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Abstract
This paper deals with the asymptotic stability and boundedness of the solution of a
time-varying impulsive Volterra integro-dynamic system on time scales in which the
coefficient matrix is not necessarily stable. We generalize to a time scale some known
properties concerning the asymptotic behavior and boundedness from the
continuous case.
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1 Introduction
Impulsive differential systems represent a natural framework for mathematical modelling
of several processes in the applied sciences [–]. Basic qualitative and quantitative results
about impulsive Volterra integro differential equations were studied in the literature (see
[–]). Volterra-type equations (integral and integro-dynamic) on time scales were stud-
ied in [–]. In [] the authors presented a theory for linear impulsive dynamic systems
on time scales and recently in [] various results concerning the asymptotic stability and
boundedness of Volterra integro-dynamic equations on time scales were developed. Mo-
tivated by these papers, we generalize these results to impulsive integro-dynamic systems
on time scales.

2 Preliminaries
In this paperwe assume that the reader is familiar with the basic calculus of time scales. Let
R

n be the space of n-dimensional column vectors x = col(x,x, . . . ,xn) with a norm ‖ · ‖.
Also, with the same symbol ‖ · ‖ we denote the corresponding matrix norm in the space
Mn(R) of n× nmatrices. If A ∈Mn(R), then we denote by AT its conjugate transpose. We
recall that ‖A‖ := sup{‖Ax‖;‖x‖ ≤ } and the following inequality ‖Ax‖ ≤ ‖A‖‖x‖ holds
for all A ∈Mn(R) and x ∈ R

n. A time scale T is a nonempty closed subset of R. The set of
all rd-continuous functions f : T →R

n will be denoted by Crd(T,Rn).
The notations [a,b], [a,b), and so on, denote time scale intervals such as [a,b] := {t ∈

T;a ≤ t ≤ b}, where a,b ∈ T. Also, for any τ ∈ T, let Tτ := [τ ,∞)∩T and T := [,∞)∩T.
We denote by R (respectively R+) the set of all regressive (respectively positively re-

gressive) functions from T to R. The space of all rd-continuous and regressive functions
from T to R is denoted by CrdR(T,R). Also,

C+
rdR(T,R) :=

{
p ∈ CrdR(T,R);  +μ(t)p(t) >  for all t ∈ T

}
.
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We denote by C
rd(T,Rn ) the set of all functions f : T → R

n that are differentiable on
T with its delta-derivative f �(t) ∈ Crd(T,Rn). The set of rd-continuous (respectively rd-
continuous and regressive) functions A : T → Mn(R) is denoted by Crd(T,Mn(R)) (re-
spectively by CrdR(T,Mn(R))). We recall that a matrix-valued function A is said to be
regressive if I +μ(t)A(t) is invertible for all t ∈ T, where I is the n× n identity matrix. For
a comprehensive review on time scales, we refer the reader to [] and [].

Lemma . ([, Theorem .]) Let p,q ∈ CrdR(T,R). Then e�
p�q(·, t) = (p – q) ep(·,t)eσq (·,t) .

Lemma . ([, Theorem .]) Let α ∈R with α ∈ C+
rdR(T,R). Then

eα(t, s)≥  + α(t – s) for all t ≥ s.

Theorem . ([, Theorem ]) Let a,b ∈ T with b > a and assume that f : T×T → R is
integrable on {(t, s) ∈ T×T : b > t > s≥ a}. Then

∫ b

a

∫ η

a
f (η, ξ )�ξ�η =

∫ b

a

∫ b

σ (ξ )
f (η, ξ )�η�ξ .

It is easy to verify that the above result holds for f ∈ Crd(T×T,Rn).

Lemma . ([, Lemma .]) Let t ∈ T, y ∈ CrdR(T,R), p ∈ C+
rdR(T,R) and c,bk ∈

R+, k = , , . . . . Then

y(t) ≤ c +
∫ t

t
p(s)y(s)�s +

∑
t<tk<t

bky(tk), t ∈ T

implies

y(t) ≤ c
∏

t<tk<t
( + bk)ep(t, τ ), t ≥ t.

Consider the Volterra time-varying impulsive integro-dynamic system

⎧⎪⎪⎨
⎪⎪⎩
x�(t) = A(t)x(t) +

∫ t
t
K (t, s)x(s)�s + F(t), t ∈ T\{tk},

x(t+k ) = (I +Ck)x(tk), t = tk ,k = , , . . . ,

x(t) = x,

()

where A (not necessarily stable) is an n×nmatrix function and F is an n-vector function,
which is piecewise continuous on T, K is an n × n matrix function, which is piecewise
continuous on � := {(t, s) ∈ T × T : t ≤ s ≤ t < ∞}, Ck ∈ Mn(R+),  ≤ t < t < t < · · · <
tk < · · · , with limk→∞ tk = ∞ and the impulsive points tk are right dense. Note that x(t–k )
represents the left limit of x(t) at t = tk and x(t+k ) represents the right limit of x(t) at t = tk .
The rest of the paper is organized as follows. In Section , we investigate the asymptotic

behavior of solutions of system (), which generalizes the continuous version (T =R) of [,
Theorem .]. In Section  we discuss the uniform boundedness of solutions of () by con-
structing a Lyapunov functional. Further results for boundedness, uniform boundedness
and stability of solutions will also be developed.
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3 Asymptotic stability
Our first result in this section is to present a system equivalent to () which involves an
arbitrary function.

Theorem . Let L(t, s) be an n × n continuously differentiable matrix function with re-
spect to s on tk– < s ≤ tk < t with L(t, t+k ) = (I +Ck)–L(t, tk) for each k = , , . . . . Then () is
equivalent to the system

⎧⎪⎪⎨
⎪⎪⎩
y�(t) = B(t)y(t) +

∫ t
t
G(t, s)y(s)�s +H(t), t ∈ T\{tk},

y(t+k ) = (I +Ck)y(tk), t = tk ,k = , , . . . ,

y(t) = y,

()

where

B(t) = A(t) – L(t, t),

H(t) = F(t) + L(t, t)x +
∫ t

t
L
(
t,σ (s)

)
F(s)�s,

()

and

G(t, s) = K(t, s) +�sL(t, s) + L
(
t,σ (s)

)
A(s)

+
∫ t

σ (s)
L
(
t,σ (τ )

)
K (τ , s)�τ , s, t 
= tk . ()

Proof Let x(t) be any solution of () on T. If we take p(s) = L(t, s)x(s), then for tk– < s ≤
tk < t, we have

p�(s) = �sL(t, s)x(s) + L
(
t,σ (s)

)
x�(s)

and by () it follows that

p�(s) = �sL(t, s)x(s) + L
(
t,σ (s)

)
A(s)x(s)

+ L
(
t,σ (s)

)∫ s

t
K (s, τ )x(τ )�τ + L

(
t,σ (s)

)
F(s).

Integration from t to t yields

p(t) – p(t) –
∑

t<tk<t
�p(tk)

=
∫ t

t
�sL(t, s)x(s)�s +

∫ t

t
L
(
t,σ (s)

)
A(s)x(s)�s

+
∫ t

t
L
(
t,σ (s)

)∫ s

t
K (s, τ )x(τ )�τ�s

+
∫ t

t
L
(
t,σ (s)

)
F(s)�s.
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Using Theorem ., we obtain

p(t) – p(t) –
∑

t<tk<t
�p(tk) =

∫ t

t
�sL(t, s)x(s)�s +

∫ t

t
L
(
t,σ (s)

)
A(s)x(s)�s

+
∫ t

t

(∫ t

σ (τ )
L
(
t,σ (s)

)
K (s, τ )�s

)
x(τ )�τ

+
∫ t

t
L
(
t,σ (s)

)
F(s)�s.

By a change of variables in the double integral term, we have

p(t) – p(t) –
∑

t<tk<t
�p(tk) =

∫ t

t

[
�sL(t, s) + L

(
t,σ (s)

)
A(s)

+
∫ t

σ (s)
L
(
t,σ (u)

)
K (u, s)�u

]
x(s)�s

+
∫ t

t
L
(
t,σ (s)

)
F(s)�s.

Using () and (), we obtain

(
A(t) – B(t)

)
x(t) =

∫ t

t

(
G(t, s) –K (t, s)

)
x(s)�s +H(t) – F(t) +

∑
t<tk<t

�p(tk).

From (), we have

x�(t) = B(t)x(t) +
∫ t

t
G(t, s)x(s)�s +H(t) +

∑
t<tk<t

�p(tk).

For t < s≤ tk < t, we obtain

�p(tk) = L
(
t, t+k

)
x
(
t+k

)
– L(t, tk)x(tk)

=
[
L
(
t, t+k

)
(I +Ck) – L(t, tk)

]
x(tk) = .

Hence, x(t) is a solution of ().
Conversely, let y(t) be any solution of () on T. We shall show that it satisfies (). Con-

sider

Z(t) = y�(t) – F(t) –A(t)y(t) –
∫ t

t
K (t, s)y(s)�s.

Then by () and () we have

Z(t) = –L(t, t)y(t) + L(t, t)x +
∫ t

t
G(t, s)y(s)�s

+
∫ t

t
L
(
t,σ (s)

)
F(s)�s –

∫ t

t
K (t, s)y(s)�s.
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Using (), we obtain

Z(t) = –L(t, t)y(t) + L(t, t)x +
∫ t

t
L
(
t,σ (s)

)
F(s)�s

–
∫ t

t
K (t, s)y(s)�s +

∫ t

t

[
K (t, s) +�sL(t, s) + L

(
t,σ (s)

)
A(s)

+
∫ t

σ (s)
L
(
t,σ (τ )

)
K (τ , s)�τ

]
y(s)�s.

Again by Theorem ., we have

Z(t) = –L(t, t)y(t) +
∫ t

t

[
�sL(t, s) + L

(
t,σ (s)

)
A(s)

]
y(s)�s

+
∫ t

t
L
(
t,σ (s)

)[∫ s

t
K (s, τ )y(τ )�τ

]
�s

+ L(t, t)x +
∫ t

t
L
(
t,σ (s)

)
F(s)�s. ()

Now, by setting q(s) = L(t, s)y(s), then for tk– < s < tk < t, we get

q�(s) =�sL(t, s)y(s) + L
(
t,σ (s)

)
y�(s). ()

Integrating () from t to t yields

q(t) – q(t) –
∑

t<tk<t
�q(tk) =

∫ t

t

[
�sL(t, s)y(s) + L

(
t,σ (s)

)
y�(s)

]
�s

and therefore, we have

L(t, t)y(t) – L(t, t)x –
∑

t<tk<t
�q(tk) =

∫ t

t

[
�sL(t, s)y(s) + L

(
t,σ (s)

)
y�(s)

]
�s. ()

Since �q(tk) = , substituting () in (), we obtain

Z(t) = –
∫ t

t
L
(
t,σ (s)

)
y�(s)�s +

∫ t

t
L
(
t,σ (s)

)
A(s)y(s)�s

+
∫ t

t
L
(
t,σ (s)

)[∫ s

t
K (s, τ )y(τ )�τ

]
�s +

∫ t

t
L
(
t,σ (s)

)
F(s)�s

= –
∫ t

t
L
(
t,σ (s)

)
Z(s)�s,

which implies Z(t) ≡ , by the unique solution of Volterra integral equations [] and the
fact that �Z(tk) = . Hence y(t) is a solution of (). �

For our next result we assume that matrix B commutes with its integral, so B commutes
with its matrix exponential, that is, B(t)eB(t, s) = eB(t, s)B(t), [].

http://www.advancesindifferenceequations.com/content/2014/1/6
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Theorem . Let B ∈ C(T,Mn(R)) and M,α > . Assume that matrix B commutes with
its integral. If

∥∥eB(t, s)∥∥ ≤Meα(s, t), t, s ∈ �, ()

then every solution x(t) of () satisfies

∥∥x(t)∥∥ ≤M‖x‖eα(t, t) +M
∫ t

t
eα

(
σ (s), t

)∥∥H(s)
∥∥�s

+M
∫ t

t

[∫ t

σ (s)
eα

(
σ (τ ), t

)∥∥G(τ , s)∥∥�τ

]∥∥x(s)∥∥�s

+Meα(t, t)
∑

t<tk<t
‖βk‖

∥∥x(tk)∥∥, ()

where βk = [eB(t, t+k )(I +Ck) – eB(t, tk)].

Proof Let x(t) be the solution of () and define q(t) = eB(t, t)x(t). Then

q�(t) = –B(t)eB
(
t,σ (t)

)
x(t) + eB

(
t,σ (t)

)
x�(t).

Substituting for x�(t) from () and integrating from t to t, we obtain

q(t) – q(t) –
∑

t<tk<t
�q(tk) =

∫ t

t
eB

(
t,σ (s)

)
H(s)�s

+
∫ t

t
eB

(
t,σ (s)

)[∫ s

t
G(s, τ )x(τ )�τ

]
�s.

Using Theorem . and applying the semigroup property of exponential functions [,
Theorem .], we obtain

x(t) = eB(t, t)x +
∫ t

t
eB

(
t,σ (s)

)
H(s)�s + eB(t, t)

∑
t<tk<t

�q(tk)

+
∫ t

t

[∫ t

σ (s)
eB

(
t,σ (τ )

)
G(τ , s)�τ

]
x(s)�s. ()

For t < s < tk < t, we have

�q(tk) = eB
(
t, t+k

)
x
(
t+k

)
– eB(t, tk)x(tk)

=
[
eB

(
t, t+k

)
(I +Ck) – eB(t, tk)

]
x(tk)

= βkx(tk).

Hence, using () and applying the norm on (), we obtain (), which completes the
proof. �

In the next theorem we present sufficient conditions for asymptotic stability.

http://www.advancesindifferenceequations.com/content/2014/1/6
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Theorem . Let L(t, s) be an n × n continuously differentiable matrix function with re-
spect to s on � such that
(a) the assumptions of Theorem . hold,
(b) ‖L(t, s)‖ ≤ Leγ (s,t)

(+μ(t)α)(+μ(t)γ ) ,
(c) supt≤s≤t<∞

∫ t
σ (s) eα(σ (τ ), t)‖G(τ , s)‖�τ ≤ α,

(d) F(t)≡  and
(e)

∏
t<tk<t[ +M(dk + )]≤ eλ(tk , ), where dk = ‖(I +Ck)‖: dk →  as k → ∞,

where L,γ > α, α, λ are positive real constants.
If α �Mα �λ > , then every solution x(t) of () tends to zero exponentially as t → +∞.

Proof In view of Theorem . and the fact that L(t, s) satisfies (a), it is enough to show that
every solution of () tends to zero as t → +∞. From (a) and using (), we obtain

eα(t, )
∥∥x(t)∥∥ ≤M‖x‖eα(t, ) +M

∫ t

t
eα

(
σ (s), 

)∥∥H(s)
∥∥�s

+M
∫ t

t

[∫ t

σ (s)
eα

(
σ (τ ), 

)∥∥G(τ , s)∥∥�τ

]∥∥x(s)∥∥�s

+Meα(t, )
∑

t<tk<t
‖βk‖

∥∥x(tk)∥∥. ()

Since

∫ t

t
eα

(
σ (s), 

)∥∥H(s)
∥∥�s≤ L‖x‖eγ (t, )

∫ t

t

eα(σ (s), )eγ (, s)
( +μ(s)α)( +μ(s)γ )

�s,

then by Lemma . and the fact that γ > α, we obtain

∫ t

t
eα

(
σ (s), 

)∥∥H(s)
∥∥�s≤ L‖x‖eα(t, )

γ – α
.

Using (), (b), (c) and (d), we have

eα(t, )
∥∥x(t)∥∥ ≤ M‖x‖eα(t, ) +ML‖x‖eα(t, )

γ – α
+M

∫ t

t
αeα(s, )

∥∥x(s)∥∥�s

+Meα(t, )
∑

t<tk<t
‖βk‖

∥∥x(tk)∥∥.

From Theorem ., we have

‖βk‖ ≤ ∥∥eB(t, t+k )∥∥∥∥(I +Ck)
∥∥ +

∥∥eB(t, tk)∥∥ ≤Meα(tk , t)( + dk), ()

which implies

eα(t, )
∥∥x(t)∥∥ ≤M‖x‖

(
 +

L
γ – α

)
eα(t, ) +M

∫ t

t
αeα(s, )

∥∥x(s)∥∥�s

+
∑

t<tk<t
M( + dk)eα(tk , )

∥∥x(tk)∥∥. ()

http://www.advancesindifferenceequations.com/content/2014/1/6
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Lemma . yields that

eα(t, )
∥∥x(t)∥∥ ≤M‖x‖

(
 +

L
γ – α

)
eα(t, )

∏
t<tk<t

[
 +M( + dk)

]
eMα (t, t).

Using [, Theorem .], (e) and the fact that t < tk < t, we obtain

∥∥x(t)∥∥ ≤M‖x‖
(
 +

L
γ – α

)
eα�Mα (t, )eα�Mα�λ(, t),

where α � Mα � λ = α–Mα–λ(+μ(t)Mα)
(+μ(t)Mα)(+μ(t)λ) [, Exercise .]. By Lemma ., we have

eα�Mα�λ(, t)≤ 
+(α�Mα�λ)t , so we obtain

∥∥x(t)∥∥ ≤ M‖x‖( + L
γ–α

)eα�Mα (t, )
 + (α �Mα � λ)t

.

Hence, in view of (e) and the fact α �Mα � λ > , we obtain the required result. �

Example . Let us consider the Volterra integro-dynamic equation

⎧⎪⎪⎨
⎪⎪⎩
x�(t) = �x(t) +

∫ t
 e�(t, s)x(s)�s,

x(t+k ) =

k x(tk),

x() = ,

()

where A(t) = �, K (t, s) = e�(t, s),  +Ck = 
k and the impulsive points tk = k. Now con-

sider L(t, s) =  so then B(t) =�. The matrix function G(t, s) given in () becomes

G(t, s) = e�(t, s). ()

In the following, we check the assumptions of Theorem . when T =R.
Let T =R. Then we have

∣∣eB(t, s)∣∣ = ∣∣e–(t, s)∣∣ = e(s–t) ≤Me(s–t), M = ,

and

 =
∣∣L(t, s)∣∣ < Le(s–t), L = .

Here the constants are α =  and γ = . From () it follows that

G(t, s) = e–(t–s). ()

Then from () we obtain that G(t, s) is a positive function, and

∫ t

s
e(τ–t)

∣∣G(τ , s)∣∣dτ =
∫ t

s
e(τ–t)e–(τ–s) dτ

= e(s–t)(t – s)

http://www.advancesindifferenceequations.com/content/2014/1/6
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≤ (t – s)
 + (t – s)

<


,

from which it follows that

sup
≤s≤t<∞

∫ t

s
e

 (τ–t)

∣∣G(τ , s)∣∣dτ ≤ 


and

∏
t<tk<t

(
 +


k

)
≤ e

k
 .

Since α = 
 and λ = 

 , then we have that α –Mα – λ > . Therefore, since all the as-
sumptions of Theorem . hold for system (), it follows that the solution of () tends
to zero exponentially as t → +∞.
If T =N, then all points are right scattered and there is no impulse condition. So, from

[, Example .] it follows that the solution of () tends to zero exponentially as t → +∞.

Theorem . Let L ∈ C(�,Mn(R)) such that �sL(t, s) ∈ C(�,Mn(R)) for (t, s) ∈ � and
(i) assumptions (a), (b), (d) and (e) of Theorem . hold,
(ii) ‖�sL(t, s)‖ ≤ Neδ(s, t) and ‖K (t, s)‖ ≤ Keθ (s, t),
(iii) ‖A(t)‖ ≤ A for t ≤ t < ∞,
(iv) supt≤s≤t<∞

∫ t
σ (s)[(K +N)( +μ(τ )α) + AL+(τ–σ (s))LK

μ(τ )α ]�τ ≤ α�
 for some α�

 > ,
where A, N, K, δ and θ are positive real numbers such that γ > δ > α, θ > α.
If α �Mα�

 �λ > , then every solution x(t) of () tends to zero exponentially as t → +∞.

Proof From (), we obtain

∥∥G(t, s)∥∥ ≤ ∥∥K (t, s)
∥∥ +

∥∥�sL(t, s)
∥∥ +

∥∥L(
t,σ (s)

)∥∥∥∥A(s)∥∥
+

∫ t

σ (s)

∥∥L(
t,σ (u)

)∥∥∥∥K (u, s)
∥∥�u,

which implies

∥∥G(t, s)∥∥ ≤ Keθ (s, t) +Neδ(s, t) +
Leγ (s, t)

( +μ(t)α)( +μ(t)γ )
A

+
∫ t

σ (s)

LKeγ (u, t)eθ (s,u)
( +μ(t)α)( +μ(t)γ )

�u. ()

Since γ > δ > α, θ > α, then from (i), (ii) and (iii), () becomes

∥∥G(t, s)∥∥ ≤ Keα(s, t) +Neα(s, t)

+
Leα(s, t)

( +μ(t)α)( +μ(t)γ )
A +

(t – σ (s))LKeα(s, t)
( +μ(t)α)( +μ(t)γ )

()
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and

eα

(
σ (t), 

)∥∥G(t, s)∥∥ ≤
[
(K +N)

(
 +μ(t)α

)
+
AL + (t – σ (s))LK

μ(t)α

]
eα(s, ).

Integrating the above inequality and using (iv), we obtain

∫ t

σ (s)
eα

(
σ (τ ), 

)∥∥G(τ , s)∥∥�τ ≤ α�
eα(s, ). ()

Substituting () in (), we obtain

eα(t, )
∥∥x(t)∥∥ ≤ M‖x‖

(
 +

L
γ – α

)
eα(t, ) +M

∫ t

t
α�
eα(s, )

∥∥x(s)∥∥�s

+
∑

t<tk<t
M( + dk)eα(tk , )

∥∥x(tk)∥∥.

Lemma . yields that

eα(t, )
∥∥x(t)∥∥ ≤ M‖x‖

(
 +

L
γ – α

)
eα(t, )

×
∏

t<tk<t

[
 +M( + dk)

]
eMα�


(t, t).

Using [, Theorem .], (e) and the fact that t < tk < t, we obtain

∥∥x(t)∥∥ ≤M‖x‖
(
 +

L
γ – α

)
eα�Mα�


(t, )eα�Mα�

�λ(, t).

Then by Lemma ., we have

∥∥x(t)∥∥ ≤ M‖x‖( + L
γ–α

)eα�Mα�

(t, )

 + (α �Mα�
 � λ)t

.

Hence, in view of (i) and α �Mα�
 � λ > , we obtain the required result. �

Corollary . Let L(t, s) be an n× n continuously differentiable matrix function with re-
spect to s on tk– < s ≤ tk < t with L(t, t+k ) = (I +Ck)–L(t, tk) for each k = , , . . . . Then () is
equivalent to the impulsive dynamic system

⎧⎪⎪⎨
⎪⎪⎩
y�(t) = B(t)y(t) +H(t), t ∈ T\{tk},
y(t+k ) = (I +Ck)y(tk), t = tk ,k = , , . . . ,

y(t) = y,

()

where

B(t) = A(t) – L(t, t),

H(t) = F(t) + L(t, t)x +
∫ t

s
L
(
t,σ (s)

)
F(s)�s,

()
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and

K (t, s) +�sL(t, s) + L
(
t,σ (s)

)
A(s)

+
∫ t

σ (s)
L
(
t,σ (u)

)
K (u, s)�u = , s, t 
= tk . ()

Proof The proof follows an argument similar to that in Theorem . with G(t, s) = . �

4 Boundedness
In the first result of this section, we give sufficient conditions to insure that () has bounded
solutions. Our results apply to () whether A(t) is stable, identically zero, or completely
unstable, and do not require A(t) to be constant nor K (t, s) to be a convolution kernel. Let
C(t) and D(t, s) be continuous n × n matrices, t ≤ s ≤ t < ∞. Let s ∈ [t,∞) and assume
that C(t) is an n × n regressive matrix. The unique matrix solution of the initial valued
problem

Y� = C(t)Y , Y
(
t+k

)
= (I +Ck)Y (tk), Y (s) = I, ()

is called the impulsive transition matrix (at s) and it is denoted by SC(t, s) (see [, Corol-
lary .]). Also, if H(t, s) is an n× n regressive matrix satisfying

⎧⎪⎪⎨
⎪⎪⎩

�tH(t, s) = C(t)H(t, s) +D(t, s),

H(t+k , s) = (I +Ck)H(tk , s),

H(s, s) = A(s) –C(s),

()

then

H(t, s) = SC(t, s)
[
A(s) –C(s)

]
+

∫ t

s
SC

(
t,σ (τ )

)
D(τ , s)�τ . ()

Theorem . Let eC(t, s) be the solution of (), and suppose that there are positive con-
stants N , J and M such that

(i) ‖SC(t, t)‖ ≤N ,
(ii)

∫ t
t

‖SC(t, s)[A(s) –C(s)] +
∫ t
s SC(t,σ (τ ))K(τ , s)�τ‖�s≤ J < ,

(iii) ‖ ∫ t
t
SC(t,σ (u))[F(u) –G(t)x(t)]�u‖ ≤ M.

Then all the solutions of () are uniformly bounded, and the zero solution of the corre-
sponding homogenous equation of () is uniformly stable with the initial condition x(t) = .

Proof Consider the following functional

V
(
t,x(·)) = x(t) –

∫ t

t
H(t, s)x(s)�s. ()

The derivative of V (t,x(·)) along a solution x(t) = x(t, t,x) of () satisfies

V�
(
t,x(·)) = x�(t) –�t

∫ t

t
H(t, s)x(s)�s.
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From [, Theorem .], we obtain

V�
(
t,x(·)) = x�(t) –H

(
σ (t), t

)
x(t) –

∫ t

t
�tH(t, s)x(s)�s

= A(t)x(t) –H
(
σ (t), t

)
x(t) +

∫ t

t
K (t, s)x(s)�s

–
∫ t

t
�tH(t, s)x(s)�s + F(t)

or

V�
(
t,x(·)) = [

A(t) –H
(
σ (t), t

)]
x(t) + F(t)

+
∫ t

t

[
K (t, s) –�tH(t, s)

]
x(s)�s. ()

By using (), [, Theorems .] and [, Theorem.], we have the following expression:

H
(
σ (t), t

)
= SC

(
σ (t), t

)[
A(t) –C(t)

]
+

∫ σ (t)

t
SC

(
σ (t),σ (τ )

)
D(τ , t)�τ

=
(
I +μ(t)C(t)

)
SC(t, t)

[
A(t) –C(t)

]
+μ(t)SC

(
σ (t),σ (t)

)
D(t, t)

=
(
I +μ(t)C(t)

)[
A(t) –C(t)

]
+μ(t)D(t, t)

=
[
A(t) –C(t)

]
+μ(t)

[
C(t)A(t) –C(t) +D(t, t)

]
,

which implies that

H
(
σ (t), t

)
=

[
A(t) –C(t)

]
+G(t), ()

where G(t) = μ(t)[C(t)A(t) –C(t) +D(t, t)]. Substituting () in () yields

V�
(
t,x(·)) = C(t)x(t) –G(t)x(t) +

∫ t

t

[
K (t, s) –�tH(t, s)

]
x(s)�s + F(t).

From () and (), we have

V�
(
t,x(·)) = C(t)V

(
t,x(·)) +

∫ t

t

[
K (t, s) –D(t, s)

]
x(s)�s + F(t) –G(t)x(t),

and it is easy to see that

V
(
t+k ,x(·)

)
= (I +Ck)V

(
tk ,x(·)

)
.

Thus

V
(
t,x(·)) = SC(t, t)x +

∫ t

t
SC

(
t,σ (u)

)
g
(
u,x(·))�u, ()
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where

g
(
t,x(·)) =

∫ t

t

[
K (t, s) –D(t, s)

]
x(s)�s + F(t) –G(t)x(t).

LetD(t, s) = K (t, s). Then by (), (ii) is precisely
∫ t
t

‖H(t, s)‖�s ≤ J < . By () and (i)-(iii),

∣∣V (
t,x(·))∣∣ =

∥∥∥∥SC(t, t)x +
∫ t

t
SC

(
t,σ (u)

)[
F(u) –G(t)x(t)

]
�u

∥∥∥∥
≤ ∥∥SC(t, t)∥∥‖x‖ +

∥∥∥∥
∫ t

t
SC

(
t,σ (u)

)[
F(u) –G(t)x(t)

]
�u

∥∥∥∥
≤ N‖x‖ +M.

If ‖x‖ < B for some constant, and if Q =NB +M, then by () we obtain

∥∥x(t)∥∥ –
∫ t

t

∥∥H(t, s)
∥∥∥∥x(s)∥∥�s ≤ ∥∥V (

t,x(·))∥∥ ≤Q. ()

Now, either there exists B >  such that ‖x(t)‖ < B for all t ≥ t, and thus x(t) is uniformly
bounded, or there exists a monotone sequence {tn} tending to infinity such that ‖x(tn)‖ =
maxt≤t≤tn ‖x(t)‖ and ‖x(tn)‖ → ∞ as tn → ∞, and by (ii) and () we have

∥∥x(tn)∥∥( – J) ≤ ∥∥x(tn)∥∥ –
∫ tn

t

∥∥H(tn, s)
∥∥∥∥x(s)∥∥�s ≤Q,

a contradiction. This completes the proof. �

In the second part of this section, we consider system () with F(t) bounded and suppose
that

C(t, s) = –
∫ ∞

t
K (u, s)�u ()

is defined and continuous on �. The matrix E(t) on [t,∞) is defined by

E(t) = A(t) –C
(
σ (t), t

)
. ()

Then () is equivalent to the system

⎧⎪⎪⎨
⎪⎪⎩
x�(t) = E(t)x(t) +�t

∫ t
t
C(t, s)x(s)�s + F(t), t ∈ T\{tk},

x(t+k ) = (I +Ck)x(tk), t = tk ,k = , , . . . ,

x(t) = x.

()

Theorem . Let E ∈ C(T,Mn(R)) and M,α > . Assume that E(t) commutes with its in-
tegral. If

∥∥eE(t, s)∥∥ ≤Meα(s, t), t, s ∈ �, ()
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then every solution x(t) of () with x(t) = x satisfies

∥∥x(t)∥∥ ≤M‖x‖eα(t, t) +M
∫ t

t
eα

(
σ (s), t

)∥∥F(s)∥∥�s

+M
∫ t

t

∥∥E(u)∥∥eα

(
σ (u), t

)[∫ u

t

∥∥C(u, s)∥∥∥∥x(s)∥∥�s
]
�u

+
∫ t

t

∥∥C(t, s)∥∥∥∥x(s)∥∥�s +Meα(t, t)
∑

t<tk<t
‖βk‖

∥∥x(tk)∥∥, ()

where βk = [eE(t, t+k )(I +Ck) – eE(t, tk)].

Proof Let x(t) be the solution of () and define q(t) = eE(t, t)x(t). Then

q�(t) = –E(t)eE
(
t,σ (t)

)
x(t) + eE

(
t,σ (t)

)
x�(t).

Substituting for x�(t) from () and integrating from t to t, yields

q(t) – q(t) –
∑

t<tk<t
�q(tk) =

∫ t

t
eE

(
t,σ (s)

)
F(s)�s

+
∫ t

t
eE

(
t,σ (u)

)[
�u

∫ u

t
C(u, s)x(s)�s

]
�u.

Applying the integration by parts on the second term of the right-hand side [, Theo-
rem .] and the semigroup property of exponential functions [, Theorem .], we
obtain

x(t) = eE(t, t)x +
∫ t

t
eE

(
t,σ (s)

)
F(s)�s +

∫ t

t
C(t, s)x(s)�s

+
∫ t

t
E(u)eE

(
t,σ (s)

)[∫ u

t
C(u, s)x(s)�s

]
�u + eE(t, t)

∑
t<tk<t

�q(tk). ()

For t < s < tk < t, we have

�q(tk) = eE
(
t, t+k

)
x
(
t+k

)
– eE(t, tk)x(tk)

=
[
eE

(
t, t+k

)
(I +Ck) – eE(t, tk)

]
x(tk)

= βkx(tk).

Hence, using () and applying the norm on (), we obtain (), which completes the
proof. �

Assume that the hypotheses of Theorem . hold for next results.

Theorem . Let x(t) be a solution of (). If ‖E(t)‖ ≤ d on [t,∞) for some d > , F(t) is
bounded and supt≤t<∞

∫ t
t

‖C(t, s)‖�s+ 
d
∑

t<tk<t ‖βk‖ ≤ β ,with β sufficiently small, then
x(t) is bounded.
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Proof For the given t and bounded F(t), there is C >  with

M‖x‖eα(t, t) +M sup
t≤t<∞

∫ t

t
eα

(
σ (s), t

)∥∥F(s)∥∥�s < C. ()

Substituting () in (), we obtain

∥∥x(t)∥∥ ≤ C +Md
∫ t

t
eα

(
σ (u), t

)[∫ u

t

∥∥C(u, s)∥∥∥∥x(s)∥∥�s
]
�u

+
∫ t

t

∥∥C(t, s)∥∥∥∥x(s)∥∥�s +Meα(t, t)
∑

t<tk<t
‖βk‖

∥∥x(tk)∥∥,

≤ C +
Md
α

β sup
t≤s<∞

∥∥x(s)∥∥ + β sup
t≤s<∞

∥∥x(s)∥∥

= C + β

[
 +

Md
α

]
sup

t≤s<∞

∥∥x(s)∥∥.

Let β be chosen so that β[ + Md
α
] =m < . Then

∥∥x(t)∥∥ ≤ C +m sup
t≤s<t

∥∥x(s)∥∥.

Let C > ‖x‖ and C +mC < C. If ‖x(t)‖ is not bounded, then there exists a first t > t
with ‖x(t)‖ = C, and then

C =
∥∥x(t)∥∥ ≤ C +mC < C,

a contradiction. This completes the proof. �

Theorem . If F(t) =  in (), ‖E(t)‖ ≤ d on [t,∞) for some d > , and
∫ t
t

‖C(t, s)‖�s +

d
∑

t<tk<t ‖βk‖ ≤ β for β sufficiently small, then the zero solution of () with the initial
condition x(t) =  is uniformly stable.

Proof Let ε >  be given.Wewish to find δ >  such that t ≥ , ‖x‖ < δ, and t ≥ t implies
‖x(t,x)‖ < ε. Let δ < ε with δ yet to be determined. If ‖x‖ < δ, then M‖x‖ ≤ Mδ. From
() with F(t) = ,

∥∥x(t)∥∥ ≤ Mδ +
Md
α

β sup
t≤s<t

∥∥x(s)∥∥ + β sup
t≤s<t

∥∥x(s)∥∥

= Mδ + β

[
 +

Md
α

]
sup
t≤s<t

∥∥x(s)∥∥.

First take β so that β[ + Md
α
] ≤ 

 and δ so thatMδ + 
ε < ε. If ‖x‖ < δ and if there exists

t > t with ‖x(t)‖ = ε, we have

ε =
∥∥x(t)∥∥ <Mδ +




ε < ε,

a contradiction. Thus the zero solution is uniformly stable. The proof is complete. �
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Example . Let us consider the following system:

⎧⎪⎪⎨
⎪⎪⎩
x�(t) = – 

(σ (t)) +
∫ t
 (


tσ (t) +


t(σ (t)) )x(s)�s,

x(t+k ) = ( +Ck)x(tk),

x() = ,

()

where A(t) = – 
(σ (t)) and K (t, s) = ( 

tσ (t) +


t(σ (t)) ). It is easy to check that

(

u

)�

= –


uσ (u)
–


u(σ (u))

. ()

By using () and (), we obtain

C(t, s) =
∫ ∞

t

(
–


uσ (u)

–


u(σ (u))

)
�u

=
∫ ∞

t

(

u

)�

�u

=

t
.

This implies that E(t) =  and

∫ t




t

�s =

t
. ()

Finally, by taking the supremum over t in (), over [,∞)T, we obtain

sup
∫ t




t

�s = .

Since βk = Ck , so we can choose Ck such that 
d
∑

t<tk<t ‖βk‖ ≤ β for β sufficiently small.
It follows that all the assumptions of Theorem . are satisfied, hence all the solutions of
() are bounded.Moreover, Theorem . yields that the zero solution of () is uniformly
stable on an arbitrary time scale.
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