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Abstract
In this paper we study the second-order periodic system: x′′ + V ′(x) + p(t)g(x) = Fx(x, t)
where V(x) has a singularity. Under some assumptions on the V , F, g, and p, by
Ortega’s small twist theorem, we obtain the existence of quasi-periodic solutions and
boundedness of all the solutions.
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1 Introduction andmain result
The question of boundedness of all solutions of

x′′ +V ′(x, t) = , (.)

initiated by Littlewood [], has been the subject of numerous studies.Morris [] has shown
that when V ′(x, t) = x – p(t), where p(t) is continuous, all solutions are bounded. Levi []
considered (.), where the potential V satisfies a superquadratic growth and has a singu-
larity. The author reached a similar conclusion as in []. In [], Liu has proved boundedness
of all the solutions of the following equation with an asymmetric nonlinearity

x′′ + αx+ – βx– = p(t),

where x+ = max{x, }, x– = max{–x, }, α,β > . For this case, all the solutions of the un-
perturbed equation

x′′ + αx+ – βx– = , (.)

have a common period T(/
√
a + /

√
b), which means that (.) is isochronous.

In [], Bonheure et al. study the following equation, which is a perturbation of the
isochronous oscillator:

x′′ +V ′(x) + g(x) – p(t) = , (.)
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where V (x), defined on (a, +∞), has a repulsive singularity and satisfies

lim
n→+∞

V (x)
x

=
m


, lim

n→a+
V (x) = +∞,

m is a positive integer, a ∈ (–∞, ). The perturbation g(x) – p(t) satisfies the Lazer-
Landsman condition

g+ >max
θ

p∗(θ ),

where the function g(x) is smooth and bounded, limn→+∞ g(x) = g+, p∗(θ ) =
∫ π
 p(t +

θ )| sin(mt/)|dt and p(t) = p(t + π ). The authors assume that all solutions of the unper-
turbed equation

x′′ +V ′(x) =  (.)

are π/m, which means that (.) is an isochronous oscillator with period π/m. The au-
thors proved the existence of π-periodic solutions of (.). We refer for more details on
the isochronous system to [] and the references therein.
Recently, Liu [] studied the quasi-periodic solutions and boundedness of all solutions

of the isochronous oscillators equation (.) where V (x) has a singularity, the nonlinearity
g(x) is a bounded perturbation, and p(t) is π-periodic. Moreover, the following assump-
tions hold:
() V () = V ′() = , V ′′(x) >  for x �=  and limx→a+ V (x) = +∞, a ∈ (–∞, ), and V (x)

is defined on (a, +∞).
() The function

W (x) :=
V (x)
V ′(x)

is smooth in (–,∞) and the limit limx→–W (x) exists. Furthermore, the following
estimates hold: for each ≤ k ≤  there is a constant c such that

∣∣W (x)
∣∣ ≤ c( + x),

∣∣Wk(x)
∣∣ ≤ c, for x ∈ [–,∞).

() The positive function V is smooth and, for  ≤ k ≤ ,

∣∣( + x)kV k(x)
∣∣ ≤ c′V (x),

where c′ is a positive constant.
() For x > , let �(x) = V (x) – 

x
; the function � satisfies

lim
x→+∞xk�k(x) = ,

for every positive integer k. By the results in [], the auxiliary autonomous system
x′′ +V ′(x) =  is an isochronous system with period T = π .
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() The function g is bounded on the interval [–, +∞) and g(x) >  for x > . Moreover,
the following inequalities hold:

lim
x→+∞( + x)k

dk

dxk
g(x) = .

() If limit limx→+∞ g(x) = g+ exists and p∗(θ ) =
∫ π
 p(t + θ )| sin(t/)|dt, the following

condition of Lazer-Landesman type holds:

g+ >max
θ

p∗(θ ).

Liu first reduced the system to a normal form and then applied a variant of Moser’s
twist theorem of invariant curves to prove the existence of quasi-periodic solution and
the boundedness of all solutions. This result relies on the fact that the nonlinearity can
guarantee the twist condition of theKAMtheorem.The assumptions () and () satisfy the
Lazer-Landesman condition which plays a key role in the boundedness problem. In fact,
it has been shown by Alonso and Ortega [] that, when the Lazer-Landesman condition
cannot be satisfied, the solutions with large initial conditions are unbounded either in the
past or in the future.
We observe that in [, ], the perturbation g(x)–p(t) is smooth and bounded, so a natural

question is to find sufficient conditions on g(x) and p(t) such that all solutions of (.) are
bounded when the perturbation is unbounded. The purpose of this paper is to deal with
this problem. We can refer to more papers on the Littlewood Problem on unbounded
perturbation such as [, ].
Motivated by the papers [, ], we consider the following equation:

x′′ +V ′(x) + p(t)g(x) = Fx(x, t), (.)

where  < α < . We suppose that ()-() hold; moreover, we have

(′) F(x, t) ∈ C,(S × R) and

lim
x→+∞

F(x, t)
|x|αx = , F(x, t + π ) = F(x, t).

(′) p(t) = p(t + π ) and

lim
x→+∞

g(x)
|x|α = , G(x) =

∫ x


g(s)ds,

where  < α < .
(′) We mention a condition similar to the Lazer-Landesman condition:

∫ π
 sin θ

 ×
| sin θ

 |αp(t + θ )dθ > .

Our main result is the following theorem.

Theorem  Suppose the assumptions ()-() and (′)-(′) hold, then (.) has infinitely
many quasi-periodic solutions and all the solutions of (.) are bounded.
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The main idea of our proof is acquired from []. The proof of Theorem  is based on
the small twist theorem due to Ortega []. It mainly consists of two steps. The first one
is to transform (.) into a perturbation a integrable Hamilton system. The second one is
to show that the Poincaré map of the equivalent system satisfies Ortega’s twist theorem,
then the desired result can be obtained.

2 The proof of the theorem
2.1 Action-angle variables
Observe that (.) is equivalent to the following Hamiltonian system:

x′ =
∂H
∂x

, y′ = –
∂H
∂x

(.)

with the Hamiltonian function

H(x, y, t) =


y +V (x) + p(t)G(x) – F(x, t).

In order to introduce action and angle variables, we first consider the auxiliary au-
tonomous equation:

x′ = y, y′ = –V ′(x), (.)

which is an integrable Hamiltonian system with Hamiltonian function

H(x, y, t) =


y +V (x).

The closed curves H(x, y, t) = h >  are just the integral curves of (.).
Denote by T(h) the time period of the integral curve �h of (.) defined by H(x, y, t) = h

and by I the area enclosed by the closed curve �h for every h > . Let – < –αh < βh be
such that V (–αh) = V (βh) = h. Then by assumption (), we have

lim
h→+∞

(αh) = , lim
h→+∞

(βh) = +∞.

It is easy to see that

I(h) =
∫ βh

–αh

√

(
h –V (s)

)
ds, ∀h > .

Let us denote

T–(h) =
∫ 

–αh

√
(h –V (s))

ds, T+(h) =
∫ βh



√
(h –V (s))

ds.

By assumption (), we know that the auxiliary autonomous equation is isochronous and
we have the periodicT(h) = T–(h)+T+(h) = π , which yields I(h) = πh.Moreover, similar
to the estimate in [, ], we have

∣∣hkT (k)
+ (h)

∣∣ ≤ C · √
h
, k > , (.)
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and

∣∣hkT (k)
– (h)

∣∣ ≤ C · √
h
, k ≥ . (.)

We now carry out the standard reduction to the action-angle variables. For this purpose,
we define the generating function S(x, I) =

∫
C

√
(h –V (s))ds, where C is the part of the

closed curve �h connecting the point on the y-axis and the point (x, y).
We define the well-known map (θ , I) → (x, y) by

y =
∂S
∂x

(x, I), θ =
∂S
∂I

(x, I),

which is symplectic, since

dx∧ dy = dx∧ (Sxx dx + SxI dI) = SxI dx∧ dI,

dθ ∧ dI = (SIx dx + SII dI)∧ dI = SIx d ∧ dI.

From the above discussion, we easily get

θ =

⎧⎨
⎩

∫ x
–αh

√
(h(x,y)–V (s))

ds, if y ≥ ,

π –
∫ x
–αh

√
(h(x,y)–V (s))

ds, if y < ,

I(x, y) =
∫ βh

–αh

√

(
h(x, y) –V (s)

)
ds.

In the new variables (θ , I), the system (.) becomes

θ ′ =
∂H
∂I

, I ′ = –
∂H
∂θ

, (.)

where

H(θ , I, t) = I + πp(t)G
(
x(θ , I)

)
– πF

(
x(θ , I), t

)
. (.)

2.2 New action and angle variables
Now we are concerned with the Hamiltonian system (.) with the Hamiltonian function
H(θ , I, t) given by (.). Note that

I dθ –H dt = –(H dt – I dθ ).

This means that if one can solve I from (.) as a function of H (θ and t as parameters),
then

dH
dθ

= –
∂I
∂t

(t,H , θ ),
dt
dθ

= –
∂I
∂H

(t,H , θ ) (.)

is also a Hamiltonian system with Hamiltonian function I and now the action, angle, and
time variables are H , t, and θ .
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Let

R(θ , I, t) = πp(t)G
(
x(θ , I)

)
– πF

(
x(θ , I), t

)
. (.)

In order to estimate R, we need the estimate on the functions x(I, θ ). For this purpose,
we introduce the following lemma proved in [, ].

Lemma  There is a constant C such that

Ik
∂kx
∂Ik

≤ C( + x)≤ C
√
I for  ≤ k ≤ .

By (′), (.), and Lemma , we can directly get the following lemma.

Lemma  The following estimates hold:

∣∣∣∣∂k+lR(θ , I, t)
∂Ik ∂tl

∣∣∣∣ < I
α+


for k + l ≤ .

Using (.), we have

∂H
∂I

=  +
∂R
∂I

→ , as I → +∞.

Hence, by the implicit function theorem, there exists a function R = R(t,H , θ ) such that

I =H – R(t,H , θ ).

The function R is defined implicitly by

R(t,H , θ ) = R(θ ,H – R, t). (.)

Now we give the estimates of R(t,H , θ ). By a direct computation, we have the following.

Lemma  |Hk ∂k+lR(t,H,θ )
∂Hk ∂tl | <H α+

 for k + l ≤ .

Proof Casem = . By (.), Lemma  and noticing that H
I →  as I → +∞, we have

∣∣R(t,H , θ )
∣∣ = ∣∣R(t,H – R, θ )

∣∣ ≤ C · |H – R| α+
 ≤ C · |H| α+

 .

Casem = . Taking derivatives on both sides of (.) with respect to H , we have

∂R

∂H
=


π


 + 

∂R
∂I

.

By Lemma , we have

∣∣∣∣∂R∂I
∣∣∣∣ ≤ C · I –+α

 ≤ C ·H –+α
 .
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Since
∣∣∣∣ 

∂R
∂H

∣∣∣∣   as H → +∞,

we have
∣∣∣∣H ∂R

∂H

∣∣∣∣ ≤ C ·H +α
 .

We suppose that

∣∣∣∣Hm ∂mR(H , t, θ )
∂Hm

∣∣∣∣ ≤H
α+
 (.)

holds wherem = k – . We will prove that (.) also holds whenm = k, ≤ k ≤ .
By direct calculation, we have

∂kR

∂Hk =
∑

cnj···jn
∂nR
∂In

∂ j
∂Hj (H – R) · · · ∂ jn

∂Hjn (H – R)
 + ∂R

∂I
, (.)

where  ≤ n≤ k, j + · · · + jn = k, ≤ j, . . . , jn < k.
By (.), we have

∣∣∣∣∂σ (H – R)
∂Hσ

∣∣∣∣ ≤ C ·
∣∣∣∣∂(H – R)

∂H

∣∣∣∣
σ

, (.)

where  < σ ≤ k – .
By (.), (.), and Lemma , we have

∣∣∣∣∂kR

∂Hk

∣∣∣∣ ≤ C ·
∣∣∣∣∂kR
∂Ik

(
∂(H – R)

∂H

)k∣∣∣∣ ≤ C ·
∣∣∣∣∂kR
∂Ik

∣∣∣∣ ≤ C ·H α+
 –k ,

then we proved that (.) holds when m = k. Thus we proved Lemma . �

Set

R(t,H , θ ) = R(θ ,H , t) – R(t,H , θ )

= –
∫ 



∂R
∂I

(θ ,H – sR, t)R ds.

By similarity to the proofs of Lemmas  and , we have the following.

Lemma  The following estimates hold:

∣∣∣∣∂k+lR(t,H , θ )
∂Hk ∂tl

∣∣∣∣ <Hα

for k + l ≤ .

http://www.advancesindifferenceequations.com/content/2014/1/55
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Remark  By the proofs and estimates of R, R, R, we can easily see that R is the main
(twist) term of R and R is the small term of R.

Now the new Hamiltonian function I = I(t,H , θ ) is written in the form

I =H – R(θ ,H , t) + R(t,H , θ )

=H – πp(t)G
(
x(θ ,H)

)
+ πF

(
x(θ ,H), t

)
+ R.

The system (.) is of the form

{
dt
dθ

= ∂I
∂H =  – π ∂x

∂H (θ ,H)(g(x(θ ,H))p(t) – Fx(x(θ ,H), t)) + ∂R
∂H (t,H , θ ),

dH
dθ

= – ∂I
∂t = πp′(t)G(x(θ ,H)) – πFt(x(θ , I), t) – ∂R

∂t (t,H , θ ).
(.)

Introduce a new action variable ρ ∈ [, ] and a parameter ε >  by H = ε–ρ . Then H 
⇔  < ε � . Under this transformation, the system (.) is changed into the form

{
dt
dθ

=  – π ∂x
∂H (θ , ε

–ρ)(g(θ , ε–ρ)p(t) – Fx(x(θ , ε–ρ), t)) + ∂R
∂H (t, ε–ρ, θ ),

dρ

dθ
= πεp′(t)G(x(θ , ε–ρ)) – πεFt(x(θ , I), t) – ε ∂R

∂t (t, ε
–ρ, θ ),

(.)

which is also a Hamiltonian system, with the new Hamiltonian function

�(t,ρ, θ ; ε) = ρ–πε–p(t)G
(
x
(
θ , ε–ρ

))
+πε–F

(
x
(
θ , ε–ρ

)
, t

)
+ε–

∂R

∂t
(
t, ε–ρ, θ

)
.

Obviously, if ε � , the solution (t(θ , t,ρ),ρ(θ , t,ρ)) of (.) with the initial date
(t,ρ) ∈ R × [, ] is defined in the interval θ ∈ [, π ] and ρ(θ , t,ρ) ∈ [  , ]. So the
Poincaré map of (.) is well defined in the domain R× [, ].

Lemma  ([, Lemma .]) The Poincaré map of (.) has the intersection property.

The proof is similar to the corresponding one in [].
For convenience we introduce the notation Ok() and ok(). We say a function f (t,ρ,

θ , ε) ∈Ok() if f is smooth in (t,ρ) and for k + k ≤ k,

∣∣∣∣ ∂k+k

∂tk ∂ρk
f (t,ρ, θ , ε)

∣∣∣∣ ≤ C,

for some constant C >  which is independent of the arguments t, ρ , θ , ε.
Similarly, we say f (t,ρ, θ , ε) ∈ ok() if f is smooth in (t,ρ) and for k + k ≤ k,

lim
ε→

∣∣∣∣ ∂k+k

∂tk ∂ρk
f (t,ρ, θ , ε)

∣∣∣∣ = ,

uniformly in (t,ρ, θ ).

2.3 Poincaré map and twist theorems
Wewill useOrtega’s small twist theorem to prove that the Poincarémap P has an invariant
closed curve, if ε is sufficiently small. The earlier result was due to Moser [–]. Later,
Orgeta [] improved the previous results. Let us first recall the theorem in [].

http://www.advancesindifferenceequations.com/content/2014/1/55


Wang and Jiang Advances in Difference Equations 2014, 2014:55 Page 9 of 15
http://www.advancesindifferenceequations.com/content/2014/1/55

Lemma  (Ortega’s Theorem) Let A = S
 × [a,b] be a finite cylinder with universal cover

A =R× [a,b]. The coordinate in A is denoted by (τ ,ν). Consider the map

f : A→ S×R.

We assume that the map has the intersection property. Suppose that f : A → R × R,
(τ,ν)→ (τ,ν) is a lift of f and it has the form

{
τ = τ + Nπ + δl(τ,ν) + δg̃(τ,ν),
ν = ν + δl(τ,ν) + δg̃(τ,ν),

(.)

where N is an integer, δ ∈ (, ) is a parameter. The functions l, l, g̃, and g̃ satisfy

l ∈ C(A), l(τ,ν) > ,
∂l
∂ν

(τ,ν) > , ∀(τ,ν) ∈ A,

l(·, ·), g̃(·, ·, ε), g̃(·, ·, ε) ∈ C(A).
(.)

In addition, we assume that there is a function I : A→ R satisfying

I ∈ C(A),
∂I
∂ν

(τ,ν) > , ∀(τ,ν) ∈ A (.)

and

l(τ,ν) · ∂I
∂τ

(τ,ν) + l(τ,ν) · ∂I
∂ν

(τ,ν) = , ∀(τ,ν) ∈ A. (.)

Moreover, suppose that there are two numbers ã and b̃ such that a < ã < b̃ < b and

IM(a) < Im(ã)≤ IM(ã) < Im(b̃) ≤ IM(b̃) < Im(b) (.)

where

IM(r) =max
ρ∈S

I(ρ, τ), Im(r) =min
ρ∈S

I(ρ, τ).

Then there exist ε >  and � >  such that, if δ < � and

∥∥g̃(·, ·, ε)∥∥C(A) +
∥∥g̃(·, ·, ε)∥∥C(A) < ε,

the mapping f has an invariant curve in �A. The constant ε is independent of δ.

We make the ansatz that the solution of (.) with the initial condition (t(),ρ()) =
(t,ρ) is of the form

t = t + θ + ε–α�(t,ρ, θ ; ε), ρ = ρ + ε–α�(t,ρ, θ ; ε).

Then the Poincaré map of (.) is

P : t = t + π + ε–α�(t,ρ, π ; ε), ρ = ρ + ε–α�(t,ρ, π ; ε). (.)

http://www.advancesindifferenceequations.com/content/2014/1/55
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The functions � and � satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� = πεα– ∫ θ


∂x
∂H (θ , ε

–ρ)(g(x)p(t) – Fx(x(θ , ε–ρ), t))dθ

+ εα– ∫ θ


∂R
∂H (θ , ε–ρ)dθ ,

� = πεα+ ∫ θ

 G(x(θ , ε–ρ))p′(t) – Ft(x(θ , ε–ρ), t)dθ

– εα+ ∫ θ


∂R
∂t (θ , ε

–ρ)dθ ,

(.)

where t = t + θ + ε–α�, ρ = ρ + ε–α�. By Lemmas  and , we know that

|�| + |�| ≤ C for θ ∈ [, π ]. (.)

Moreover we can prove that

�,� ∈ O(). (.)

Lemma  The following estimates hold:

G
(
x
(
θ , ε–ρ

))
–G

(
x
(
θ , ε–ρ

)) ∈ ε–αO(),

g
(
x
(
θ , ε–ρ

)) ∂x
∂H

– g
(
x
(
θ , ε–ρ

)) ∂x
∂H

∈ ε–αO().

Proof We only consider x≥ , since the case x ≤  can be proved similarly.
Let

�(t – ––,ρ, θ ) =G
(
x
(
θ , ε–ρ

))
–G

(
x
(
θ , ε–ρ

))
=

∫ 


g
(
x
(
θ , ε–ρ + sε––α�

))

· ∂x
∂H

(
θ , ε–ρ + sε––α�

)
ε––α� ds.

By (′), Lemma  and (.), we have

∣∣�(t – ––,ρ, θ )
∣∣ ≤ C · (ε–ρ + sε––α�

) α

(
ε–ρ + sε––α�

)– 
 ε––α�

≤ C · (ε–ρ + sε––α�
) α–

 ε––α

≤ C · ε–α .

Taking the derivative with respect to ρ in both sides of �(t – ––,ρ, θ ), we have

∂�

∂ρ
=

∫ 



[
g ′(x)

∂x
∂H

 + sε–α ∂�
∂ρ

ε
∂x
∂H

ε––α� + g(x)
∂x
∂H

 + sε ∂�
∂ρ

ε
ε––α�

+ g(x)
∂x
∂H

∂�

∂ρ
ε––α

]
ds.

Similar to the estimates of |�| and noticing |�| ≤ C · ε–α , we have
∣∣∣∣ ∂�

∂ρ

∣∣∣∣ ≤ C · ε–α .

http://www.advancesindifferenceequations.com/content/2014/1/55
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Now we will estimate ∂n�
∂ρn , n ≥ . By direct calculation, we have

∂n�

∂ρn =
∫ 


�

∂�jkg(x)
∂ρ�jk

· ∂�jkxH
∂ρ�jk

· ∂�jk�

∂ρ�jk
ds, (.)

where � = ε––α�, �jkl = , n ≥ , k = , , . . . ,n, l = , , . For estimating ∂n�
∂ρn , we need

the estimates of xH and g(x).
We firstly give the estimates of xH . By direct calculation, we get

∂nxH
∂ρn =�

∂kg(x)
∂Hk · ∂ i�

∂ρ i
· · · ∂ ik�

∂ρ ik
, (.)

where � = ε– + sε––α ∂(�)
∂ρ

, n≥ , k + i + · · · + ik = n.
Since � = ε– + sε––α ∂(�)

∂ρ
, we have

� ≤ C · ε–, ∂τ�

∂ρτ
≤ C ·

(
∂�

∂ρ

)τ

, τ > . (.)

By (.) and (.), we have

∂nxH
∂ρn ≤ C · ∂ng(x)

∂Hn (�)n ≤ C · ε+n · (ε–)n = C · ε. (.)

We now give the estimates of g(x). By (′), (.), (.), and Lemma , we have

g(x)≤ C · ε–α ,
∂g(x)
∂ρ

= g ′(x)xH� ≤ C · ε–α · ε · ε–α ≤ C · ε–α .

We suppose that the following inequality holds:

∂n–g(x)
∂ρn– ≤ C · ε–α , n ≥ . (.)

By direct calculation, we have

∂ng(x)
∂ρn =�

∂ jg(x)
∂ρ j

· ∂ jxH
∂ρ j

· ∂ j�

∂ρ j
, (.)

where ji ≥ , j + j + j = n– . By the estimates of � (.), the estimates of xH (.) and
(.), (.), we have

∂ng(x)
∂ρn ≤ C · ε–α · ε · ε– = C · ε–α . (.)

Since we have the estimates of � , xH , and g(x), now we can give the estimates of ∂n�
∂ρn . By

(.), (.), (.), and (.), we have the estimate of �:

∂n�

∂ρn =
∫ 


�

∂�jkg(x)
∂ρ�jk

· ∂�jkxH
∂ρ�jk

· ∂�jk�

∂ρ�jk
ds,

≤ C · ε–α · ε · ε––α

= ε–α ,
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which means that

G
(
x
(
θ , ε–ρ

))
–G

(
x
(
θ , ε–ρ

)) ∈ ε–αO().

The estimates for ∂x
∂H (θ , ε

–ρ)g(x(θ , ε–ρ)) – ∂x
∂H (θ , ε

–ρ)g(x(θ , ε–ρ)) follow from a simi-
lar argument, and we omit it here. Thus Lemma  is proved. �

Now we turn to giving an asymptotic expression of the Poincaré map of (.), that is,
we study the behavior of the functions � and � at θ = π as ε → .
In order to estimate � and �, we introduce the following definition and lemma. Let

�+(I) be the subset of the interval [, π ] such that θ ∈ �+(I), x(θ , I) >  and �–(I) satis-
fies θ ∈ �–(I), x(θ , I) < . By (.) and (.), similar to the computation in [], there is a
function η ∈ εO() such that T–(h) = T–( I

π ) = η(t,ρ, θ; ε). By the definition of�+ and
�–, we have

measure�– = η, measure�+ = π – η. (.)

Moreover we will use the following lemma.

Lemma  ([, Lemma .]) For θ ∈ �+(I), the function x has the following expression:

x(θ , I) = 
√

I
π
sin

(
θ


–
T–(h)


)
+

√
I
π
X

(
θ –

T–(h)


, I
)
,

and

lim
I→+∞

∑
k=

∣∣∣∣Ik– 


(
∂k

∂Ik

(
x(θ , I) – 

√
I
π
sin

(
θ


–
T–(h)


)))∣∣∣∣ = .

Now we can give the estimates of � and �.

Lemma 

�(t,ρ, π ; ε) = –α+π

 ρ

α–




∫ π


sin

θ



∣∣∣∣sin θ



∣∣∣∣
α

p(t + θ )dθ + o(),

�(t,ρ, π ; ε) = –+απ

 ρ

α+




∫ π


sin

θ



∣∣∣∣sin θ



∣∣∣∣
α

p′(t + θ )dθ + o().

Proof Firstly we consider �. By Lemmas , , and (.), we have

�(t,ρ, π ; ε)

= –πεα–
∫ π



∂x
∂H

(
θ , ε–ρ

)(
g
(
x
(
θ , ε–ρ

))
p(t) – Fx

(
x
(
θ , ε–ρ

)
, t

))
dθ

+ εα–
∫ π



∂R

∂H
(
θ , ε–ρ

)
dθ

= –πεα–
∫ π



∂x
∂H

(
θ , ε–ρ

)(
g
(
x
(
θ , ε–ρ

))
p(t + θ ) – Fx

(
x
(
θ , ε–ρ

)
, t

))
dθ
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+ ε–αO()

= –πεα–
∫

�+

∂x
∂H

(
θ , ε–ρ

)(
g
(
x
(
θ , ε–ρ

))
p(t + θ ) – Fx

(
x
(
θ , ε–ρ

)
, t

))
dθ

– πεα–
∫

�–

∂x
∂H

(
θ , ε–ρ

)(
g
(
x
(
θ , ε–ρ

))
p(t + θ ) – Fx

(
x
(
θ , ε–ρ

)
, t

))
dθ

+ ε–αO().

By Lemma , we know that when x ∈ �–

x
((

θ , ε–ρ
)) ∈O(),

∂x
∂H

(
θ , ε–ρ

) ∈ εO(). (.)

By (.) and (′), we have

�(t,ρ, π ; ε) = –πεα–
∫

�+

∂x
∂H

(
θ , ε–ρ

)(|x|αp(t + θ ) – Fx
(
x
(
θ , ε–ρ

)
, t

))
dθ

+ ε–αO().

By Lemma , we have

�(t,ρ, π ; ε) = –πεα–
∫

�+

[
ε√
ρπ

sin

(
θ


–

η



)]

·
[

(

ε–
√

ρ

π
sin

(
θ


–

η



))]α

p(t + θ )dθ + ε–αO()

= –α+π
–α
 ρ

α–




∫
�+

sin
θ



∣∣∣∣sin θ



∣∣∣∣
α

p(t + θ )dθ + o()

= –α+π
–α
 ρ

α–




∫ π


sin

θ



∣∣∣∣sin θ



∣∣∣∣
α

p(t + θ )dθ + o().

Now we consider �:

� = πεα+
∫ π


G

(
x
(
θ , ε–ρ

))
p′(t)dθ – πεα+

∫ π


Ft

(
x
(
θ , ε–ρ

)
, t

)
dθ

– εα+
∫ π



∂R

∂t
(
θ , ε–ρ

)
dθ .

By (′), Lemmas  and , and noticing that

lim
x→+∞

F(x, t)
|x|α+ = ,

we have

� = πεα+
∫ π



∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
p′(t + θ ) + o()

= πεα+
∫

�+

∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
p′(t + θ )

+ πεα+
∫

�–

∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
p′(t + θ ) + o().
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By Lemmas , , and (.)

� = πεα+
∫

�+

∣∣x(θ , ε–ρ
)∣∣αx(θ , ε–ρ

)
p′(t + θ ) + o()

= πεα+
∫

�+

(
ε–

√
ρ

π
sin

(
θ


–

η



))

·
∣∣∣∣ε–

√
ρ

π
sin

(
θ


–

η



)∣∣∣∣
α

· p′(t)dθ + o()

= –+απ
–α
 ρ

α+




∫
�+

sin
θ



∣∣∣∣sin θ



∣∣∣∣
α

p′(t + θ )dθ + o()

= –+απ
–α
 ρ

α+




∫ π


sin

θ



∣∣∣∣sin θ



∣∣∣∣
α

p′(t + θ )dθ + o().

Let

�(t,ρ) = –α+π
–α
 ρ

α–




∫ π


sin

θ



∣∣∣∣sin θ



∣∣∣∣
α

p(t + θ )dθ ,

�(t,ρ) = –+απ
–α
 ρ

α+




∫ π


sin

θ



∣∣∣∣sin θ



∣∣∣∣
α

p′(t + θ )dθ .

Then there are two functions φ and φ such that the Poincaré map of (.), given by
(.), is of the form

P : t = t + π + ε–α�(t,ρ) + ε–αφ, ρ = ρ + ε–α�(t,ρ) + ε–αφ,

where φ,φ ∈ o().
Note that p(t) > ,

� < ,
∂�

∂ρ
> .

Let

L =
ρ
– α+


∫ π

 sin θ
 | sin θ

 |αp(t + θ )dθ
.

Then

∂L
∂t

�(t,ρ) +
∂L
∂ρ

�(t,ρ) = .

The other assumptions of Ortega’s theorem are easily verified. Hence, there is an invari-
ant curve of P in the annulus (t,ρ) ∈ S × [.], which implies the boundedness of our
original equation (.). Then Theorem  is proved. �

Competing interests
The authors declare that they have no competing interests.

http://www.advancesindifferenceequations.com/content/2014/1/55


Wang and Jiang Advances in Difference Equations 2014, 2014:55 Page 15 of 15
http://www.advancesindifferenceequations.com/content/2014/1/55

Authors’ contributions
The article is a joint work of two authors who contributed equally to the final version of the paper. All authors read and
approved the final manuscript.

Author details
1Key Lab of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, College of
Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, 210003, People’s Republic of China.
2College of Sciences, Nanjing University of Technology, Nanjing, 210009, People’s Republic of China.

Acknowledgements
Thanks are given to referees whose comments and suggestions were very helpful for revising our paper. This work is
supported by National Natural Science Foundation of China (Grant Nos. 60973140, 61170276, 61373135, 60873231),
Major Natural Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 12KJA520003), the
Innovation Project for postgraduate cultivation of Jiangsu Province Grant No. CXLX11-0415, the research project of
Jiangsu Province Grant No. BY2013011, the Natural Science Foundation of Jiangsu Province Grant No. BK20130096.

Received: 13 September 2013 Accepted: 14 January 2014 Published: 04 Feb 2014

References
1. Littlewood, JE: Unbounded solutions of y′′ + g(y) = p(t). J. Lond. Math. Soc. 41, 491-496 (1966)
2. Morris, GR: A case of boundedness of Littlewood’s problem on oscillatory differential equations. Bull. Aust. Math. Soc.

14, 71-93 (1976)
3. Levi, M: Quasiperiodic motions in superquadratic time-periodic potential. Commun. Math. Phys. 144, 43-82 (1991)
4. Liu, B: Boundedness in asymmetric oscillations. J. Math. Anal. Appl. 231, 355-373 (1999)
5. Bonheure, D, Fabry, C, Smets, D: Periodic solutions of forced isochronous oscillators at resonance. Discrete Contin.

Dyn. Syst. 8(4), 907-930 (2002)
6. Liu, B: Quasi-periodic solutions of forced isochronous oscillators at resonance. J. Differ. Equ. 246, 3471-3495 (2009)
7. Alonso, JM, Ortega, R: Unbounded solutions of semilinear equations at resonance. Nonlinearity 9, 1099-1111 (1996)
8. Cheng, C, Xu, J: Boundedness of solutions for a second-order differential equations. Nonlinear Anal. 7, 1993-2004

(2008)
9. Liu, B: Quasiperiodic solutions of semilinear Lienard reversible oscillators. Discrete Contin. Dyn. Syst. 12, 137-160

(2005)
10. Ortega, R: Boundedness in a piecewise linear oscillator and a variant of the small twist theorem. Proc. Lond. Math.

Soc. 79, 381-413 (1999)
11. Moser, J: On invariant curves of area-preserving mapping of an annulus. Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. 1962,

1-20 (1962)
12. Moser, J: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136-176 (1967)
13. Moser, J: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973)

10.1186/1687-1847-2014-55
Cite this article as:Wang and Jiang: Boundedness of solutions of forced isochronous oscillators with singularity at
resonance. Advances in Difference Equations 2014, 2014:55

http://www.advancesindifferenceequations.com/content/2014/1/55

	Boundedness of solutions of forced isochronous oscillators with singularity at resonance
	Abstract
	Keywords

	Introduction and main result
	The proof of the theorem
	Action-angle variables
	New action and angle variables
	Poincaré map and twist theorems

	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


