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1 Introduction
In this paper, we are concerned with the approximate controllability for a fractional dif-
ferential equation of the form

⎧⎨
⎩
Dαx(t) = Ax(t) + J–α

t [f (t,x(t)) + Bu(t)],  < t ≤ b,

x() = x,
(.)

where Dα is the Caputo fractional derivative of order α with  < α < , A :D(A) ⊂ X → X
is the infinitesimal generator of a resolvent Sα(t), t ≥ , B : U → X is a bounded linear
operator, u ∈ L([,b],U), X and U are two real Hilbert spaces, J–α

t h denotes the  – α

order fractional integral of h ∈ L([,b],X).
The controllability problem has attracted a lot of mathematicians and engineers’ atten-

tion since it plays a key role in control theory and engineering and has very important
applications in these fields. Many contributions on exact and approximate controllability
have been made in recent years. We refer the reader to the recent papers [–] and the
references therein.
However, there are few articles to study fractional control system (.) governed by a

linear closed operator which generates a resolvent. The main difficulty is that the resol-
vent does not have the semigroup property, even the continuity in the uniform operator
topology. Fortunately, we can prove the continuity of a resolvent in the uniform operator
topology and the compactness of the solution operator in the case of an analytic resolvent.
For more details, we refer the reader to the papers [, ] by Fan and Mophou. A similar
idea on the uniform continuity of operators can be found in [] by Liang, Liu and Xiao. In
the present paper, we study approximate controllability of fractional control system (.)
by using the analytic resolvent method and the uniform continuity of the resolvent.
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This paper has three sections. In Section , we recall some definitions of Caputo frac-
tional derivatives, analytic resolvent, mild solutions to equation (.) and the concept of
approximate controllability of fractional control systems. In Section , we prove the exis-
tence and approximate controllability of fractional control system (.).

2 Preliminaries
Throughout this paper, let b >  be fixed, N be the set of positive integers. We denote
by (X,‖ · ‖) and (U ,‖ · ‖) two Hilbert spaces, by C([,b],X) the space of all X-valued
continuous functions on [,b] with the norm ‖u‖ = sup{‖u(t)‖, t ∈ [,b]}, by Lp([,b],X)
the space of X-valued Bochner integrable functions on [,b] with the norm ‖f ‖Lp =
(
∫ b
 ‖f (t)‖p dt)/p, where  ≤ p < ∞. Also, we denote by L(X) the space of bounded lin-

ear operators from X into X endowed with the norm of operators.
Now, let us recall some basic definitions and results on fractional derivative, resolvent

and approximate controllability.

Definition . ([]) The fractional order integral of the function f ∈ L([,b],X) of order
α >  is defined by

Jαt f (t) =


�(α)

∫ t


(t – s)α–f (s) ds,

where � is the gamma function.

Definition . ([]) The Riemann-Liouville fractional order derivative of order α of a
function f ∈ L([,b],X) given on the interval [,b] is defined by

Dα
Lf (t) =


�(n – α)

dn

dtn

∫ t


(t – s)n–α–f (s) ds,

where α ∈ (n – ,n], n ∈N.

Definition . ([]) The Caputo fractional order derivative of order α of a function f ∈
C(n)([,b],X) given on the interval [,b] is defined by

Dαf (t) =


�(n – α)

∫ t


(t – s)n–α–f (n)(s) ds,

where α ∈ (n – ,n], n ∈N.

In the remainder of this paper, we always suppose that  < α <  and A is a closed and
densely defined linear operator on X.

Definition. ([]) A family {Sα(t)}t≥ ⊆ L(X) of bounded linear operators inX is called
a resolvent (or a solution operator) generated byA if the following conditions are satisfied:
(S) Sα(t) is strong continuous on R+ and Sα() = I ;
(S) Sα(t)D(A)⊆D(A) and ASα(t)x = Sα(t)Ax for all x ∈D(A) and t ≥ ;
(S) the resolvent equation holds

Sα(t)x = x +
∫ t


gα(t – s)ASα(s)xds for all x ∈ D(A), t ≥ .
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SinceA is a closed and densely defined operator onX, it is easy to show that the resolvent
equation holds for all x ∈ X (see []).
For ω, θ ∈R, let

∑
(ω, θ ) :=

{
λ ∈C :

∣∣arg(λ –ω)
∣∣ < θ

}
.

Definition . ([]) A resolvent Sα(t) is called analytic if the function Sα(·) :R+ → L(X)
admits analytic extension to a sector

∑
(, θ) for some  < θ ≤ π/. An analytic resolvent

Sα(t) is said to be of analyticity type (ω, θ) if for each θ < θ and ω > ω, there is M =
M(ω, θ ) such that ‖S(z)‖ ≤MeωRe z for z ∈ ∑

(, θ ), where Re z denotes the real part of z.

Definition . A resolvent Sα(t) is called compact for t >  if for every t > , Sα(t) is a
compact operator.

Now, we consider the following fractional differential equation

⎧⎨
⎩
Dαx(t) = Ax(t) + J–α

t f (t),  < t ≤ b,

x() = x.
(.)

A function x ∈ C([,b],X) is called a strong solution of (.) if x(t) ∈ D(A) for all t ∈
[,b], g–α ∗ x ∈ C([,b],X) and (.) holds, where C([,b],X) = {x : x′ ∈ C([,b],X)},
(g–α ∗ x)(t) = 

�(–α)
∫ t
 (t – s)–αx(s) ds.

A function x ∈ C([,b],X) is called an integral solution of (.) if (gα ∗ x)(t) ∈ D(A) and
x(t) = x +A(gα ∗ x)(t) +

∫ t
 f (s) ds for all t ∈ [,b].

Suppose that x ∈ X, f ∈ L([,b],X) and x is an integral solution of (.). Then we can
give the following variation of constant formula:

x(t) = Sα(t)x +
∫ t


Sα(t – s)f (s) ds,  ≤ t ≤ b. (.)

In fact, it follows from the definition of a resolvent and the definition of an integral solution
that

 ∗ x = (Sα –Agα ∗ Sα) ∗ x = Sα ∗ x – Sα ∗ (Agα ∗ x)

= Sα ∗ (x +  ∗ f ) = Sα ∗ x +  ∗ Sα ∗ f ,

which implies that x(t) = Sα(t)x +
∫ t
 Sα(t – s)f (s) ds,  ≤ t ≤ b. That is, the variation of a

constant formula is satisfied.
So, we can give the following definition of mild solutions for (.).

Definition . A function x ∈ C([,b],X) is called amild solution of fractional differential
equation (.) if it satisfies

x(t) = Sα(t)x +
∫ t


Sα(t – s)

[
f
(
s,x(s)

)
+ Bu(s)

]
ds,  ≤ t ≤ b,

for x ∈ X and u ∈ L([,b],U).
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Let x be a mild solution (state function) of the fractional differential equation corre-
sponding to the control u. System (.) is said to be approximately controllable on [,b] if
for every desired final state xb ∈ X and ε > , there exists a control u ∈ L([,b],U) such
that x satisfies ‖x(b) – xb‖ < ε. The set

Kb(f ) =
{
x(b) ∈ X : u ∈ L

(
[,b],U

)
,x is the mild solution of (.) with control u

}

is called the reachable set of system (.).

Definition . The fractional system is said to be approximately controllable on [,b] if
Kb(f ) = X, where Kb(f ) denotes the closure of Kb(f ).

Now, we introduce the following two relevant operators defined on X:

	b =
∫ b


Sα(b – s)BB∗S∗

α(b – s) ds,

R(λ,	b) = (λI +	b)–, λ > ,

where B∗, S∗
α(b – s) denote the adjoint of operators B and Sα(b – s), respectively.

In order to find the expression of control u which will be used in the approximate con-
trol system, we consider the linear regulator problem consisting of minimizing the cost
functional

J(u) =
∥∥x(b) – xb

∥∥ + λ

∫ b



∥∥u(t)∥∥ dt, (.)

where x is the solution of (.) with control u,xb ∈ X, λ > .
It is known that the control u concerned with approximate controllability of integer

order differential equation is just the unique solution of the above optimal problem. Fol-
lowing this idea, we have the following lemma, which can be used to explain the following
construction of control function u in (.).

Lemma . Suppose that u is the optimal control of (.). Then

u(t) = B∗S∗
α(b – t)R(λ,	b)p

(
x(·)), t ∈ [,b]

with

p
(
x(·)) = xb – Sα(b)x –

∫ b


Sα(b – s)f

(
s,x(s)

)
ds.

Proof Let u be the optimal control of (.). Then ε =  is a critical point of

I(ε) := J(u + εw)

with w ∈ L([,b],U). By computing the variation of the functional J , one has

[

〈
x(b) – xb,

d
dε

(
x(b) – xb

)〉
+ λ

∫ b



〈
u(t) + εw(t),w(t)

〉
U dt

]∣∣∣
ε=

= ,
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where 〈·, ·〉, 〈·, ·〉U denote the inner products in X and U , respectively. Thus,

〈
x(b) – xb,

∫ b


Sα(b – t)Bw(t) dt

〉
+ λ

∫ b



〈
u(t),w(t)

〉
U dt = ,

∫ b



〈
B∗S∗

α(b – t)
[
x(b) – xb

]
,w(t)

〉
U dt + λ

∫ b



〈
u(t),w(t)

〉
U dt = ,

∫ b



〈
B∗S∗

α(b – t)
[
x(b) – xb

]
+ λu(t),w(t)

〉
U dt = .

It follows from the arbitrariness of w in L([,b],U) that

u(t) = –λ–B∗S∗
α(b – t)

[
x(b) – xb

]

for almost all t ∈ [,b], also for all t ∈ [,b] for its continuity in C([,b],U). Therefore, the
state of system (.) at a final point b with the above control u is given by

x(b) = Sα(b)x +
∫ b


Sα(b – s)f

(
s,x(s)

)
ds –

∫ b


λ–Sα(b – s)BB∗S∗

α(b – s)
[
x(b) – xb

]
ds

= Sα(b)x +
∫ b


Sα(b – s)f

(
s,x(s)

)
ds – λ–	b

[
x(b) – xb

]
.

Let

p
(
x(·)) = xb – Sα(b)x –

∫ b


Sα(b – s)f

(
s,x(s)

)
ds.

Thus,

x(b) – xb = –p
(
x(·)) – λ–	b

[
x(b) – xb

]
,

x(b) – xb = –λ(λI +	b)–p
(
x(·)) = –λR(λ,	b)p

(
x(·)).

Consequently,

u(t) = B∗S∗
α(b – t)R(λ,	b)p

(
x(·)), t ∈ [,b]. �

Now, according to Lemma ., for every λ >  and xb ∈ X, we construct the following
integral system:

⎧⎪⎪⎨
⎪⎪⎩
x(t) = Sα(t)x +

∫ t
 Sα(t – s)[f (s,x(s)) + Bu(s)] ds,  ≤ t ≤ b,

u(t) = B∗S∗
α(b – t)R(λ,	b)p(x(·)),

p(x(·)) = xb – Sα(b)x –
∫ b
 Sα(b – s)f (s,x(s)) ds.

(.)

In the next section, wewill prove the approximate controllability of fractional order system
(.) by using this integral system. More precisely, we will approximate any fixed point
xb ∈ X under appropriate conditions by using the final state of solution x with the control
u given in system (.).
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3 Approximate controllability
In this section, we first show that for every λ >  and xb ∈ X, integral system (.) has at
least one mild solution. That is, there exists at least one function xλ ∈ C([,b],X) which
satisfies (.). Then, we can approximate any point xb in X by using these solutions {xλ :
λ > }. For this purpose, we need two important lemmas.
Let the Cauchy operator G : C([,b],X)→ C([,b],X) be defined by

(Gh)(t) =
∫ t


Sα(t – s)h(s) ds, t ∈ [,b]. (.)

If Sα(t) is a compact C-semigroup, it is well known that G is compact. However, it is
unknown in the case of a compact resolvent. The main difficulty is that the resolvent does
not have the property of semigroups. Thus, it seems to be more complicated to prove the
compactness of the Cauchy operator. However, we can prove the continuity of a resolvent
in the uniformoperator topology in the case of an analytic resolvent, thus the compactness
of the Cauchy operator. Moreover, the continuity of a resolvent in the uniform operator
topology plays a key role in the proof of the next existence theorem.

Lemma . ([, Lemma ]) Suppose that Sα(t) is a compact analytic resolvent of analyt-
icity type (ω, θ). Then the following hold:

(i) limh→ ‖Sα(t + h) – Sα(t)‖ =  for t > ;
(ii) limh→+ ‖Sα(t + h) – Sα(h)Sα(t)‖ =  for t > ;
(iii) limh→+ ‖Sα(t) – Sα(h)Sα(t – h)‖ =  for t > .

Lemma . ([, Lemma ]) Suppose that Sα(t) is a compact analytic resolvent of analyt-
icity type (ω, θ). Then the Cauchy operator G defined by (.) is a compact operator.

Let r be a fixed positive real number and

Wr :=
{
x ∈ C

(
[,b],X

)
: ‖x‖ ≤ r

}
. (.)

Clearly,Wr is a bounded closed and convex set. We make the following assumptions.
(H) Sα(t) is a compact analytic resolvent of analyticity type (ω, θ) and

M = supt∈[,b] ‖Sα(t)‖ < +∞.
(H) f : [,b]×X → X is continuous and there exists a positive constant K such that

‖f (t,x)‖ ≤ K for all (t,x) ∈ [,b]×X .
(H) B :U → X is a linear bounded operator and there exists N >  such that ‖B‖ =N .
Under these assumptions, we can prove the first main result in this paper. We hereafter

always suppose that ‖R(λ,	b)‖ ≤ 
λ
for all λ > .

Theorem . Assume that conditions (H)-(H) are satisfied. Then integral system (.)
has at least one mild solution on [,b] for every λ >  and xb ∈ X.

Proof For fixed λ >  and xb ∈ X, we consider the solution operator Q : C([,b],X) →
C([,b],X) defined by

(Qx)(t) = Sα(t)x +
∫ t


Sα(t – s)

[
f
(
s,x(s)

)
+ Bu(s)

]
ds, t ∈ [,b], (.)

http://www.advancesindifferenceequations.com/content/2014/1/54
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with

u(t) = B∗S∗
α(b – t)R(λ,	b)p

(
x(·)),

p
(
x(·)) = xb – Sα(b)x –

∫ b


Sα(b – s)f

(
s,x(s)

)
ds.

It is easy to see that the fixed point of Q is a mild solution of integral system (.). Sub-
sequently, we will prove that Q has a fixed point by using Schauder’s fixed point theorem.
Firstly, we prove that the mapping Q is continuous on C([,b],X). For this purpose, let

{xn}n≥ be a sequence in C([,b],X) with limn→∞ xn = x in C([,b],X). By the continuity
of f , we obtained that f (s,xn(s)) converges to f (s,x(s)) uniformly for s ∈ [,b], and we have

∥∥p(xn(·)) – p
(
x(·))∥∥ ≤Mb sup

s∈[,b]

∥∥f (s,xn(s)) – f
(
s,x(s)

)∥∥.

Thus, for t ∈ [,b], we have

∥∥(Qxn)(t) – (Qx)(t)
∥∥ ≤

(
Mb +


λ
MNb

)
sup
s∈[,b]

∥∥f (s,xn(s)) – f
(
s,x(s)

)∥∥ → ,

as n→ ∞, which implies that Q is continuous on C([,b],X).
Secondly, we show that Q : C([,b],X) → C([,b],X) is a compact operator. Accord-

ing to Lemma ., it is sufficient to prove that Q is compact, where Q : C([,b],X) →
C([,b],X) is defined by

(Qx)(t) =
∫ t


Sα(t – s)Bu(s) ds, t ∈ [,b],

with

u(t) = B∗S∗
α(b – t)R(λ,	b)p

(
x(·)),

p
(
x(·)) = xb – Sα(b)x –

∫ b


Sα(b – s)f

(
s,x(s)

)
ds.

Next, we will show that Q is compact by using the Ascoli-Arzela theorem.
LetWr be any bounded subset of C([,b],X) (see (.)),  ≤ t ≤ t ≤ b and x ∈Wr . We

have

∥∥(Qx)(t) – (Qx)(t)
∥∥

≤
∫ t



∥∥Sα(t – s) – Sα(t – s)
∥∥∥∥Bu(s)∥∥ds +

∫ t

t

∥∥Sα(t – s)Bu(s)
∥∥ds

≤ 
λ
NML

∫ t



∥∥Sα(t – s) – Sα(t – s)
∥∥ds + 

λ
NML(t – t),

where L = ‖xb‖ +M‖x‖ +MKb, and K comes from condition (H).
If t = , it is easy to see that

lim
t→

∥∥(Qx)(t) – (Qx)(t)
∥∥ =  uniformly for x ∈ Wr .
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If  < t < b, for  < δ < t, we have

∥∥(Qx)(t) – (Qx)(t)
∥∥

≤ 
λ
NML

[∫ δ



∥∥Sα(t – s) – Sα(t – s)
∥∥ds +

∫ t

δ

∥∥Sα(t – s) – Sα(t – s)
∥∥ds

]

+

λ
NML(t – t)

≤ δ
λ
NML +


λ
NML

∫ t

δ

∥∥Sα(t – s) – Sα(t – s)
∥∥ds + 

λ
NML(t – t).

Note that from Lemma . we know that Sα(t) is an operator norm continuous uniformly
for [δ,b]. Combining this and the arbitrariness of δ with the above estimation, we can
conclude that

lim
t→t

∥∥(Qx)(t) – (Qx)(t)
∥∥ =  uniformly for x ∈Wr .

Thus, QWr is equicontinuous on C([,b],X).
Now, for t = , it is easy to see that the set {(Qx)() : x ∈ Wr} is precompact in X. Now,

let  < t ≤ b be given and  < ε < t. Then

{
Sα(ε)

∫ t–ε


Sα(t – s – ε)Bu(s) ds : x ∈Wr

}

is precompact since Sα(ε) is compact. Moreover, for arbitrary ε < δ < b, we have

∥∥∥∥Sα(ε)
∫ t–ε


Sα(t – s – ε)Bu(s) ds –

∫ t–ε


Sα(t – s)Bu(s) ds

∥∥∥∥
≤ 

λ
NML

∫ t–δ



∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥ds

+

λ
NML

∫ t–ε

t–δ

∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥ds

≤ 
λ
NML

∫ t–δ



∥∥Sα(ε)Sα(t – s – ε) – Sα(t – s)
∥∥ds + δ

λ
NML

(
M +M

)
.

From Lemma .(iii), we know

Sα(ε)Sα(t – s – ε) – Sα(t – s)→ , as ε →  for s ∈ [, t – δ].

Then, it follows from the Lebesgue dominated convergence theorem and the arbitrariness
of δ that

lim
ε→

∥∥∥∥Sα(ε)
∫ t–ε


Sα(t – s – ε)Bu(s) ds –

∫ t–ε


Sα(t – s)Bu(s) ds

∥∥∥∥ = .
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On the other hand,

∥∥∥∥Sα(ε)
∫ t–ε


Sα(t – s – ε)Bu(s) ds –

∫ t


Sα(t – s)Bu(s) ds

∥∥∥∥
≤

∥∥∥∥Sα(ε)
∫ t–ε


Sα(t – s – ε)Bu(s) ds –

∫ t–ε


Sα(t – s)Bu(s) ds

∥∥∥∥
+

∥∥∥∥
∫ t–ε


Sα(t – s)Bu(s) ds –

∫ t


Sα(t – s)Bu(s) ds

∥∥∥∥
≤

∥∥∥∥Sα(ε)
∫ t–ε


Sα(t – s – ε)Bu(s) ds –

∫ t–ε


Sα(t – s)Bu(s) ds

∥∥∥∥ +

λ
NMLε.

Thus,

lim
ε→

∥∥∥∥Sα(ε)
∫ t–ε


Sα(t – s – ε)Bu(s) ds –

∫ t


Sα(t – s)Bu(s) ds

∥∥∥∥ = ,

which implies that {(Qx)(t) : x ∈Wr} is precompact in X by using the total boundedness.
Thus, Q is compact in view of the Arzela-Ascoli theorem. Therefore, the solution opera-
tor Q is compact.
Finally, we will show that there exists one positive number r such that QWr ⊆Wr . In

fact, for all x ∈ C([,b],X), it follows from (.) that

∥∥(Qx)
∥∥ ≤M‖x‖ +MKb +


λ
NMLb.

Then we obtain that for large enough r > , the inequality ‖(Qx)‖ ≤ r holds for all x ∈
C([,b],X). Thus QWr ⊆Wr .
Therefore, by Schauder’s fixed point theorem, the operator Q has a fixed point in Wr ,

which is just the mild solution of integral system (.). �

Next, we present the approximate controllability of fractional control system (.). We
make the following hypothesis:
(H) λR(λ,	b) →  as λ → + in the strong operator topology.

Theorem . Assume that conditions (H)-(H) are satisfied. Then fractional control sys-
tem (.) is approximately controllable on [,b].

Proof According to Theorem ., for every λ >  and xb ∈ X, there exists a mild solution
xλ ∈ C([,b],X) such that

xλ(t) = Sα(t)x +
∫ t


Sα(t – s)

[
f
(
s,x(s)

)
+ Bu(s)

]
ds, t ∈ [,b],

with

u(t) = B∗S∗
α(b – t)R(λ,	b)p

(
xλ(·)

)
,

p
(
xλ(·)

)
= xb – Sα(b)x –

∫ b


Sα(b – s)f

(
s,x(s)

)
ds.
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Thus,

xλ(b) = Sα(b)x +
∫ b


Sα(b – s)f

(
s,xλ(s)

)
ds +	bR(λ,	b)p

(
xλ(·)

)

= xb – p
(
xλ(·)

)
+	bR(λ,	b)p

(
xλ(·)

)
= xb – (λI +	b)R(λ,	b)p

(
xλ(·)

)
+	bR(λ,	b)p

(
xλ(·)

)
= xb – λR(λ,	b)p

(
xλ(·)

)
. (.)

Now, by condition (H), we have

∫ b



∥∥f (s,xλ(s)
)∥∥ ds ≤ Kb,

which implies that the sequence {f (·,xλ(·)) : λ > } is bounded in the Hilbert space
L([,b],X). Hence there exists a subsequence of {f (·,xλ(·)) : λ > }, still denoted by it,
converging weakly to some point ω(·) ∈ L([,b],X). Let

η = xb – Sα(b)x –
∫ b


Sα(b – s)ω(s) ds.

Thus,

∥∥p(xλ) – η
∥∥ ≤

∥∥∥∥
∫ b


Sα(b – s)

[
f
(
s,xλ(s)

)
–ω(s)

]
ds

∥∥∥∥. (.)

Note that, by using the compactness of Sα(t) and Lemma ., similar to the proof of The-
orem ., we can prove that the mapping

x(t)→
∫ t


Sα(t – s)x(s) ds

from L([,b],X) to C([,b],X) is compact, i.e., the Cauchy operator G : L([,b],X) →
C([,b],X) is also compact. So, we obtain that

∫ b


Sα(b – s)

[
f
(
s,xλ(s)

)
–ω(s)

]
ds →  as λ → +

since f (·,xλ(·))→ ω(·) weakly in L([,b],X). Thus, from (.) we have

∥∥p(xλ) – η
∥∥ →  as λ → +. (.)

In view of (.), (.) and condition (H), we obtain that

∥∥xλ(b) – xb
∥∥ ≤ ∥∥λR(λ,	b)p(xλ)

∥∥
≤ ∥∥λR(λ,	b)

∥∥ · ∥∥p(xλ) – η
∥∥ +

∥∥λR(λ,	b)η
∥∥

→  as λ → +,

which implies that fractional control system (.) is approximately controllable on [,b].
�
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Remark . In the case of a C-semigroup and an integer order derivative, condition
(H) is equivalent to the approximate controllability of the corresponding homogenous
linear system. However, due to the complexity of fractional derivatives, one should be
more careful to deal with this equivalence. Further discussions on this equivalence and
concrete examples will be presented in our consequent papers.
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