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Abstract

In this paper we are interested in studying the effect of the fractional-order damping
in the forced Duffing oscillator before and after applying a discretization process to it.
Fixed points and their stability are discussed for the discrete system obtained. Finally,
numerical simulations using Matlab are carried out to investigate the dynamic
behavior such as bifurcation, chaos, and chaotic attractors. We note that on increasing
the value of the fractional-order parameter, the resulting discrete system is stabilized.
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1 Introduction

In recent years differential equations with fractional-order have attracted the attention of
many researchers because of their applications in many areas of science and engineering.
Analytical and numerical techniques have been implemented to study such equations.
The fractional calculus has allowed the operations of integration and differentiation to be
applied upon any fractional-order. For the existence of solutions for fractional differential
equations, see [1, 2].

As regards the development of existence theorems for fractional functional-differential
equations, many contributions exist and can be referred to [3—5]. Many applications of
fractional calculus amount to replacing the time derivative in a given evolution equation
by a derivative of fractional-order.

We recall the basic definitions (Caputo) and properties of fractional-order differentia-

tion and integration.

Definition 1 The fractional integral of order 8 € R* of the function f(¢), ¢ > 0, is defined
by

L(g—s)ft

I°f(t) = Wf(s) ds,

0

and the fractional derivative of order « € (0,1) of f(¢), ¢ > 0, is defined by

df (t)
Df(t) =1 —f .
dt
To solve fractional-order differential equations there are two famous methods: fre-
quency domain methods [6] and time domain methods [7]. In recent years it has been
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shown that the second method is more effective because the first method is not always
reliable in detecting chaos [8] and [9].

Often it is not desirable to solve a differential equation analytically, and one turns to nu-
merical or computational methods. In [10], a numerical method for nonlinear fractional-
order differential equations with constant or time-varying delay was devised. It should
be noticed that the fractional differential equations tend to lower the dimensionality of
the differential equations in question, however, introducing delay in differential equations
makes it infinite dimensional. So, even a single ordinary differential equation with delay
could display chaos.

A lot of differential equations with Caputo fractional derivative were simulated by the
predictor-corrector scheme, such as the fractional Chua system, the fractional Chen sys-
tem, the Lorenz system, and so on. We should note that the predictor-corrector method
is an approximation for the fractional-order integration, however, our approach is an ap-
proximation for the right-hand side.

Indeed, fractional-order systems are useful in studying the anomalous behavior of dy-
namical systems in electrochemistry, biology, viscoelasticity, and chaotic systems; see for
example [11]. Dealing with fractional-order differential equations as dynamical systems
is somewhat new and has motivated the leading research literature recently; see for ex-
ample [12-26]. The nonlocal property of fractional differential equations means that the
next state of a system not only depends on its current state but also on its history states.
This property is very closely resembling to the real world and thus fractional differential
equations have become popular and have been applied to dynamical systems.

On the other hand, some examples of dynamical systems generated by piecewise con-
stant arguments have been studied in [27-30]. Here we propose a discretization process
to obtain the discrete version of the system under study. Meanwhile, we apply the dis-

cretization process to discretize the fractional-order logistic differential equation.

2 Forced Duffing oscillator with fractional-order damping

The Duffing oscillator is an example of a periodically forced oscillator with nonlinear elas-
ticity. It is one of the prototype systems of nonlinear dynamics. It first became popular for
studying harmonic oscillations and, later, chaotic nonlinear dynamics in the wake of early
studies by the engineer Georg Duffing [31]. The system has been successfully used to model a
variety of physical processes, such as stiffening springs, beam buckling, nonlinear electronic
circuits, superconducting Josephson parametric amplifiers, and ionization waves in plas-
mas. Despite the simplicity of the Duffing oscillator, the dynamical behavior is extremely
rich and research is still going on today [32].

Forced Duffing oscillators are much harder to analyze analytically, because of the peri-
odic force involved. It is far better to use computer approximations of the system to analyze
how the forced Duffing oscillator is behaving under certain conditions. The Duffing equa-
tion, a well-known nonlinear differential equation, is used for describing many physical,
engineering, and even biological problems [33].

Originally the Duffing equation was introduced by German electrical engineer Duffing

in 1918. The equation is given by

X+ ux + Ax + ba® = y sin(wt), (2.1)
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Figure 1 State trajectory of system (2.3) in 3D 1=0.9,2=-1,b=1,y=0.6,0=1
state space with o = 0.85. 1
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Figure 2 Solution of system (2.3) with & = 0.85. p=0.9,4=-1,b=1,y=0.6,0=1,0=0.85
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where the constants u, A, b, and y are the damping coefficient, linear stiffness, nonlinear
stiffness, excitation amplitude, and excitation frequency, respectively. All previous con-
stants, assumed to be positive except A, can also be negative.

Here we are concerned with the forced Duffing oscillator with fractional-order damping

given by
X+ uD% + Ax + ba® = y sin(wt), (2.2)

where « € (0,1) is the fractional-order parameter. First of all, we split (2.2) into a system

of three equations, as follows:

D*x =y,
Dl_“y =2z, (2.3)

dz

— = —puy - Ax — bx® + y sin(wt).

7 Wy — Ax — bx® + y sin(wt)

The solution of system (2.3) with « = 0.85 is simulated using the Griinwald-Letnikov

method described in [34] and is shown in Figures 1 and 2.

2.1 Bifurcation and chaos

The nonlinear dynamic of the duffing oscillator with fractional-order damping is simu-
lated using Matlab. We firstly fix the parameters © =09, A =-1,b=1, w =1, y = 0.6,
and the initial state is x(0) = y(0) = z(0) = 0. When « = 1, the system is described by the
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classical Duffing equation. Now vary the fractional-order parameter « from 0 to 1 with
step size Aa = 0.005, and the bifurcation can easily be detected by examining the rela-
tionship between o and x. Figure 3 shows the effect of the fractional-order parameter on
the dynamics of the system.

Bifurcation diagrams with other control parameters, » with o = 0.80; step size Aw = 0.1
and y with o = 0.85; step size Ay = 0.005 are shown in Figures 4 and 5. Figure 3 shows the
strong effect of the fractional-order parameter on the dynamic of system (2.3); it stabilizes
the system as o — 1. Figure 4 shows an oscillating behavior of the bifurcation diagram as

expected because w is the excitation frequency inside the sine function.

Figure 3 Bifurcation of system (2.3) w.r.t. cc. p=0.8,7=-1b=1,0=1,y=06
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Figure 4 Bifurcation of system (2.3) w.r.t. @ with 15 _w=08=-1,0=1,=06,0-080
o =0.80.
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Figure 5 Bifurcation of system (2.3) w.r.t. y with 25 #0921 o=1,0=1.0=0.85
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3 Discretization process
In [35], a discretization process is introduced to discretize the fractional-order differential
equations and we take Riccati’s fractional-order differential equations as an example. We
notice that when the fractional-order parameter « — 1, Euler’s discretization method is
obtained. In [36], the same discretization method is applied to the logistic fractional-order
differential equation. We conclude that Euler’s method is able to discretize first order dif-
ference equations, however, we succeeded in discretizing a second order difference equa-
tion. Finally, in [37], we applied the same procedure to the fractional-order Chua system
to get the same results as in the two previous papers, and we showed that when o« — 1 the
system will be stabilized.

Here we are very interested in applying the dicretization method to a system of differ-
ential equations like the Chua system.

Now let & € (0,1) and consider the differential equation of fractional order

D*x(t) :f(x(t)), t>0,

x(0) =x9, t<0.

The corresponding equation with piecewise constant argument is

Dx(t) = f<x(r[§])) x(£) = %0, £ < 0. (32)

Let ¢ € [0,7), then £ € [0,1). So, we get
Dx(t) = f(x0), te[0,r).
Thus

x1(8) = %0 + F(IL;a)f(xO)'

Let ¢ € [r,2r), then £ € [1,2). Thus, we get
D%x(t) =f(x1(r)), ter2r).

Thus

50 =50) + L f (100,

Let ¢ € [2r,3r), then £ € [2,3). So, we get
Dx(t) = f(ma(r), £ € [2r,31).

Thus

(t — Zr)af(xg(r)).

x3(t) = x1(r) + m
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Repeating the process we get this result: when ¢ € [nr, (n + 1)r), then § € [n,n +1). So, we

get
D%x(t) :f(x,,(nr)), te [nr, (n + l)r).
Thus
(t —nr)*
2101(0) = 900) + )

We are interested in discretizing (3.1) with piecewise constant arguments given in the form
t
Dax ) y(’”[_])’
r
1—o ¢
D™ %y=zr[-]), (3.3)
r
—=—wy|r|-|)-Axlr|-|)-bx|r|- +ysinl o| r| - ,
dt r r r r

with initial conditions x(0) = 0, ¥(0) = 0, and z(0) = 0.
Applying the above mentioned discretization process and letting ¢ — (n + 1)r we obtain
the discrete system

Xn+l =Xp + m}’m
rl—a
Yn+l =Yn + mzm (3.4)

Zye1 = 2 + 1=y — Ax — ba® + y sin(wn)).

Indeed, there are other discretization methods for discretizing fractional-order differen-
tial equations, for example:
« The Griinwald-Letnikov definition (GL) which is a generalization of the derivative.
The idea behind is that 4, the step size, should approach 0 as # approaches infinity.
+ The predictor-corrector method is an approximation for the fractional-order
integration.

As a matter of fact, our approach is an approximation for the right-hand side.

4 Stability of fixed points
Now we study the asymptotic stability of the fixed points of the system (3.4) in the unforced
case, that is, sin(€2¢) = 0, which has three fixed point namely, fix; = (0,0, 0), fix, = (%i, 0,0),
and fix, = (%i, 0,0).

By considering the Jacobian matrix for these fixed points and calculating its eigenval-
ues, we can investigate the stability of it based on the roots of the system’s characteristic
equation [38]. The Jacobian matrix is given by

o

F(;+o¢) 1(3
0 1 F?Z—a)

—rA =3brx®>  -ru 1
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Linearizing the unforced system about fix; yields the following characteristic equation:

P(A)=A®=3A2+ @ +rud)A + (sriv +1—rud) =0, (4.1)
where s = I,(ﬁa) and [ = F’(;O;) Let

a = _3’

ay = (1 +rul),

az = (srih +1 —rul).

From the Jury test, if P(1) > 0, P(-1) < 0, and a3 < 1, |b3| > by, c3 > |cy|, where b3 = 1 — a3,
by = a1 — azay, by = ay — azay, c3 = b3 — b}, and ¢y = b3b, — b1b,, then the roots of P(A)
satisfy A <1 and thus fix, is asymptotically stable. This is not satisfied here since a3 > 1.
That is, fix, is unstable.

While linearizing the same unforced system about fix, or fix, yields the following char-

acteristic equation:
F(A)=A3=3A2+ B +rul)A - (1 +rul+2sril) = 0. (4.2)

We let ay; = =3, az = 3 + ruul, and ass = —(1 + rul + 2sril). From the Jury test, if F(1) > 0,
F(-1) <0, and as3 < 1, |bs3| > by, ¢33 > |caz|, where b33 =1 — a;, byy = any — aszan, by =
Ay — aszan, cs3 = by — b3, and ¢y = bazbayy — biibay, then the roots of F(A) satisfy A <1
and thus fix, or fix, is asymptotically stable. We can check easily that F(1) < 0, that is, both
fix, and fix, are unstable.

5 Attractors, bifurcation, and chaos

In this section we show some dynamic behavior of the system (3.4) such as attractors,
bifurcation and chaos for different o and r (see Figures 6-14). The effect of taking a frac-
tional order on the system dynamics is investigated using phase diagrams and bifurcation
diagrams. The bifurcation diagram is also used to examine the effect of the excitation am-
plitude and the frequency on the Duffing system with fractional-order damping. We show
bifurcation and chaos of the dynamical system (3.4) by means of bifurcation diagrams first
with respect to the parameter u, then with respect to the fractional-order parameter «,
and finally with respect to the parameter y.

Figure 6 Attractor of (3.4) with o = 0.85, r=0.25, u=0.85,1=-1,b=1, T=0.6,0=1,n=4
r=0.25, =4 0
a5
B
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2
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05
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Figure 7 Attractor of (3.4) with « =0.85,r=0.3, r=0.3, ¢=0.85,1=-1,b=1, '=0.6,Q=1,u=4
n=A4.

Figure 8 Chaotic attractor of (3.4) with a = 0.75, r=0.3, «=0.75,A=-1,b=1, I'=0.6,Q=1,u=4
r=0.3, u=4.

Figure 9 Chaotic attractor of (3.4) with o = 0.85, r=0.25, ¢=0.85,1=-1,b=1, I'=0.6,Q=1,u=3
r=0.25, u =3.

Figure 10 Chaotic attractor of (3.4) with r=0.25, «=0.85A=-1b=1,I'=0.6,0=1u=35

o =0.85,r=0.25 u =3.5.
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Figure 11 Chaotic attractor of (3.4) with
o =0.85,r=0.1, u =3.

r=0.1, «=0.85,4=-1,b=1, I'=0.6,Q=1,u=3

r=0.25, 4=0.70,=-1,b=1, v=0.6,0=1

~

2, T

Figure 12 Bifurcation diagram of (3.4) w.r.t. the parameter u.
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Figure 13 Bifurcation diagram of system (3.4) as a function of the fractional-order parameter o with
different values of the parameters r and .

Let = 0.25 be fixed and vary « from 0.70 to 0.95 and p from 2 to 8. The initial state of
the system (3.4) is (%0, Y0, 20) = (0, 0,0). The step size for p is 0.01, the resulting bifurcation
diagrams are shown in Figure 12(a)-(f). It is observed from the figures that increasing the
fractional-order parameter « and fixing the parameter r stabilize the chaotic system.

Now vary the fractional-order parameter o from 0.70 to 0.95, but with a fixed system
parameter 1 and change the parameter r from 0.15 to 0.30; the resulting bifurcation dia-
grams are shown in Figure 12(a)-(d).

Then vary the fractional-order parameter o from 0.85 to 0.95, but with a fixed system
parameter r = 0.25 and vary the parameter y from 0 to 2; the resulting bifurcation dia-
grams are shown in Figure 12(a)-(d).

It is clear from Figure 13 that increasing the value of the fractional-order parameter «
transforms the system into its stable behavior, exactly as in the case of the fractional-order

system (3.1).

6 Conclusion

A discretization method is applied in this paper to the forced Duffing oscillator with
fractional-order damping. The dynamics of the discretized fractionally damped Duffing
equation has been examined numerically. Also, the conclusion of bifurcation of the

parameter-dependent system has been drawn numerically. Increasing the value of the
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r=0.25, u=3.5,A=-1b=1, 0=0.85,0=1 r=0.25, p=3.5,A=-1,b=1, 0=0.75,0=1
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r=0.25, =3.5,.=-1,b=1, 0=0.95,0=1
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Figure 14 Bifurcation diagram of system (3.4) as a function of the parameter y with different values
of the fractional-order parameters «.

fractional-order damping term stabilizes the system under study in both cases: fractional-
order system and discretized system.
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