (x) = f (x) and

(
Dα

q f
)
(x) =

(
Dm

q I
m–α
q f

)
(x), α > ,

wherem is the smallest integer greater than or equal to α.

Definition . ([]) The fractional q-derivative of the Caputo type of order α ≥  is
defined by

(cDα
q f

)
(x) =

(
Im–α
q Dm

q f
)
(x), α > ,

wherem is the smallest integer greater than or equal to α.

Lemma . ([, ]) Let α,β ≥  and f be a function defined on [, ]. Then the following
formulas hold:
() (Iβq Iαq f )(x) = Iα+β

q f (x),
() (Dα

q Iαq f )(x) = f (x).

Theorem. ([]) Let α >  and p be a positive integer.Then the following equality holds:

(
Iαq D

α
q f

)
(x) =

(
Dα

q I
α
q f

)
(x) –

p–∑
k=

xα–p+k

�q(α + k – p + )
(
Dk

qf
)
().

Theorem . (Banach contraction mapping theorem []) Let M be a complete metric
space and let T :M →M be a contraction mapping. Then T has a unique fixed point.
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Theorem . ([, ]) Let C be a closed and convex subset of a Banach space X . Assume
that U is a relatively open subset of C with  ∈U and T :U → C is completely continuous.
Then at least one of the following two properties holds:

(i) T has a fixed point in U ,
(ii) there exist u ∈ ∂U and λ ∈ (, ) with u = λTu.

Theorem . (Krasnoselskii fixed-point theorem [, ]) Let P be a cone in a Banach
space X. Assume that 	 and 	 are open subsets of X with  ∈ 	 and 	 ⊆ 	. Suppose
that T : P ∩ (	 \ 	) is a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂	 and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂	, or
(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂	 and ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂	.

Then T has a fixed point in 	 \ 	.

3 Existence of positive solutions
Throughout this paper, we let E = C([, ],RN ). Then (E,‖ · ‖E) is a Banach space, where

‖u‖E = max
≤i≤N

max
≤t≤

∣∣ui(t)∣∣ for u = (u, . . . ,uN )T ∈ E.

In this section, we always assume that f = (f, . . . , fN )T ∈ C([, ]×R
N
+ ,RN

+ ).

Lemma . Fractional q-difference systems (.) is equivalent to the following system of
q-integral equations:

ui(t) =
∫ 


Gi(t,qs)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs +

ηitαi–

[αi – ]q · · · [αi – ni + ]q
(.)

for i = , , . . . ,N , where

Gi(t, s) =


�q(αi)

{
tαi–( – s)(αi–ni) – (t – s)(αi–), ≤ s≤ t ≤ ,
tαi–( – s)(αi–ni), ≤ t ≤ s≤ .

(.)

Proof It is easy to see that if (u,u, . . . ,uN )T satisfies (.), then it also satisfies (.). So,
assume that (u,u, . . . ,uN )T is a solution to (.). In view of Lemma . and Theorem .,
integrating both sides of the first equation of (.) of order αi with respect to t, we can see
that

ui(t) = –


�q(αi)

∫ t


(t – qs)(αi–)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+ citαi– + citαi– + · · · + cniit
αi–ni

for  ≤ t ≤ , i = , , . . . ,N . It follows that

(Dqui)(t) = –
[αi – ]q
�q(αi)

∫ t


(t – qs)(αi–)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+ [αi – ]qcitαi– + [αi – ]qcitαi– + · · · + [αi – ni + ]qcni–,it
αi–ni

http://www.advancesindifferenceequations.com/content/2014/1/51


Yuan and Yang Advances in Difference Equations 2014, 2014:51 Page 7 of 16
http://www.advancesindifferenceequations.com/content/2014/1/51

for  ≤ t ≤ , i = , , . . . ,N . Combining with the boundary conditions in (.), this yields

cni–,i = , i = , , . . . ,N .

Similarly, one can obtain cni–,i = cni–,i = · · · = c,i = , i = , , . . . ,N . Also we have

(
Dni–

q ui
)
(t) = –

[αi – ]q · · · [αi – ni + ]q
�q(αi)

×
∫ t


(t – qs)(αi–ni)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+ [αi – ]q · · · [αi – ni + ]qcitαi–, i = , , . . . ,N . (.)

Then it follows from (.) and the boundary condition (Dni–
q u)() = ηi that

ci =
ηi

[αi – ]q · · · [αi – ni + ]q

+


�q(αi)

∫ 


( – qs)(αi–ni)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs.

Therefore, for i = , , . . . ,N ,

ui(t) = –


�q(αi)

∫ t


(t – qs)(αi–)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+
ηitαi–

[αi – ]q · · · [αi – ni + ]q

+
tαi–

�q(αi)

∫ 


( – qs)(αi–ni)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

=


�q(αi)

∫ t



(
tαi–( – qs)(αi–ni) – (t – qs)(αi–)

)
fi
(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+


�q(αi)

∫ 


tαi–( – qs)(αi–ni)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+
ηitαi–

[αi – ]q · · · [αi – ni + ]q

=
∫ 


Gi(t,qs)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs +

ηitαi–

[αi – ]q · · · [αi – ni + ]q
,

where Gi is defined as in (.). The proof is completed. �

Some properties of the Green functions Gi(t, s) needed in the sequel are now stated and
proved.

Lemma . Function Gi(t, s) defined above satisfies the following conditions:
(a) Gi(t,qs) ≥  and Gi(t,qs) ≤Gi(,qs) for all  ≤ t, s≤ ;
(b) Gi(t,qs) ≥ gi(t)Gi(,qs) for all  ≤ t, s≤  with g(t) = tαi–.
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Yuan and Yang Advances in Difference Equations 2014, 2014:51 Page 8 of 16
http://www.advancesindifferenceequations.com/content/2014/1/51

Proof We start by defining the two functions

ϕi(t, s) = tαi–( – s)(αi–ni) – (t – s)(αi–),  ≤ s ≤ t ≤ ,

and

ψi(t, s) = tαi–( – s)(αi–ni),  ≤ t ≤ s≤ .

It is clear that ψi(t,qs) ≥  and ψi(,qs) = . On the other hand, for t �= 

ϕi(t,qs) = tαi–( – qs)(αi–ni) – tαi–
(
 – q

s
t

)(αi–)

≥ tαi–
(
( – qs)(αi–ni) – ( – qs)(αi–)

) ≥ .

Therefore, Gi(t,qs)≥ . Moreover, for fixed s ∈ [, ],

tDqϕi(t,qs) = [αi – ]qtαi–( – qs)(αi–ni) – [αi – ]q(t – qs)(αi–)

≥ [αi – ]qtαi–( – qs)(αi–ni) – [αi – ]qt(αi–)
(
 – q

s
t

)(αi–)

≥ [αi – ]qtαi–
(
( – qs)(αi–ni) – ( – qs)(αi–)

) ≥ ,

i.e., ϕi(t,qs) is an increasing function of t. Obviously, ψi(t,qs) is increasing in t, therefore
Gi(t,qs) is an increasing function of t for fixed s ∈ [, ]. This concludes the proof of (a).
Suppose now that t ≥ qs. Then we have

Gi(t,qs)
Gi(,qs)

=
tαi–( – qs)(αi–ni) – (t – qs)(αi–)

( – qs)(αi–ni) – ( – qs)(αi–)

=
tαi–(( – qs)(αi–ni) – ( – q s

t )
(αi–))

( – qs)(αi–ni) – ( – qs)(αi–)

≥ tαi–(( – qs)(αi–ni) – ( – qs)(αi–))
( – qs)(αi–ni) – ( – qs)(αi–)

= tαi–.

On the other hand, if t ≤ qs, then we have

Gi(t,qs)
Gi(,qs)

= tαi–,

and this finishes the proof of (b). �

Now, we are ready to present the main results.

Theorem . Suppose that there exist functions λij(t) ∈ C([, ],R+), i, j = , , . . . ,N , such
that

∣∣fi(t,u, . . . ,uN ) – fi(t, v, . . . , vN )
∣∣ ≤

N∑
j=

λij(t)|uj – vj| (.)

http://www.advancesindifferenceequations.com/content/2014/1/51
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for t ∈ [, ], (u,u, . . . ,uN )T , (v, v, . . . , vN )T ∈ R
N
+ . If

max
≤i≤N

∫ 


Gi(,qs)

( N∑
j=

λij(s)

)
dqs < , (.)

then (.) has a unique positive solution.

Proof Let

	 =
{
u ∈ E|ui(t) ≥  for t ∈ [, ], i = , , . . . ,N

}
. (.)

It is easy to see that 	 is a complete metric space. Define an operator T on 	 by

Tu(t) =
∫ 


G(t,qs)f (s)dqs

+ diag

(
ηtα–

[α – ]q · · · [α – n + ]q
, . . . ,

ηNtαN–

[αN – ]q · · · [αN – nN + ]q

)
, (.)

where G(t, s) = diag(G(t, s),G(t, s), . . . ,GN (t, s)) and

f (t) =

⎛
⎜⎜⎜⎜⎝

f(t,u(τ(t)), . . . ,uN (τN (t)))
f(t,u(τ(t)), . . . ,uN (τN (t)))

...
fN (t,u(τN(t)), . . . ,uN (τNN (t)))

⎞
⎟⎟⎟⎟⎠ .

Because of the continuity of G and f , it follows easily from Lemma . that T maps 	

into itself. To finish the proof, we only need to show that T is a contraction. Indeed, for
u, v ∈ 	, by (.), we have

∣∣(Tu(t))i – (
Tv(t)

)
i

∣∣
=

∣∣∣∣
∫ 


Gi(t,qs)

(
fi
(
s,ui

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

– fi
(
s, v

(
τi(s)

)
, . . . , vN

(
τiN (s)

)))
dqs

∣∣∣∣
≤

∫ 


Gi(t,qs)

∣∣fi(s,ui(τi(s)), . . . ,uN(
τiN (s)

))
dqs

– fi
(
t, v

(
τi(t)

)
, . . . , vN

(
τiN (t)

))∣∣dqs
≤

∫ 


Gi(t,qs)

( N∑
j=

λij(t)
∣∣uj(τij(s)) – vj

(
τij(s)

)∣∣)dqs.

This, combined with Theorem . and (.), immediately implies that T : 	 → 	 is a
contraction. Therefore, the proof is completewith the help of Lemma. andTheorem..

�

The following result can be proved in the same spirit as that for Theorem ..

http://www.advancesindifferenceequations.com/content/2014/1/51
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Theorem . Suppose that there exist functions λi(t) ∈ C([, ],R+), i, j = , , . . . ,N , and
nonnegative constants pi,pi, . . . ,piN such that

∑N
j= pij =  and

∣∣fi(t,u, . . . ,uN ) – fi(t, v, . . . , vN )
∣∣ ≤ λi(t)

N∏
j=

|uj – vj|pij

for t ∈ [, ], (u,u, . . . ,uN )T , (v, v, . . . , vN )T ∈ R
N
+ . If

max
≤i≤N

∫ 


Gi(,qs)λi(s)dqs < ,

then (.) has a unique positive solution.

Theorem . Suppose that there exist nonnegative real-valued functions mi,ni, . . . ,niN ∈
L[, ], i, j = , , . . . ,N , such that

fi(t,u, . . . ,uN )≤mi(t) +
N∑
j=

nij(t)uj (.)

for almost every t ∈ [, ] and all (u,u, . . . ,uN )T ∈R
N
+ . If

max
≤i≤N

∫ 


Gi(,qs)

( N∑
j=

nij(s)

)
dqs < ,

then (.) has at least one positive solution.

Proof Let 	 and T :	 → 	 be defined by (.) and (.), respectively. We first show that
T is completely continuous through the following three steps.
Step . Show that T : 	 → 	 is continuous. Let {uk(t)} be a sequence in 	 such that

uk(t) → u(t) ∈ 	. Then 	 = [, ]× {u(t)|uk(t) ∈ 	, t ∈ [, ],k ≥ } is bounded in [, ]×
R

N
+ . Since f is continuous, it is uniformly continuous on any compact set. In particular, for

any ε > , there exists a positive integer K such that

∣∣fi(t,uk(τi(t)), . . . ,ukN(
τiN (t)

))
– fi

(
t,u

(
τi(t)

)
, . . . ,uN

(
τiN (t)

))∣∣
<

ε

max≤i≤N maxt∈[,]
∫ 
 Gi(t,qs)dqs

,

for t ∈ [, ] and k ≥ K, i = , , . . . ,N . Then, for t ∈ [, ] and k ≥ K, i = , , . . . ,N , we
have

∣∣(Tuk(t))i – (
Tu(t)

)
i

∣∣
=

∣∣∣∣
∫ 


Gi(t,qs)

(
fi
(
s,uk

(
τi(s)

)
, . . . ,ukN

(
τiN (s)

))

– fi
(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

)))
dqs

∣∣∣∣
≤

∫ 


Gi(t,qs)

∣∣fi(s,uk(τi(s)), . . . ,ukN(
τiN (s)

))
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– fi
(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))∣∣dqs
≤ ε

max≤i≤N maxt∈[,]
∫ 
 Gi(t,qs)dqs

∫ 


Gi(t,qs)dqs ≤ ε.

Therefore, ‖Tuk(t) – Tu(t)‖ ≤ ε for k ≥ K, which implies that T is continuous.
Step . Show that T maps bounded sets of 	 into bounded sets. Let A be a bounded

subset of 	. Then [, ] × {u(t)|t ∈ [, ],u ∈ A} ⊆ [, ]× R
N
+ is bounded. Since f is con-

tinuous, there exists anM >  such that

fi
(
t,u

(
τi(t)

)
, . . . ,uN

(
τiN (t)

)) ≤M, for u ∈ A, t ∈ [, ], ≤ i≤N .

It follows that, for u ∈ A, t ∈ [, ] and  ≤ i≤N ,

(
Tu(t)

)
i =

∫ 


Gi(t,qs)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs +

ηitαi–

[αi – ]q · · · [αi – ni + ]q

≤ M
∫ 


Gi(t,qs)dqs +

ηi

[αi – ]q · · · [αi – ni + ]q

≤ max
≤i≤M

(
M max

t∈[,]

∫ 


Gi(t,qs)dqs +

ηi

[αi – ]q · · · [αi – ni + ]q

)
.

Immediately, we can easily see that TA is a bounded subset of 	.
Step . Show that T maps bounded sets of 	 into equicontinuous sets. Let B be a

bounded subset of 	. Similarly as in Step , there exists L >  such that

fi
(
t,u

(
τi(t)

)
, . . . ,uN

(
τiN (t)

)) ≤ L, for u ∈ B, t ∈ [, ], ≤ i≤N .

Then, for any u ∈ B and t, t ∈ [, ] and  ≤ i ≤N ,

∣∣(Tu(t))i – (
Tu(t)

)
i

∣∣
=

∣∣∣∣
∫ 



(
Gi(t,qs) –Gi(t,qs)

)
fi
(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+
ηi(tαi– – tαi– )

[αi – ]q · · · [αi – ni + ]q

∣∣∣∣
≤

∫ 



∣∣Gi(t,qs) –Gi(t,qs)
∣∣Ldqs + ηi|tαi– – tαi– |

[αi – ]q · · · [αi – ni + ]q

≤ max
s∈[,]

∣∣Gi(t,qs) –Gi(t,qs)
∣∣L + ηi|tαi– – tαi– |

[αi – ]q · · · [αi – ni + ]q
.

Now the equicontinuity of T on B follows easily from the fact that Gi is continuous and
hence uniformly continuous on [, ]× [, ].
Now we have shown that T is completely continuous. To apply Theorem ., let

μ =
max≤i≤N {∫ 

 Gi(,qs)mi(s)dqs + ηi/[αi – ]q · · · [αi – ni + ]q}
 –max≤i≤N {∫ 

 Gi(,qs)(
∑N

j= nij(s))dqs}
.
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Fix r > μ and define U = {u ∈ 	 : ‖u‖ < r}. We claim that there is no u ∈ U such that
u = λTu for some λ ∈ (, ). Otherwise, assume that there exist λ ∈ (, ) and u ∈ ∂U such
that u = λTu. Then

∣∣ui(t)∣∣ = ∣∣λ(
Tu(t)

)
i

∣∣ ≤ ∣∣(Tu(t))i∣∣
=

∫ 


Gi(t,qs)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs +

ηitαi–

[αi – ]q · · · [αi – ni + ]q

≤
∫ 


Gi(t,qs)

(
mi(s) +

N∑
j=

nij(s)uj
(
τij(s)

))
dqs +

ηi

[αi – ]q · · · [αi – ni + ]q

≤
∫ 


Gi(t,qs)mi(s)dqs + r

∫ 


Gi(t,qs)

( N∑
j=

nij(s)

)
dqs

+
ηi

[αi – ]q · · · [αi – ni + ]q

<
∫ 


Gi(,qs)mi(s)dqs +

ηi

[αi – ]q · · · [αi – ni + ]q

+ r
∫ 


Gi(,qs)

( N∑
j=

nij(s)

)
dqs

≤ μ

(
 – max

≤i≤N

{∫ 


Gi(,qs)

( N∑
j=

nij(s)

)
dqs

})
+ r

∫ 


Gi(,qs)

( N∑
j=

nij(s)

)
dqs

< r

(
 – max

≤i≤N

{∫ 


Gi(,qs)

( N∑
j=

nij(s)

)
dqs

})

+ r
∫ 


Gi(,qs)

( N∑
j=

nij(s)

)
dqs ≤ r.

Therefore, ‖u‖ < r, a contradiction to u ∈ ∂U . This proves the claim. Applying Theo-
rem ., we know that T has a fixed point in U , which is a positive solution to (.) by
Lemma .. Therefore, the proof is complete. �

Corollary . If all fi, i, j = , , . . . ,N , are bounded, then (.) has at least one positive
solution.

To state the last result of this section, we introduce

M =
(
max
≤i≤N

∫ 


Gi(,qs)dqs

)–

.

Theorem . Suppose that there exist M ∈ (,M) and positive constants  < r < r with
r ≥max≤i≤N {ηi/[αi – ]q · · · [αi – ni + ]q}/( –M/M) such that
(a) fi(t,u, . . . ,uN ) ≤Mr for (t,u, . . . ,uN ) ∈ [, ]× Br , i = , , . . . ,N , and
(b) fi(t,u, . . . ,uN ) ≥Mr for (t,u, . . . ,uN ) ∈ [, ]× Br , i = , , . . . ,N ,

where Bri = {u = (u, . . . ,uN )T ∈ R
N
+ |max≤i≤N ui ≤ ri}, i = , . Then (.) has at least a

positive solution.

http://www.advancesindifferenceequations.com/content/2014/1/51
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Proof Let 	 be defined by (.) and 	i = {u ∈ E|‖u‖ < ri}, i = , . Obviously, 	 is a cone
in E. From the proof of Theorem ., we know that the operator T defined by (.) is
completely continuous on 	. For any u ∈ 	 ∩ ∂	, it follows from Theorem . and con-
dition (b) that

‖Tu‖E = max
≤i≤N

max
≤t≤

(
Tu(t)

)
i ≥ max

≤i≤N

(
Tu()

)
i

= max
≤i≤N

{∫ 


Gi(,qs)fi

(
s,u

(
τi(s)

)
, . . . ,uN

(
τiN (s)

))
dqs

+
ηi

[αi – ]q · · · [αi – ni + ]q

}

≥ max
≤i≤N

{∫ 


Gi(,qs)dqsMr +

ηi

[αi – ]q · · · [αi – ni + ]q

}
≥ r = ‖u‖E ,

that is, ‖Tu‖E ≥ ‖u‖E for u ∈ 	 ∩ ∂	.
On the other hand, for any u ∈ 	 ∩ ∂	, it follows from Lemma . and condition (a)

that, for t ∈ [, ],

(
Tu(t)

)
i ≤ max

≤i≤N

∫ 


Gi(,qs)dqsMr + max

≤i≤N

ηi

[αi – ]q · · · [αi – ni + ]q

≤ max
≤i≤N

∫ 


Gi(,qs)dqsMr + ( –M/M)r ≤ r = ‖u‖E ,

that is, ‖Tu‖E ≤ ‖u‖E for u ∈ 	 ∩ ∂	. Therefore, we have verified condition (b) of Theo-
rem .. It follows that T has a fixed point in 	 ∩ (	 \ 	), which is a positive solution to
(.). This completes the proof. �

4 Some examples
In this section, we demonstrate the feasibility of some of the results obtained in Section .

Example . Consider the following fractional q-difference system:

(
D.

.x
)
(t) +

e–t(x(t/) + x(sin t))
( + et)( + x(t/) + x(sin t))

= , t ∈ (, ),

(
D.

.x
)
(t) +

et(x(t) + x(sin t))
( + x(t) + x(sin t))

= , t ∈ (, ),

x() = x() = (D.x)() = (D.x)() = ,
(
D

.x
)
() =

(
D

.x
)
() =



.

(.)

Here n = n = , α = α = ., q = η = η = ., τ(t) = t/, τ(t) = τ(t) = sin t,
τ(t) = t,

f(t,x,x) =
e–t(x + x)

( + et)( + x + x)
, f(t,x,x) =

et(x + x)
( + x + x)

.

One can easily see that (.) is satisfied with

λ(t) = λ(t) =
e–t

 + et
, λ(t) = λ(t) =

t


.

http://www.advancesindifferenceequations.com/content/2014/1/51
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Moreover,

G(, s) =G(, s) =
( – s)(–.) – ( – s)(.)

�.(.)
,  ≤ s ≤ 

and hence []

max
≤i≤

∫ 


Gi(,qs)

( ∑
j=

λij(s)

)
dqs ≤

∫ 


Gi(,qs) max

≤s≤

{
s,


es( + es)

}
dqs

≤
∫ 


Gi(,qs)dqs ≤ ..

It follows from Theorem . that (.) has a unique positive solution on [, ].

Example . Consider the following fractional q-difference system:

(
D.

.x
)
(t) +

tx(t)


+
x(t)


+
t

+


= , t ∈ (, ),

(
D.

.x
)
(t) +

x(t)


+
tx(t)


+
t


+


= , t ∈ (, ),

x() = x() = (D.x)() = (D.x)() = ,
(
D

.x
)
() =

(
D

.x
)
() =



.

(.)

Here n = n = , α = α = ., q = η = η = ., η = η = /,

fi(t,x,x) =mi(t) +
∑
j=

nijxj, i = , ,

where

m(t) =
t

+


, m(t) =

t


+


, n(t) = n(t) =

t

, n(t) = n(t) =



.

One can easily see that (.) is satisfied. Moreover,

G(, s) =G(, s) =
( – s)(–.) – ( – s)(.)

�.(.)
,  ≤ s ≤ 

and hence []

max
≤i≤

∫ 


Gi(,qs)

( ∑
j=

nij(s)

)
dqs ≤

∫ 


Gi(,qs) max

≤s≤

{
s + 


}
dqs

≤
∫ 


Gi(,qs)dqs ≤ ..

It follows from Theorem . that (.) has at least one positive solution on [, ].
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15. Rajković, PM, Marinković, SD, Stanković, MS: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete

Math. 1, 311-323 (2007)
16. Atici, FM, Eloe, PW: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14, 333-344 (2007)
17. El-Shahed, M, Al-Askar, FM: On the existence and uniqueness of solutions for q-fractional boundary value problem.

Int. J. Math. Anal. 5, 1619-1630 (2011)
18. Zhao, Y, Chen, H, Zhang, Q: Existence results for fractional q-difference equations with nonlocal q-integral boundary

conditions. Adv. Differ. Equ. 2013, Article ID 48 (2013)
19. Zhao, Y, Chen, H, Zhang, Q: Existence and multiplicity of positive solutions for nonhomogeneous boundary value

problems with fractional q-derivative. Bound. Value Probl. 2013, Article ID 103 (2013)
20. Yang, W: Positive solutions for boundary value problems involving nonlinear fractional q-difference equations. Differ.

Equ. Appl. 5, 205-219 (2013)
21. Yang, W: Positive solution for fractional q-difference boundary value problems with φ-Laplacian operator. Bull.

Malays. Math. Soc. 36(4), 1195-1203 (2013)
22. El-Shahed, M, Al-Askar, FM: Positive solutions for boundary value problem of nonlinear fractional q-difference

equation. ISRN Math. Anal. 2011, Article ID 385459 (2011)
23. Graef, JR, Kong, L: Positive solutions for a class of higher order boundary value problems with fractional q-derivatives.

Appl. Math. Comput. 218, 9682-9689 (2012)
24. Ma, J, Yang, J: Existence of solutions for multi-point boundary value problem of fractional q-difference equation.

Electron. J. Qual. Theory Differ. Equ. 92, 1-10 (2011)
25. Zhao, Y, Ye, G, Chen, H: Multiple positive solutions of a singular semipositone integral boundary value problem for

fractional q-derivatives equation. Abstr. Appl. Anal. 2013, Article ID 643571 (2013)
26. Ferreira, RAC: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ.

Equ. 70, 1-10 (2010)
27. Ferreira, RAC: Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math.

Appl. 61, 367-373 (2011)
28. Liang, S, Zhang, J: Existence and uniqueness of positive solutions for three-point boundary value problem with

fractional q-differences. J. Appl. Math. Comput. 40, 277-288 (2012)
29. Ahmad, B, Ntouyas, S, Purnaras, I: Existence results for nonlocal boundary value problems of nonlinear fractional

q-difference equations. Adv. Differ. Equ. 2012, Article ID 140 (2012)
30. Alsaedi, A, Ahmad, B, Al-Hutami, H: A study of nonlinear fractional q-difference equations with nonlocal integral

boundary conditions. Abstr. Appl. Anal. 2013, Article ID 410505 (2013)
31. Agarwal, RP, Meehan, M, O’Regan, D: Fixed Point Theory and Applications. Cambridge Tracts in Mathematics, vol. 141.

Cambridge University Press, Cambridge (2001)
32. Li, C, Luo, X, Zhou, Y: Existence of positive solutions of the boundary value problem for nonlinear fractional

differential equations. Comput. Math. Appl. 59, 1363-1375 (2010)
33. Granas, A, Guenther, RB, Lee, JW: Some general existence principles in the Carathéodory theory of nonlinear

differential systems. J. Math. Pures Appl. 70, 153-196 (1991)

http://www.advancesindifferenceequations.com/content/2014/1/51
http://dx.doi.org/10.1007/s12190-012-0610-8


Yuan and Yang Advances in Difference Equations 2014, 2014:51 Page 16 of 16
http://www.advancesindifferenceequations.com/content/2014/1/51

34. Krasnosel’skii, MA: Topological Methods in the Theory of Nonlinear Integral Equations. Macmillan Co., New York
(1964)

10.1186/1687-1847-2014-51
Cite this article as: Yuan and Yang: Positive solutions of nonlinear boundary value problems for delayed fractional
q-difference systems. Advances in Difference Equations 2014, 2014:51

http://www.advancesindifferenceequations.com/content/2014/1/51

	Positive solutions of nonlinear boundary value problems for delayed fractional q-difference systems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of positive solutions
	Some examples
	Competing interests
	Authors' contributions
	Acknowledgements
	References


