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Abstract
The dynamical behaviors of a discrete-time SIS epidemic model are investigated in
this paper. The result indicates that the model undergoes a flip bifurcation and a Hopf
bifurcation, as found by using the center manifold theorem and bifurcation theory.
Numerical simulations not only illustrate our results, but they also exhibit the complex
dynamical behaviors, such as the period-doubling bifurcation in period-2, -4, -8,
quasi-periodic orbits and the chaotic sets. Specifically, when the parameters A, d1, d2,
r, λ are fixed at some values and the bifurcation parameter h changes with different
values, there exist local stability, Hopf bifurcation, 3-periodic orbits, 7-periodic orbits,
period-doubling bifurcation and chaotic sets. These results reveal far richer dynamical
behaviors of the discrete epidemic model compared with the continuous epidemic
models although the discrete epidemic model is simple. Finally, the feedback control
method is used to stabilize chaotic orbits at an unstable endemic equilibrium.
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1 Introduction
In the theoretical studies of epidemic dynamical models, there are two kinds of mathe-
matical models: the continuous-time models described by differential equations, and the
discrete-time models described by difference equations. Recent years, the discrete-time
epidemic models have been discussed in many papers. Usually, there are two ways to con-
struct a discrete-time epidemicmodel: (i) by directlymaking use of the property of the epi-
demic disease (see [, ]), and (ii) by discretizing a continuous-time epidemic model using
techniques, such as the forward Euler scheme and Mickens’ non-standard discretization
(see []). In [] the authors firstly used the non-standard or Mickens-type discretization
in an explicitly epidemiological context. The details ofMickens-type discretization can be
found in [, ].
Up to now, some work has been done on discrete-time epidemic models (for examples,

see [–] and the references cited therein). These worksmainly focused on the computa-
tion of the basic reproduction number; the local stability and global stability of the disease-
free equilibrium and the endemic equilibrium; the extinction and persistence of the dis-
ease. The authors in [–] discussed the stabilities of the disease-free equilibrium and the
endemic equilibrium for some SI, SIS, SIR, and SIRS type discrete-time epidemic models.
In [] we obtained the conditions for the existence and local stability of the disease-free
equilibrium and endemic equilibrium in a class of discrete SIRS epidemic with three di-
mensions. The oscillation and stability have been discussed in [–]. The authors in
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[, , ] all used the non-standard discretization way to obtain their discrete epidemic
models. Sufficient conditions for the global dynamics of the solution of the discrete SIRS
epidemic model were obtained as for the original continuous model in []. A new way to
study the basic reproduction number for some discrete-time epidemic models has been
given in []. Li and Wang in [] discussed the dynamical behaviors including a bifurca-
tion, but not giving a proof of the bifurcation.
In general, the discrete epidemic models obtained by Mickens-type discretization have

the same features as the original continuous-timemodel [, , ]. For the Rössler system
[], the difference equations obtained by the non-standard or Mickens-type method also
show that the solutions to the discretemodels are topologically equivalent to the solutions
of the continuous-time system as long as the time step is less than a threshold value. For
the discrete population models [–] approached by the forward Euler scheme, there
existed a flip bifurcation, a Hopf bifurcation and chaos dynamical behaviors which are
different from the dynamical behaviors in the corresponding continuous-time models. In
[] the authors used the forward Euler scheme to obtain a class of discrete SIRS epidemic
models. They claimed that when the time step h is small (h < h∗) the dynamical behaviors
are similarwith the continuous-timemodel, andwhen the time step h is increasing (h > h∗)
in the discrete epidemic model appears a flip bifurcation, a Hopf bifurcation, chaos, and
more complex dynamical behaviors by the numerical simulations.
Therefore, motivated by the above studies, we will focus on the complex dynamical be-

haviors of a simple discrete SIS epidemic model approached by the forward Euler scheme.
Now, we consider the following continuous-time SIS epidemic model described by differ-
ential equations:

{
dS
dt = A – dS – λ SI

S+I + rI,
dI
dt = λ SI

S+I – (d + r)I,
()

where S(t), and I(t) denote the numbers of susceptible, infective, individuals at time t,
respectively. A is the recruitment rate of the population, d is the natural death rate of the
population, d is the death rate of infective individuals which includes the natural death
rate and the disease-related death rate, r is the recovery rate of the infective individuals,
λ is the standard incidence rate. It is clear that [] model () has the basic reproduction
number R = λ

d+r
, and if R ≤ , then the disease-free equilibrium E(Ad , ) of model ()

is globally asymptotically stable, and if R > , then the endemic equilibrium E+(S+, I+) of
model () is locally asymptotically stable.
Applying the forward Euler scheme to model (), we obtain the following discrete-time

SIS epidemic model:

{
Sn+ = Sn + h[A – λ SnIn

Sn+In – dSn + rIn],
In+ = In + h[λ SnIn

Sn+In – (d + r)In],
()

where h is the time step size. A, λ, d, d, and r are defined as model (). It is assumed that
initial values S > , I >  and all the parameters are positive.
In this paper, we will study the existence of the disease-free equilibrium and endemic

equilibrium, and the stability of the disease-free equilibrium and the endemic equilibrium
for model (). For detecting the complex dynamical behaviors, the time step h is selected
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as a bifurcation parameter in model (). Furthermore, we use the numerical simulations
to display the flip bifurcation, the Hopf bifurcation and complex dynamical behaviors.
Finally, the chaos control for model () is obtained by the feedback control method.
The following is the organization of this paper. In the second section, we discuss the ex-

istence and local stability of equilibria in model (). In the third section, we study the flip
bifurcation and the Hopf bifurcation of model () by choosing h as a bifurcation parame-
ter. In the fourth section, we present the numerical simulations, which not only illustrate
our results with the theoretical analysis, but we also exhibit the complex dynamical behav-
iors such as the cascade of period-doubling bifurcation in period-, , , quasi-periodic
orbits, -periodic orbits, -periodic orbits and chaotic sets. In the fifth section, the feed-
back control method is used to control chaotic orbits at an unstable endemic equilibrium.
The conclusion is given in the last section.

2 Analysis of equilibria
Let R = λ

d+r
(the basic reproductive rate), and we have the following result as regards the

existence of the equilibria of model ().

Lemma .
() If R ≤ , then model () has only the disease-free equilibrium E( Ad , ).
() If R > , then model () has two equilibria: the disease-free equilibrium E( Ad , ) and

the endemic equilibrium E(S∗, I∗), where

S∗ =
A(d + r)

d(d + r) + d(λ – d – r)
, I∗ =

A(λ – d – r)
d(d + r) + d(λ – d – r)

.

Now, we study the stability of equilibria E and E of model (). The Jacobian matrix of
model () at the equilibrium E(S, I) is

J(E) =

⎛
⎝ – h[d + λ I

(S+I) ] h[r – λ S

(S+I) ]

hλ I

(S+I)  + h[λ S

(S+I) – (d + r)]

⎞
⎠ .

The corresponding characteristic equation of J(E) can be written as

w – tr J(E)w + det J(E) = . ()

After simple computing, we obtain the local stability result of the disease-free equilib-
rium E(Ad , ), which is shown in the following.

Theorem . If R < , then
() E( Ad , ) is a sink if  < h <min{ 

d
, 
d+r–λ

};
() E( Ad , ) is a source if h >max{ 

d
, 
d+r–λ

};
() E( Ad , ) is non-hyperbolic if h =


d
, or 

d+r–λ
;

() E( Ad , ) is a saddle if 
d

< h < 
d+r–λ

, or 
d+r–λ

< h < 
d
.

On the local stability of equilibrium E(S∗, I∗), we have the following result.
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Theorem . If R > , then
() E(S∗, I∗) is a sink if one of the following conditions holds:

(A) � ≥  and  < h < h∗;
(B) � <  and  < h < h∗∗∗;

() E(S∗, I∗) is a source if one of the following conditions holds:
(A) � ≥  and h > h∗∗;
(B) � <  and h > h∗∗∗;

() E(S∗, I∗) is non-hyperbolic if one of the following conditions holds:
(A) � ≥  and h = h∗ or h∗∗;
(B) � <  and h = h∗∗∗;

() E(S∗, I∗) is a saddle if the following condition holds:
� ≥  and h∗ < h < h∗∗,

where

h∗ =
λ(λ – d – r + d) – λ

√
�

(λ – d – r)[d(d + r) + d(λ – d – r)]
,

h∗∗ =
λ(λ – d – r + d) + λ

√
�

(λ – d – r)[d(d + r) + d(λ – d – r)]
,

h∗∗∗ =
λ(λ – d – r + d)

(λ – d – r)[d(d + r) + d(λ – d – r)]

and

� = (d + r – λ – d) –
(λ – d – r)[d(d + r) + d(λ – d – r)]

λ
.

The proofs of Theorem . and Theorem . are simple and hence we omit them.
From the above discussion we find that if condition (A) in conclusion () of Theorem .

holds, then one of the two eigenvalues of the matrix J(E) is – and the other is neither 
nor –. We can rewrite conditions (A) in the following form:

(A,d,d, r,h,λ) ∈M ∪M,

where

M =
{
(A,d,d, r,h,λ) : h = h∗,A > ,� ≥ ,R > ,  < d,d, r,λ

}
and

M =
{
(A,d,d, r,h,λ) : h = h∗∗,A > ,� ≥ ,R > ,  < d,d, r,λ

}
.

In the following section we will see that there may be a flip bifurcation round equilibrium
E(S∗, I∗) if h varies in the small neighborhood of h∗ or h∗∗ and (A,d,d, r,h∗,λ) ∈ M or
(A,d,d, r,h∗∗,λ) ∈M.
When condition (B) in conclusion () of Theorem . holds, we can see that the two

eigenvalues of the matrix J(E) are a pair of conjugate complex numbers, the modules of
which are . Condition (B) can be written in following form:

(A,d,d, r,h,λ) ∈N ,
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where

N =
{
(A,d,d, r,h,λ) : h = h∗∗∗,A > ,� < ,R > ,  < d,d, r,λ

}
.

In the following section we will see that the Hopf bifurcation round equilibrium E(S∗, I∗)
will appear if h varies in the small neighborhood of h = h∗∗∗ and (A,d,d, r,h∗∗∗,λ) ∈ N .

3 Analysis of bifurcation
For a function f (x,x, . . . ,xn), we denote by fxi , fxixj , and fxixjxk the first order partial
derivative, the second order partial derivative and the third order partial derivative of
f (x,x, . . . ,xn) with respect to xi, xj and xk , respectively.
Based on the analysis in Section , in this section we choose the step size h as the bifur-

cation parameter to study the flip bifurcation and Hopf bifurcation of E(S∗, I∗) by using
the center manifold theorem and bifurcation theory in [, ].
We firstly discuss the flip bifurcation of model () at the equilibrium E(S∗, I∗) when h

varies in the small neighborhood of h∗ and (A,d,d, r,h∗,λ) ∈M. For the case in which h
varies in the small neighborhood of h∗∗ and (A,d,d, r,h∗∗,λ) ∈M, we can give a similar
argument.
Taking the parameters (A,d,d, r,h,λ) ∈M arbitrarily, then giving a perturbation h∗ of

parameter h, we consider model () with perturbation h∗ as follows:

{
Sn+ = Sn + (h + h∗)(A – λ SnIn

Sn+In – dSn + rIn),
In+ = In + (h + h∗)[λ SnIn

Sn+In – (d + r)In],
()

where |h∗| � .
Let Un = Sn – S∗ and Vn = In – I∗, then we transform the equilibrium E(S∗, I∗) of model

() into the origin. By calculating we obtain

{
Un+ =Un + (h + h∗)[A – λ (Un+S∗)(Vn+I∗)

Un+Vn+S∗+I∗ – d(Un + S∗) + r(Vn + I∗)],

Vn+ = Vn + (h + h∗)[λ (Un+S∗)(Vn+I∗)
Un+Vn+S∗+I∗ – (d + r)(Vn + I∗)].

()

Expanding model () as a Taylor series at (Un,Vn) = (, ) to the second order, it becomes
the following model:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Un+ = aUn + aVn + aUn

 + aUnVn + aVn
 + bUnh∗

+ bVnh∗ + bUn
h∗ + bUnVnh∗ + bVn

h∗ + o((Un
 +Vn

)),
Vn+ = aUn + aVn + aUn

 + aUnVn + aVn
 + bUnh∗

+ bVnh∗ + bUn
h∗ + bUnVnh∗ + bVn

h∗ + o((Un
 +Vn

)),

()

where

a =  – h
[
d +

(λ – d – r)

λ

]
, a = h

[
r –

(d + r)

λ

]
,

a = h
(λ – d – r)

λ
, a =  + h

[
(d + r)

λ
– (d + r)

]
,

a =
h(λ – d – r)[d(d + r) + d(λ – d – r)]

Aλ ,
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a = –
h(d + r)(λ – d – r)[d(d + r) + d(λ – d – r)]

Aλ ,

a =
h(d + r)[d(d + r) + d(λ – d – r)]

Aλ ,

b = –
(λ – d – r)

λ
– d, b = –

(d + r)

λ
+ r,

b =
(λ – d – r)[d(d + r) + d(λ – d – r)]

Aλ ,

b = –
(d + r)(λ – d – r)[d(d + r) + d(λ – d – r)]

Aλ ,

b =
(d + r)[d(d + r) + d(λ – d – r)]

Aλ ,

b =
(λ – d – r)

λ
, b =

(d + r)

λ
– (d + r),

a = –a, a = –a, a = –a,

b = –b, b = –b, b = –b.

Let a matrix be defined:

T =

(
a a

– – a w – a

)
,

then T is invertible. Using translation
(
Un

Vn

)
= T

(
Xn

Yn

)
,

then model () becomes of the following form:
{
Xn+ = –Xn + F(Un,Vn,h∗) + o((Un

 +Vn
)),

Yn+ = wYn +G(Un,Vn,h∗) + o((Un
 +Vn

)),
()

where

F
(
Un,Vn,h∗) = a(w – a + a)

a(w + )
Un

 +
a(w – a + a)

a(w + )
UnVn

+
a(w – a + a)

a(w + )
Vn

 +
b(w – a) – ab

a(w + )
Unh∗

+
b(w – a) – ab

a(w + )
Vnh∗ +

b(w – a + a)
a(w + )

Un
h∗

+
b(w – a + a)

a(w + )
UnVnh∗ +

b(w – a + a)
a(w + )

Vn
h∗

and

G
(
Un,Vn,h∗) = a( + a – a)

a(w + )
Un

 +
a( + a – a)

a(w + )
UnVn

+
a( + a – a)

a(w + )
Vn

 +
b( + a) + ab

a(w + )
Unh∗

http://www.advancesindifferenceequations.com/content/2014/1/58
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+
b( + a) + ab

a(w + )
Vnh∗ +

b( + a – a)
a(w + )

Un
h∗

+
b( + a – a)

a(w + )
UnVnh∗ +

b( + a – a)
a(w + )

Vn
h∗.

Now, we determine the center manifold Wc(, ) of model () at the equilibrium (, )
in a small neighborhood of h∗ = . By the center manifold theorem, we can obtain the
approximate representation of the center manifoldWc(, ) as follows:

Wc(, ) =
{
(Xn,Yn) : Yn = ah∗ + ah∗ + aXnh∗ + aXn

 + o
((|Xn| +

∣∣h∗∣∣))},
where o((|Xn| + |h∗|)) is a function in (Xn,h∗) at least of the third order, and

a = , a = ,

a =
( + a)[ab + b( + a)]

a(w + )
–
ab + b( + a)

(w + )
,

a =
a[aa + a( + a)]

 –w
–
( + a)[aa + a( + a)]

 –w

+
( + a)[aa + a( + a)]

a( –w)
.

Therefore, on the center manifoldWc(, ) we have

Un = uXn + uYn

= aXn + aaXnh∗ + aaX
n + o

((|Xn| +
∣∣h∗∣∣)),

Vn = vXn + vYn

= – ( + a)Xn + a(w – a)Xnh∗ + a(w – a)X
n

+ o
((|Xn| +

∣∣h∗∣∣)).
Hence,

U
n = aX


n + aaX


nh

∗ + aaX

n + o

((|Xn| +
∣∣h∗∣∣)),

UnVn = –a( + a)X
n + aa(w – a – )X

nh
∗

+ aa(w – a – )X
n + o

((|Xn| +
∣∣h∗∣∣)),

V 
n = ( + a)X

n – a( + a)(w – a)X
nh

∗

– a( + a)(w – a)X
n + o

((|Xn| +
∣∣h∗∣∣)).

Furthermore, we have

Xn+ = –Xn + F
(
Un,Vn,h∗)

= –Xn + cXn
 + cXnh∗ + cXn

h∗

+ cXnh∗ + cXn
 + o

((|Xn| +
∣∣h∗∣∣)),

http://www.advancesindifferenceequations.com/content/2014/1/58
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where

c =
w – a + a
a(w + )

[
aa – aa( + a) + a( + a)

]
,

c =
b(w – a) – ab

w + 
–
( + a)[b(w – a) – ab]

a(w + )
,

c =
aaa(w – a + a)

w + 
+
aa(w – a + a)(w – a – )

w + 

–
aa( + a)(w – a)(w – a + a)

a(w + )
+
a[(w – a)b – ab]

w + 

+
a(w – a)[(w – a)b – ab]

a(w + )
+
ab(w – a + a)

w + 

–
b( + a)(w – a + a)

w + 
+
b( + a)(w – a + a)

a(w + )
,

c =
a[(w – a)b – ab]

w + 
+
a(w – a)[(w – a)b – ab]

a(w + )
,

c =
aa(w – a + a)(w – a – )

w + 
+
aaa(w – a + a)

w + 

–
aa( + a)(w – a)(w – a + a)

a(w + )
.

Therefore, whenmodel () is restricted to the center manifoldWc(, ) we obtain themap
G∗ as follows:

G∗(Xn) = –Xn + cXn
 + cXnh∗ + cXn

h∗

+ cXnh∗ + cXn
 + o

((|Xn| +
∣∣h∗∣∣)). ()

In order to undergo a flip bifurcation formap (), we require that the two discriminatory
quantities α and α are not zero, where

α =
(
G∗

Xnh∗ +


G∗

h∗G∗
XnXn

)∣∣∣
(,)

= c

and

α =
(


G∗

XnXnXn +
(


G∗

h∗G∗
XnXn

))∣∣∣
(,)

= c + c .

Therefore, by the above analysis and the theorem in [], we obtain the following result.

Theorem . If α 	= , then model () undergoes a flip bifurcation at the equilibrium
E(S∗, I∗) when the parameter h∗ varies in a small neighborhood of the origin. Moreover,
if α >  (resp., α < ), then the period- points which bifurcate from E(S∗, I∗) are stable
(resp., unstable).

Finally, we discuss the Hopf bifurcation of E(S∗, I∗) if h varies in the small neighbor-
hood of N . We take the parameters (A,d,d, r,h,λ) ∈ N arbitrarily. We consider a small

http://www.advancesindifferenceequations.com/content/2014/1/58
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perturbation of () by choosing the bifurcation parameter h∗ as follows:

{
Sn+ = Sn + (h + h∗)(A – λ SnIn

Sn+In – dSn + rIn),
In+ = In + (h + h∗)[λ SnIn

Sn+In – (d + r)In],
()

where |h∗| �  which is a small perturbation.
LetUn = Sn–S∗ andVn = In– I∗, thenwe transform equilibrium E(S∗, I∗) into the origin,

we have

{
Un+ =Un + (h + h∗)[A – λ (Un+S∗)(Vn+I∗)

Un+Vn+S∗+I∗ – d(Un + S∗) + r(Vn + I∗)],

Vn+ = Vn + (h + h∗)[λ (Un+S∗)(Vn+I∗)
Un+Vn+S∗+I∗ – (d + r)(Vn + I∗)].

()

The characteristic equation associated with the linearization of model () at (, ) is the
following:

w + P
(
h∗)w +Q

(
h∗) = ,

where

P
(
h∗) = – –

(
h + h∗)[(d + r – λ) – d

]
,

Q
(
h∗) =  +

(
h + h∗)[(d + r – λ) – d

]
+

(
h + h∗) (λ – d – r)[d(d + r) + d(λ – d – r)]

λ
.

Correspondingly, when h∗ varies in a small neighborhood of h∗ =  the roots of the char-
acteristic equation are

w, =
–P(h∗)±

√
P(h∗) – Q(h∗)


and we have

|w,| =
(
Q

(
h∗)) 

 , k =
(|w,|h∗

)|h∗= =


(λ – d – r + d) > .

Moreover, it is required that when h∗ = , wm
, 	= , m = , , , , which is equivalent to

P() 	= –,, , . Note (A,d,d, r,h,λ) ∈ N and � < , then

(
tr J(E)

) = (
 + h

[
(d + r – λ) – d

]) < .

Hence,

P() = – – h
[
(d + r – λ) – d

] 	=±.

We only need to require that P() 	= , , i.e.,

λ(λ – d – r + d)
d(d + r) + d(λ – d – r)

	= j(λ – d – r)
λ – d – r + d

, j = , . ()

http://www.advancesindifferenceequations.com/content/2014/1/58
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Therefore, the eigenvalues w, do not lie in the intersection of the unit circle with the
coordinate axes when h∗ =  and () holds.
In the following, we study the normal form ofmodel () when h∗ = . Expandingmodel

() as a Taylor series atUn = ,Vn =  to third order, then it becomes the followingmodel:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Un+ = aUn + aVn + aUn

 + aUnVn + aVn


+ cUn
 + cUn

Vn + cUnVn
 + cVn

 + o((|Un| + |Vn|)),
Vn+ = aUn + aVn + aUn

 + aUnVn + aVn


+ cUn
 + cUn

Vn + cUnVn
 + cVn

 + o((|Un| + |Vn|)),
()

where aij (i = , ; j = , , , , ) have the same form as in model (), but in model ()
h = h∗∗∗ and

c = –
h(λ – d – r)[d(d + r) + d(λ – d – r)]

Aλ ,

c =
h(λ – d – r)[(d + r) – λ][d(d + r) + d(λ – d – r)]

Aλ ,

c =
h(d + r)[λ – (d + r)][d(d + r) + d(λ – d – r)]

Aλ ,

c = –
h(d + r)[d(d + r) + d(λ – d – r)]

Aλ ,

ci = –ci, i = , , , .

Let

α =  –
h(λ – d + d – r)


, β =

√
det J(E) – (tr J(E))



and

T =

(
 
β α

)
,

then T is invertible. Using translation

(
Un

Vn

)
= T

(
Xn

Yn

)
,

then model () becomes of the following form:

{
Xn+ = αXn – βYn + F(Xn,Yn),
Yn+ = βXn + αYn +G(Xn,Yn),

()

where

F(Xn,Yn) = –
a( + α)

β
Yn

 –
a( + α)

β
Yn(βXn + αYn)

–
a( + α)

β
(βXn + αYn) –

c( + α)
β

Yn
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–
c( + α)

β
Yn

(βXn + αYn) –
c( + α)

β
Yn(βXn + αYn)

–
c( + α)

β
(βXn + αYn) + o

((|Xn| + |Yn|
))

and

G(Xn,Yn) = aYn
 + aYn(βXn + αYn) + a(βXn + αYn)

+ cYn
 + cYn

(βXn + αYn) + cYn(βXn + αYn)

+ c(βXn + αYn) + o
((|Xn| + |Yn|

)).
Furthermore,

FXnXn |(,) = –aβ( + α),

FXnYn |(,) = –a( + α) – aα( + α),

FYnYn |(,) = –
a( + α)

β
–
aα( + α)

β
–
aα( + α)

β
,

FXnXnXn |(,) = –cβ( + α),

FXnXnYn |(,) = –cβ( + α) – cαβ( + α),

FXnYnYn |(,) = –c( + α) – cα( + α) – cα( + α),

FYnYnYn |(,) = –
c( + α)

β
– 

cα( + α)
β

– 
cα( + α)

β
– 

cα( + α)
β

,

and

GXnXn |(,) = β, GXnYn |(,) = aβ + aαβ ,

GYnYn |(,) = a + aα + aα, GXnXnXn |(,) = cβ,

GXnXnYn |(,) = cβ + cαβ,

GXnYnYn |(,) = cβ + cαβ + cαβ ,

GYnYnYn |(,) = c + cα + cα + cα.

In order for model () to undergo a Hopf bifurcation, we require that the following
discriminatory quantity is not zero []:

a = –Re
[
( – w)w

 –w
ξξ

]
–


‖ξ‖ – ‖ξ‖ +Re(wξ), ()

where

ξ =


[
FXnXn – FYnYn + GXnYn + i(GXnXn –GYnYn + FXnYn )

]|(,),
ξ =




[
FXnXn + FYnYn + i(GXnXn +GYnYn )

]|(,),

http://www.advancesindifferenceequations.com/content/2014/1/58
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ξ =


[
FXnXn – FYnYn + GXnYn + i(GXnXn –GYnYn – FXnYn )

]|(,),
ξ =




[
FXnXnXn + FXnYnYn +GXnXnYn +GYnYnYn

+ i(GXnXnXn +GXnYnYn – FXnXnYn – FYnYnYn )
]|(,).

Moreover,

–Re
[
( – w)w

 –w
ξξ

]
=


( – α)

(B̄D̄ – ĀC̄),

where

A = β( + α – α) + ( – α)
[
α

(
 – α) + ( – α)

(
α – 

)]
,

B = β
[
α

(
 – α) + ( – α)

(
α – 

)]
– β( – α)

(
 + α – α),

C =
[
(FXnXn + FYnYn )(FXnXn – FYnYn + GXnYn )

– (GXnXn +GYnYn )(GXnXn –GYnYn – FXnYn )
]|(,),

D =
[
(FXnXn + FYnYn )(GXnXn –GYnYn – FXnYn )

+ (GXnXn +GYnYn )(FXnXn – FYnYn – GXnYn )
]|(,).

Therefore, from the above analysis and Theorem .. in [] we have the following result.

Theorem . If condition () holds and a 	= , then model () undergoes a Hopf bifurca-
tion at the equilibrium E(S∗, I∗)when the parameter h∗ changes in the small neighborhood
of the origin.Moreover, if a <  (resp., a > ), then an attracting (resp., repelling) invariant
closed curve bifurcates from E for h∗ >  (resp., h∗ < ).

4 Numerical simulation
In this section, we give the bifurcation diagrams and phase portraits of model () to con-
firm the above theoretical analysis and show the new interesting complex dynamical be-
haviors by using numerical simulations.
The bifurcation diagrams are considered in the following two cases.
Case . We choose A = , d = ., d = ., r = ., λ = ., (S, I) = (., ) and h ∈

[., .] in model ().
By calculating, we find that model () has an unique endemic equilibrium E(.,

.), � = . > , R = . > , h∗ = ., α = –. and α = . ×
–. Obviously, we have (A,d,d, r,h∗,λ) ∈ M. Figures  and  show the correctness of
Theorem ..
From Figures  and  we see that the equilibrium E(., .) is stable for h <

. and loses its stability when h = .; when h > ., there is a period-doubling
bifurcation. Moreover, a chaotic set emerges with the increasing of h. The corresponding
phase portraits for various values of h are showed in Figure .
Case . We choose A = , d = ., d = ., r = ., λ = ., (S, I) = (, ), and

h ∈ [, ] in model ().

http://www.advancesindifferenceequations.com/content/2014/1/58
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Figure 1 The flip bifurcation S-h of model (2).

Figure 2 The flip bifurcation I-h of model (2).

By calculating, we see that model () has a unique endemic equilibrium E(.,
.), � = –. < , R ≈ . > , h∗∗∗ = . and a = –.. Obviously, we
have (A,d,d, r,h∗∗∗,λ) ∈N . Figure  shows the correctness of Theorem ..
From Figure  we find that endemic equilibrium E(., .) of model () is sta-

ble for h < ., and it loses its stability when h = .;Moreover, when . < h < 
then an invariant circle appears; when h ≈ ., there exist -period orbits; when
h ≈ ., there exist -period orbits; when h ∈ (., .), there exist period-bifurcation
and chaotic sets; when h ≈ ., there exist -period orbits; when h ∈ (., .), there
exist period-bifurcation and chaotic sets; when h≈ ., there exist -period orbits; with
the increasing of h, the period bifurcation and chaotic sets appear again. The above results
can be seen from the phase portraits in Figure (A)-(L) corresponding to Figure .

Remark  For the discretemodel (), the -period orbits, -period orbits and complex dy-
namical behaviors are obtained in this paper which reveal far richer dynamical behaviors
than the continuous epidemic model ().

5 Chaos control
In this section, the feedback control method is used to stabilize chaotic orbits at an unsta-
ble endemic equilibrium of model ().
Consider the following controlled form of model ():

{
Sn+ = Sn + h(A – λ SnIn

Sn+In – dSn + rIn) +Xn,
In+ = In + h[λ SnIn

Sn+In – (d + r)In],
()

http://www.advancesindifferenceequations.com/content/2014/1/58
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(A) (B)

(C) (D)

(E) (F)

Figure 3 The phase portraits of model (2) for different values of h corresponding to Figure 1 and
Figure 2. Here (A) is for h = 3.7, (B) is for h = 3.8, (C) is for h = 4.6, (D) is for h = 4.75, (E) is for h = 4.9 and (F) is
for h = 5.

with the following feedback control law as the control force:

Xn = –p
(
Sn – S∗) – p

(
In – I∗

)
, ()

where p, is the feedback gain, (S∗, I∗) is endemic equilibrium of model ().
The Jacobian matrix of model () at endemic equilibrium E(S∗, I∗) is

J(E) =

(
a – p a – p
a a

)
,

where a, a, a, a are given in model ().

http://www.advancesindifferenceequations.com/content/2014/1/58
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(A) (B)

(C) (D)

Figure 4 Hopf bifurcation of model (2). (A) Hopf bifurcation S-h. (B) Local amplification of (A) for
h ∈ [8, 8.324]. (C) Hopf bifurcation I-h. (D) Local amplification of (C) for h ∈ [8, 8.324].

The corresponding characteristic equation of matrix J(E) is

λ – (a + a – p)λ + a(a – p) – a(a – p) = . ()

Let λ, is the eigenvalue of (), then

λ + λ = a + a – p ()

and

λλ = a(a – p) – a(a – p). ()

The lines ofmarginal stability are determined by solving the equation λ =± and λλ = .
These conditions guarantee that the eigenvalues λ and λ have modulus less than .
Suppose λλ = ; from () we have line l as follows:

ap – ap = aa – aa – . ()

Suppose λ = ,–; from (), () we have lines l and l as follows:

( – a)p + ap = a + a –  – aa + aa ()

http://www.advancesindifferenceequations.com/content/2014/1/58
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(A) (B)

(C) (D)

(E) (F)

Figure 5 The phase portraits of model (2) for different values of h corresponding to Figure 4. Here (A)
is for h = 7.58, (B) is for h = 7.59, (C) is for h = 7.6, (D) is for h = 8, (E) is for h = 8.025, (F) is for h = 8.08, (G) is for
h = 8.2, (H) is for h = 8.26, (I) is for h = 8.324, (J) is for h = 8.635, (K) is for h = 8.7, and (L) is for h = 8.715.

and

( + a)p – ap = a + a +  + aa – aa. ()

The stable eigenvalues lie within a triangular region by line l, l, and l, which can be seen
from Figure .
Therefore, some numerical simulations can be made to control the unstable endemic

equilibrium E(S∗, I∗) by the state feedback method. The parameters are selected as
A = , d = ., d = ., r = ., λ = ., h = ., (S, I) = (, ) and the feedback
gain p = –., p = –.. A chaotic trajectory is stabilized at the endemic equilibrium
(., .) (see Figure ).
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(G) (H)

(I) (J)

(K) (L)

Figure 5 Continued

Remark In [, ] the authors only obtained the chaotic sets. In this paper, the feedback
control method is used to stabilize chaotic orbits at an unstable endemic equilibrium. As
Chen and Sun in [] pointed out the feedback control variables have an important role
in dealing with the disease and no scholar has investigated the feedback control in epi-
demic models. They only discussed a continuous-time SI epidemic model with feedback
controls. We use the feedback control method to stabilize the chaotic orbits in a discrete-
time SIS epidemic model. These results show that the feedback control may be a useful
way to control the disease at an acceptable level in the population.

6 Conclusion
In this paper, we discuss the dynamical behaviors ofmodel (). The basic reproductive rate
R is obtained with the value R = λ

d+r
. If R < , model () only has a disease-free equilib-

http://www.advancesindifferenceequations.com/content/2014/1/58
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Figure 6 The bounded region for the eigenvalues
of the controlled model (15) in the (p1,p2) plane
for A = 6, d1 = 0.15, d2 = 0.42, r = 0.12, λ = 0.75
and h = 8.2. The blue ◦ line is l1. The red ∗ line is l2
and the black · line is l3.

Figure 7 The time responses for the state S, I of the controlled model (15) in the (n,S), (n, I) plane.

rium E( Ad , ); if R > , model () has an endemic equilibrium E(S∗, I∗) besides E( Ad , ),
and when for the parameter h are chosen different values, model () appears to have many
complex and interesting dynamical behaviors. That is, if the parameters (A,d,d, r,h,λ)
are inM,M orN and taking h as the bifurcation parameter, there appear a flip bifurcation
and aHopf bifurcation formodel (), respectively. Moreover, model () displays very com-
plex dynamical behaviors, such as invariant cycle, cascade period-doubling, -period or-
bits, -period orbits, and chaotic sets. In Section , the chaos control is obtained.However,
we only control the chaotic orbits to the endemic equilibrium E(S∗, I∗). For the epidemic
disease, we hope that the infective individuals become extinct, that is, limh→+∞ In = .
In the discrete process of the continuous models, there are two possible approaches: the

Mickens scheme [, , , ] and the Euler scheme [, –]. As the authors of [, ,
, ] proved, the discrete epidemic models which are obtained by the Mickens scheme
always have the same dynamical behaviors of the corresponding continuous models. The
models [, –] obtained by the forward Euler scheme show complex dynamical behav-
iors, which are different from the continuous models. In our study, we only focus on the
complex dynamical behaviors and chaos control of our discrete SIS epidemic model; we
are not to discuss the advantages or disadvantages comparing the forward Euler scheme
with the Mickens scheme. By the Mickens scheme, we will obtain another discrete model
from model (). Whether the discrete model has the same dynamical behaviors as the
continuous model () we will study in our future study.

http://www.advancesindifferenceequations.com/content/2014/1/58
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Finally, the results show that the susceptible and infective individuals can coexist in sta-
ble period-n orbits and cycle (see Figures  and ). Moreover, we obtained the chaos con-
trol inmodel () which can help us to control the disease transmitting in a population. The
above arguments indicate that our findings can give a better understanding of the complex
dynamical behaviors of the disease and provide a useful way to control the disease, in spite
of the lack of some real data for our model. In our future work, we expect to obtain some
more results based on real data from known epidemic diseases to illustrate the validity of
our theoretical results, such as how to predict the occurrence of diseases, in which way do
bifurcations, chaos, and strange attractors impact on the dynamics of disease, and so on.
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