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1 Introduction
This paper advances an approach in dynamical systems [–] which is based on consid-
ering higher-order differences taken from the orbits of a given system. Such an approach
is motivated by the observation that some natural systems process the information con-
tained in the signals’ difference structure. For example, it is claimed in brain theory that
the visual cortex ‘responds to contrast rather than the uniform luminosity’ and the higher
differences up to fourth order in these problems are considered [].
The difference method reveals some new aspects in analyzing arbitrary time series and

discrete dynamical systems. For instance, the difference characteristic γ introduced in [,
] demonstrates a strong correlation with the Lyapunov exponent [] used in determin-
istic chaos (the definition of γ can be found in [, ]; see [, ] for its modification and
discussions). Another possible generalization could relate to fractional analysis: it would
be interesting to define the fractional analog of γ and apply it to chaos discrimination in
fractional dynamical systems (such systems are studied, e.g., in [–]).
In the present paper another new aspect of the difference analysis, the bistability

of higher-order differences taken from a bounded time series (discrete-time signals) is
proved. Some possible applications to digital communication and signal processing in Sec-
tion  are considered.
The content of this paper is the following. In Section  our main Theorem  is formu-

lated. This theorem establishes the property of bistability for higher-order absolute dif-
ferences taken from discrete-time signals. In the sense of applications it asserts that some
systems operating on the basis of their inputs’ higher-order differences should rather be
classified over digital ones. The theorem suggests a method for converting some discrete
(and sampled analog) signals into a binary digital formbased only on computation of abso-
lute differences; if applicable (e.g., as for the case of arbitrary periodic signals), this method
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is more effective than the traditional ones used in communication theory. The proof of
Theorem , based on a version of notion of peak sets originated in Banach algebras and
approximation theory, is presented in Section .

2 Main results
In the difference analysis a given time series (or an orbit of a dynamical system) X is de-
composed into two constituents-the sign and magnitude components. The sign compo-
nent S reflects the alternation in monotony (increase/decrease) of higher-order absolute
differences taken from successive terms of X and does not depend on their exact values.
The magnitude (or height) component H consists of these absolute differences and does
not depend on the sign distribution.
Let us proceed to formal definitions. Let

X = (f, f, . . . , fn, . . .) ()

be an infinite bounded numerical sequence-this can be some time series, discrete-time
signal, experimental data (long enough), or an orbit of iterates of some map. For natural
m we considermth-order absolute differences

H ()
n = fn, H (m+)

n =
∣∣H (m)

n+ –H (m)
n

∣∣ (m ≥ ,n≥ ) ()

and define themth absolute difference sequence asHm = (H (m)
n )∞n=. Furthermore, we define

Sm =
(
δ
(m)
 , δ(m)

 , . . . , δ(m)
n , . . .

)
, where δ(m)

n =

⎧⎨
⎩
+, H (m)

n+ ≥H (m)
n ,

–, H(m)
n+ <H (m)

n .
()

The matrices S = {δ(m)
n :m ≥ ,n ≥ } and H = {H(m)

n :m ≥ ,n ≥ } are called S- and H-
components of X, the sequences Sm andHm are calledmth S- and H-components of X and
denoted Sm = Sm(X) and Hm =Hm(X). In what follows instead ofH (m)

n we use the notation
Hm

n (omitted brackets).
The next proposition (see also []) states thatHm

n can be written as some linear forms of
terms of X. This is a consequence of Eq. () and the proof, which can be conducted by the
induction method, is straightforward (omitted). The N, Z, and R denote the collections
of natural, integer, and real numbers, respectively;

(m
i
)
(= m!

i!(m–i)! ) denotes the binomial
coefficients.

Proposition  Let X = (fn)∞n= and m≥  be arbitrary. Then the mth-order absolute differ-
ences Hm

n can be represented as

Hm
n = k()m,nfn + k()m,nfn+ + · · · + k(m)

m,nfn+m, ()

where the coefficients k(i)m,n ∈ Z are constructed recurrently: for p≥ 

k(),n = –k(),n = –δ()n , k(i)p+,n =

⎧⎪⎪⎨
⎪⎪⎩
–δ

(p)
n k(i)p,n, i = ,

δ
(p)
n (k(i–)p,n+ – k(i)p,n),  ≤ i≤ p,

δ
(p)
n k(i–)p,n+, i = p + .

()
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One can see that k(i)m,n in Eq. () depend only on S-components S, . . . ,Sm of X. The rule
() is a generalization of the additive scheme for constructing the Pascal triangle of bino-
mial coefficients. It can be proved (we omit this) that for m,n≥ 

m∑
i=

k(i)m,n =  and
∣∣k(i)m,n

∣∣ ≤
(
m
i

)
. ()

The equality sign here is assumed when δ
(m)
n = (–)m for all n ≥ ; for this case, () gains

the form

Hm
n =

m∑
i=

(–)i
(
m
i

)
fn+i

which is the so-called δ-transform (of the sequence X) studied in the Hausdorff trans-
forms of divergent series []. This particular sign distribution appears also in definition
of completely monotonic functions (see, e.g., the Bernstein theorem in []).
In this paper we are interested in the H-components of bounded sequences (discrete-

time signals). To formulate ourmain theorem,Theorem,we presentDefinition  - namely
in the context of this definition the (physics-related) term “bistability” in Section  is un-
derstood. In what follows, for bounded X = (xi)∞i= we consider the sup-norm:

‖X‖ = sup
{|xi| : ≤ i < ∞}

. ()

A finite subsequence h = (xi+, . . . ,xi+k) of X = (xi)∞i= is called a segment of X of length k,
|h| = k; for two functions of natural argument a(m) and b(m), differed from  we denote
a(m) ∼ b(m) if a(m)/b(m) →  as m → ∞. For a number x ∈ R we denote [x] and {x} its
entire and fractional parts, respectively.

Definition  Let the numbers  ≤ μ <  and  ≤ ε <  be given. A sequence X = (xi)∞i=
is called μ-binary if xi ∈ {,μ} for every i ≥ ; X is called (μ, ε)-binary if there exists μ-
binary Z = (zi)∞i= such that ‖X – Z‖ ≤ ε. A collection of sequences (Xm)m≥ is called μ-
binary ((μ, ε)-binary) if Xm is μ-binary ((μ, ε)-binary) for all large enough m; (Xm)m≥ is
called asymptotically μ-binary if for arbitrary ε >  it is (μ, ε)-binary.

The (μ, )-binary sequences are μ-binary sequences, (, ε)-binary sequences are the se-
quences upper bounded by ε. For the case of finite sequencesX of length n the above-given
definitions are analogous, replacing in Eq. () and in Definition  the symbol ∞ by n + 
and n, respectively.
The proof of next proposition is straightforward (and is omitted).

Proposition  A collection of sequences (Xm)m≥ is asymptotically μ-binary if and only if
there exists a μ-binary collection (Zm)m≥ such that ‖Xm – Zm‖ →  as m → ∞.

Theorem  is the main result of this paper. We define some notions involved in its for-
mulation. For X = (fn)∞n= and Hm =Hm(X) we consider

μm = ‖Hm‖ and μ = lim
m→∞μm (μ ≥ ). ()

http://www.advancesindifferenceequations.com/content/2014/1/60
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For periodic X the supremum in Eq. () can be replaced by maximum. We note that Eq.
() yields the result that for every X we have μm+ ≤ μm (m≥ ). Due to this monotony of
μm, for arbitrary X one and only one of next two options (a) and (b) is possible:

(a) μ = μm for all large enoughm, (b) μ < μm form = , , . . . . ()

We define the peak sets Pm,

Pm =
{
n ≥  :Hm

n ≥ μ
}

()

(it follows from Eq. () that Pm 	= ∅ for m ≥ ), modifying the corresponding notion from
theory of Banach algebras (e.g., []). Let Pm be numbered in increasing order of its entries,

Pm =
{
n()m ,n()m , . . .

}
and denote dm =max

{∣∣n(i+)m – n(i)m
∣∣ : i ≥ 

}
. ()

In item (b) of Theorem  the following restrictions on Pm are imposed:

≤ dm ≤m, lim
m→∞(m – dm) = ∞. ()

The dm characterize the density of Pm in natural seriesN. The first condition in ()means
that Pm is dense enough in N (every segment of N of lengthm contains a point of Pm); the
second relation implies that the set

E = {m – dm :m ∈N}, E ⊆N ()

is infinite. If n ∈ E, then there is some m ≥  such n = m – dm; we denote such an m as
m =mn; hence, one can consider a function of the natural argument,

ϕ :N →N, defined as ϕ(n) =mn – dmn . ()

For example, if dm = [m/] (entire part of half of m), then () is satisfied and one can
assign ϕ(n) = [n/]; another example is

dm = T (= const.), and then ϕ(n) = n – T . ()

In these examples, E coincides with N; Eq. () holds, e.g., for T-periodic X.
The next theorem establishes the bistability of higher-order absolute differences taken

from discrete signals. In addition, it asserts (descriptively) that the denser the peak set Pm

is, the denser is the asymptotically binary Hm.

Theorem  Let X = (fn)∞n=, Hm = Hm(X), and μm and μ be defined by Eq. (). Then the
following statements, provided that a finite collection (whose cardinality is smaller than
dm) of entries of Hm can be excluded, are true:
(a) For every m ∈N there exists a finite segment hm ⊂Hm such that |hm| ∼m as m → ∞

and the collection (hm)∞m= is asymptotically μ-binary.
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(b) If the peak sets () satisfy Eq. () then the collection (Hn)n∈E , where E is defined by
Eq. (), is asymptotically μ-binary;more precisely, for every n ∈ E the Hn is (μ, εn)-binary
with εn = μϕ(n) –μ where ϕ is defined by Eq. ().
(c) Let X be periodic with a period T ≥ . Then the collection (Hm)∞m= is either μ-binary

or asymptoticallyμ-binary.More precisely, if Eq. (a) holds, (Hm)∞m= isμ-binary, and if Eq.
(b) holds, (Hm)∞m= is asymptotically μ-binary: for every m > T the Hm is (μ, εm)-binary
with εm = μm–T –μ.

The condition Eq. () on peak sets in this theorem is imposed on the difference series
Hm, but not immediately on X, which leads to certain difficulties to decide whether for a
given X its higher order difference series possess the asymptotic bistability. Theorem (c)
asserts that this property always holds for arbitrary periodic X.
In the next corollary both options from Theorem (c) are presented (below, the real

numbers f, . . . , fT are called H-independent if for arbitrary λ, . . . ,λT ∈ Z for which λ +
· · · + λT = , the relation

∑T
i= λifi =  implies that all the λi are zero):

Corollary  Let X = (fn)∞n= be periodic with a period T ≥ , Hm = Hm(X), and let μ be
defined by Eq. (). Then if f, . . . , fT are rational numbers then the collection (Hm)∞m= is μ-
binary, and if f, . . . , fT are H-independent then (Hm)∞m= is asymptotically μ-binary.

Let us discuss the reason why a bistability, considered in Theorem , is emerged. De-
spite the X (the lineH in the matrix H) can be arbitrary, Eq. () sets a strong interrelation
between the entries of every triplet {Hm+

n ,Hm
n ,Hm

n+} of the matrix H. Namely such in-
trinsic local restrictions are usually the reason of some special features (in our case this
is the bistability) of a given object (in our case this is the matrix H); e.g., the maximum
principle for harmonic functions (both classical and discrete [] versions) is due to their
local mean value property. For proving Theorem we exploit the following situation: if the
absolute difference (=Hm+

n ) of two positive quantities (Hm
n and Hm

n+) is close to their up-
per bound, then one of them should also be close to this bound while another one should
be close to zero. Similar situations arise also in Banach algebras and approximation the-
ory, see, e.g., the Bishop-de Leeuw theorem ([], Ch. ), Bishop’s “  – 

 ”-criterion ([],
Ch. II, Comments) and Mergelyan’s earlier work [] on rational approximations where a
binary-valued function m(ζ ) is of the main interest.
Before discussing on applications of Theorem  we note that a given signal X = (fn)∞n=

can be completely restored by its first entries and components S and H. Namely, the next
proposition (see also []; the proof is by the induction method and is omitted) provides us
with analytical expressions for the computation of the original X by given S, . . . ,Sm, Hm

and the first terms f, . . . , fm of X (or, by first terms of Hm
 denoted now as Hk

 = [f, . . . , fk],
 ≤ k ≤m).

Proposition  Let m ≥  be given, let H = (hn)∞n= be some infinite sequence, hn ≥  and
Sk = (sk,n)∞n=, sk,n = ±,  ≤ k ≤ m be some infinite binary sequences. Let X = (fn)∞n= be
defined as follows: f, . . . , fm are arbitrary and for every natural n ≥ 

fn = f +
m∑
k=

[f, . . . , fk]
n–k+∑
i=

Bn,i,k– +
n–m∑
i=

hiBn,i,m–, ()

http://www.advancesindifferenceequations.com/content/2014/1/60
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where
∑j

i =  if j < i and Bn,i,p ∈ Z are constructed recurrently: for p≥ 

Bn,i, = s,i, Bn,i,p = sp,i
n–p∑
j=i+

Bn,j,p–.

Then for all ≤ k ≤m the relations

Sk(X) = Sk and Hm(X) =H ()

hold.

Let us outline some possible applications of the above-presented theory to signal pro-
cessing. Theorem  suggests a method for converting the discrete signals into the binary
ones based only on the computation of differences. For processing the signals X = (fn)∞n=
for which μm converges to μ fast enough, this method can be far more effective than the
ones which deal with replacing fn by their binary codes. Namely, we claim that, when ap-
plicable (e.g., if X is periodic), the difference converting method can reduce the data to
be transmitted and can increase significantly the transmission speed. One can suggest the
following scheme for processing (not only the transmission) the discrete-time signals by
the digital systems: by Theorem  (and using Proposition ) a given X is converted into
a binary form, which is then processed as a digital signal, and then the obtained (binary)
signal is deconverted (provided that a number of S-components and some finite set of the
resulting signal entries are given) by Proposition .
To illustrate this, we consider the periodic case. Let a signalX = (fn)∞n= be periodic; by us-

ing the binary symbols it should be transmitted (it suffices to transmit the period f, . . . , fT ).
The traditional method, where each of the fi is replaced by a binary code of some length q,
requires qT binary digits (bits) to be transmitted. By the differencemethod, this transmis-
sion task is solved as follows. Letm be a minimal number for which the sequence Hm can
be treated as a binary one (the εm from Theorem  is small enough). According to Propo-
sition , to transmit X one should transmitm(q+T + ) bits ((m+ )q of them to transmit
f, . . . , fm and μ by usual method,mT to transmit S, . . . ,Sm, andm bits to transmit Hm). If
m < T , the ratio

m(q + T + )
qT

can be smaller than , i.e., the difference method indeed is more effective; e.g., if fi = i
(≤ i ≤ T ), thenm =  and the above-mentioned ratio is indeed small if q and T are large.

3 Proof of Theorem 1
The proof of Theorem  is based on the following lemma, where the notion of peak sets
defined by Eq. () is essentially used.

Lemma  Let X = (fn)∞n=,Hm =Hm(X),μm andμ be defined by Eq. (), and for somem,n≥
, the inequality

Hm
n ≥ μ ()

http://www.advancesindifferenceequations.com/content/2014/1/60
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holds. Then for every  ≤ k ≤m and every  ≤ i≤ k one of the two relations () or (),

μ ≤Hm–k
n+i ≤ μm–k and  ≤Hm–k

n+i+ ≤ μm–k –μ, ()

μ ≤Hm–k
n+i+ ≤ μm–k and ≤Hm–k

n+i ≤ μm–k –μ, ()

holds; that means that for every ≤ k ≤m the finite sequence

Hm–k
n ,Hm–k

n+ , . . . ,H
m–k
n+k ()

is (μ, ε)-binary with ε = μm–k –μ.

Proof The proof is conducted by the induction method with respect to the variable k,
 ≤ k ≤ m – . Let us first prove the lemma for the case k = . From definition of μm and
μ, we have

μ ≤Hm
n ≤ μm, that is, by Eq. (), μ ≤ ∣∣Hm–

n –Hm–
n+

∣∣ ≤ μm. ()

Let us assume that Hm–
n ≥ Hm–

n+ (for the contrary case Hm–
n ≤ Hm–

n+ the proof is analo-
gous); that is, the second relation in Eq. () can be written as

μ ≤Hm–
n –Hm–

n+ ≤ μm. ()

From the left-hand side of () we obtain μ ≤ Hm–
n , and from the definition in Eq. ()

it follows that Hm–
n ≤ μm–, that is, μ ≤ Hm–

n ≤ μm–. Furthermore, from Eq. () one
obtains

Hm–
n+ ≤Hm–

n –μ ≤ μm– –μ

and, hence, Lemma  for the case k =  is proved.
To prove the lemma for arbitrary  ≤ k ≤m, we apply the inductionmethod: we assume

that one of the relations () or () for some  ≤ k ≤ m –  holds, and we prove that it
holds also when k is substituted by k + . Let us assume that Eq. () holds (for the case of
Eq. () the proof is analogous). By Eq. ()

Hm–k
n+i =

∣∣Hm–(k+)
n+i –Hm–(k+)

n+i+
∣∣

and let us assume that the difference here is positive (if it is negative, the proof is the same),

Hm–k
n+i =Hm–(k+)

n+i –Hm–(k+)
n+i+ . ()

From () we have Hm–(k+)
n+i ≥ μ. We also have

Hm–(k+)
n+i ≤ μm–(k+) = μ + (μm–(k+) –μ)

http://www.advancesindifferenceequations.com/content/2014/1/60
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and, hence, the first relation in Eq. (), where k is substituted by k + , is proved. Let us
now consider the second relation in (). Eqs. () and () give

Hm–(k+)
n+i+ =Hm–(k+)

n+i –Hm–k
n+i ≤ μm–(k+) –μ = εm–(k+)

and Eqs. () and (), where k is substituted by k + , are proved. Lemma  is proved.
�

Proof of Theorem  (a) Let X = (fn)∞n= be given, Hm =Hm(X), and μm and μ be defined by
Eq. (). It follows from definition of μ that for everym ≥  there is some n = nm such that
Hm

n ≥ μ (cf. Eq. ()). Then by Lemma  for every  ≤ k ≤m the sequence

Hm–k
n ,Hm–k

n+ , . . . ,H
m–k
n+k

is (μ,μm–k – μ)-binary. Let k(m) be such that k(m) <m, (m – k(m)) → ∞, and k(m) ∼ m
asm → ∞. Then by Lemma  the finite sequence

hm =
(
Hm–k(m)

nm ,Hm–k(m)
nm+ , . . . ,Hm–k(m)

nm+k(m)
)

()

with length |hm| = k(m)+ is (μ, ε)-binarywith ε = μm–k(m) –μ. Since ε →  and |hm| → ∞
asm → ∞, item (a) of the theorem is proved.
(b) As in Eq. (), with every n(i)m ∈ Pm (see Eq. ()) we associate a sequence h(i)m . Since

dm <m and (m – dm) → ∞, one can assign in Eq. () k(m) = dm what means that

∞⋃
i=

h(i)m =Hm–dm .

Since every ith h(i)m is (μ, ε)-binary with ε = μm–dm – μ, their union Hm–dm is also (μ, ε)-
binary with the same ε. Since ε →  asm → ∞, item (b) of the theorem is proved.
(c) The proof can be deduced from the previous item (b) and the example from Eq. ().

We present a more detailed proof. If Eq. (a) holds, the proof of the theorem follows ab
absurdo, if one takes into account Eq. () and the periodicity of every Hm. Let us consider
the case when Eq. (b) holds. Since every Hm is T-periodic, to prove that Hm is (μ, ε)-
binary it suffices to prove that for some n the finite sequence

Hm
n ,H

m
n+, . . . ,H

m
n+T ()

is (μ, ε)-binary. This statement follows from Lemma  if one considers the sequenceHm+T

and chooses some n ≥  such that Hm+T
n ≥ μ (cf. Eq. ()): indeed, then Lemma  yields

the result that the finite sequence () is (μ, ε)-binary with ε = μm–T –μ. Then due to the
T-periodicity ofHm we see thatHm is also (μ, ε)-binary. Item (c) of the theorem is proved.
Theorem  is proved. �

Proof of Corollary  To prove the first point of Corollary , we note that since X is peri-
odic and the fi are rational, by considering the common denominator for f, . . . , fT one can
suppose that X is a (periodic) sequence of natural numbers; then it follows that Eq. (a)

http://www.advancesindifferenceequations.com/content/2014/1/60


Shahverdian et al. Advances in Difference Equations 2014, 2014:60 Page 9 of 9
http://www.advancesindifferenceequations.com/content/2014/1/60

for such X holds, and hence (Hm)m≥ is μ-binary. The second point of Corollary  follows
from Eq. (). Indeed, due to the assumption on H-independence none of the Hm

n can take
the value , and hence by Theorem (c) (Hm)m≥ cannot be μ-binary and then Eq. (a) is
impossible; then the alternative option Eq. (b) mentioned in Theorem (c) asserts that
(Hm)m≥ is asymptotically μ-binary. Corollary  is proved. �
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