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1 Introduction
In this paper, we consider the following second-order p-Laplacian neutral functional dif-
ferential equation:

(
φp

(
x′(t) – cx′(t – σ )

))′ + f
(
x′(t)

)
+ β(t)g

(
x
(
t – τ (t)

))
= e(t), (.)

where φp(x) = |x|p–x for x �=  and p > ; σ and c are given constants with |c| �= ; φp() = ,
f () = . The conjugate exponent of p is denoted by q, i.e. 

p +

q = . f , g , β , e, and τ are real

continuous functions on R; τ , β , and e are periodic with periodic T , T >  is a constant;∫ T
 e(t)dt = ,

∫ T
 β(t) �= .

As we know, the p-Laplace Rayleigh equation with a deviating argument τ (t) is applied
in many fields such as physics, mechanics, engineering technique fields, and so on. The
existence of a periodic solution for the second-order p-Laplacian Rayleigh equations with
a deviating argument as follows:

(
φp

(
x′(t)

))′ + f
(
x(t)

)
x′(t) + g

(
x
(
t – τ (t)

))
= e(t) (.)

and

(
φp

(
x′(t)

))′ + f
(
x′(t)

)
+ g

(
x
(
t – τ (t)

))
= e(t) (.)

has been extensively studied in [–]. In recent years, Lu et al. [–] used Mawhin’s con-
tinuation theory to do research to the existence of a periodic solution for p-Laplacian
neutral Rayleigh equation. They obtained some existence results of periodic solutions to
p-Laplacian neutral Rayleigh equations.
In the research mentioned above, the corresponding nonlinear terms of the second-

order p-Laplacian Rayleigh equation did not include a variable coefficient. Only little lit-
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erature discussed this kind of p-Laplacian Rayleigh equation. For more details refer to
[–]. Here, we focus on [] by Liang Feng et al. They discussed the existence of the
solution to the following equation:

(
φp

(
x′(t) – cx′(t – r)

))′ = f
(
x(t)

)
x′(t) + β(t)g

(
x
(
t – τ (t)

))
+ e(t). (.)

They established sufficient conditions for the existence of a T-periodic solution of (.).
But their conclusions are founded on the prerequisite

∫ T
 (g(x(t– τ (t)))+ e(t))dt = , which

does not satisfy (.). Another significance of the paper is that the result is related to the
deviating argument τ (t), while the conclusions in those existing papers mentioned above
have no relation with τ (t).

2 Preliminary results
For convenience, throughout this paper, we will adopt the following assumptions:

(H) ‖x‖p = (
∫ T
 |x(t)|p dt) p , ‖x‖∞ =maxt∈[,T] |x(t)|, ‖x‖ =max{‖x‖∞,‖x′(t)‖∞};

(H) m =mint∈[,T] |β(t)|,m =maxt∈[,T] |β(t)|;
(H) CT = {x|x ∈ C(R,R),x(t + T) = x(t),∀t ∈R};
(H) C

T = {x|x ∈ C(R,R),x(t + T) = x(t),x′(t + T) = x′(t),∀t ∈ R}.
It is obvious that CT with norm ‖x‖∞ and C

T with norm ‖x‖ are two Banach spaces.
Now we define a linear operator A : CT −→ CT , (Ax)(t) = x(t) – cx(t – σ ).
According to [, ], we know that the operator A has the following properties.

Lemma . [, ] If |c| �= , then A has continuous bounded inverse on CT and
() ‖A–x‖∞ = ‖x‖∞

|–|C|| , ∀x ∈ CT ,

() (A–x)(t) =
{∑

j≥ cjx(t – jσ ), |c| < ,
–

∑
j≥ c–jx(t + jσ ), |c| > ,

()
∫ T
 |(A–x)(t)|dt ≤ 

|–|c||
∫ T
 |x(t)|dt, ∀x ∈ CT .

Lemma . If |c| �=  and p > , then

∥∥A–x(t)
∥∥
p ≤ 

 – |c|
∥∥x(t)∥∥p, ∀x ∈ CT . (.)

Proof We know that x(t) is a periodic function. So
∫ T
 |x(t – jσ )|dt = ∫ T

 |x(t)|dt for j ≥ .
When |c| < , from Lemma ., we have

∫ T



∣∣A–x(t)
∣∣p dt =

∫ T



∣∣A–x(t)
∣∣p–∣∣A–x(t)

∣∣dt

=
∫ T



∣∣A–x(t)
∣∣p–

∣∣∣∣
∑
j≥

cjx(t – jσ )
∣∣∣∣dt

≤
∑
j≥

∣∣cj∣∣
∫ T



∣∣A–x(t)
∣∣p–∣∣x(t – jσ )

∣∣dt

≤
∑
j≥

∣∣cj∣∣
(∫ T



∣∣A–x(t)
∣∣(p–)q dt

) 
q
(∫ T



∣∣x(t – jσ )
∣∣p dt

) 
p
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=
∑
j≥

∣∣cj∣∣
(∫ T



∣∣A–x(t)
∣∣p dt

) 
q
(∫ T



∣∣x(t)∣∣p dt
) 

p

=


 – |c|
(∫ T



∣∣A–x(t)
∣∣p dt

) 
q
(∫ T



∣∣x(t)∣∣p dt
) 

p

which implies (
∫ T
 |A–x(t)|p dt) p ≤ 

–|c| (
∫ T
 |x(t – jσ )|p dt) p . That is to say (.) holds. If

|c| > , we can also prove that (.) is true in the same way. Thus Lemma . is proved.
Now we consider the following equation in C

T :

(
φp

(
u′(t)

))′ = F(u). (.)

F : C
T −→ CT is continuous and takes a bounded set into bounded set.

Let us define P : C
T −→ CT , u| −→ u(), Q : CT −→ CT , h| −→ 

T
∫ T
 h(s)ds and

H
(
h(t)

)
=

∫ t


h(s)ds, h ∈ CT .

It is clear that if u ∈ C
T is the solution to (.), then u satisfies the abstract equation

u = Pu +QF(u) +K
(
F(u)

)
,

where the operator K : CT −→ C
T is given by

K
(
h(t)

)
=H

{
φq

[
α
(
(I –Q)h

)
+H

(
(I –Q)

)]}
(t), ∀t ∈R,

α is a continuous function which sends bounded sets of CT into bounded sets of R, and it
is a completely continuous mapping. For more details as regards the meaning of α, please
refer to []. �

Lemma. [] Let� be an open bounded set in C
T . Suppose that the following conditions

hold:
(i) For each λ ∈ (, ), the equation (φp(u′))′ = λF(u) has no solution on ∂�.
(ii) The equation �(u) = 

T
∫ T
 F(u(t))dt =  has no solution on ∂� ∩R.

(iii) The Brouwer degree of �, deg{�,� ∩R, } �= .
Then (.) has at least one T-periodic solution in �̄.

Lemma . [] � ⊂ Rn is open bounded and symmetric with respect to  ∈ �. If f ∈
C(�̄,Rn) and f (x) �= μf (–x), ∀x ∈ ∂�, μ ∈ [, ], then deg{f ,�, } is an odd number.

3 Main results
Theorem . Suppose that the following conditions hold:

(A) τ (t) ∈ C(R,R), τ ′(t) >  or τ ′(t) < ,m =mint∈[,T] 
–τ ′(t) .

(A) The sign of β(t)
–τ ′(t) is unchanged in the interval [,T].

(A) There exist constants r ≥ , r >  and k >  such that
() |f (x)| ≤ k + r|x|p–, ∀x ∈ R,
() lim|x|−→∞ |g(x)|

|x|p– ≤ r.
(A) There exists a constant d >  such that xg(x) > , ∀|x| > d.

http://www.advancesindifferenceequations.com/content/2014/1/67
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Then (.) has at least one solution with periodic T if there exists a constant ε >  such
that the following condition holds:

∣∣ + |c|∣∣(a + T

q
)[
mT(r + ε) + rT


p
]
<

∣∣ – |c|∣∣p, (.)

where a is defined in (.).

Proof Consider the homotopic equation of (.) as follows:

(
φp

(
x′(t) – cx′(t – σ )

))′ + λf
(
x′(t)

)
+ λβ(t)g

(
x
(
t – τ (t)

))
= λe(t), λ ∈ (, ). (.)

Let x(t) be a possible T-periodic solution to (.). By integrating both sides of (.) over
[, T], we have

∫ T



[
f
(
x′(t)

)
+ β(t)g

(
x
(
t – τ (t)

))]
dt = . (.)

Let u(t) = t – τ (t), by the condition (A), we know that u(t) has a unique inverse denoted
by t = γ (u); noting that τ () = τ (T), we get

∫ T


β(t)g

(
x
(
t – τ (t)

))
dt =

∫ T–τ (T)

–τ ()

β(γ (u))g(u)
 – τ ′(γ (u))

du =
∫ T



β(γ (u))g(u)
 – τ ′(γ (u))

du. (.)

Based on the condition of (A) and the integral mean value theorem, there exists ξ ∈
[,T] such that

g
(
x(ξ )

)∫ T



β(γ (u))
 – τ ′(γ (u))

du = –
∫ T


f
(
x′(t)

)
dt. (.)

By the condition (A)() for a given ε > , ∃ρ > d >  when |x(t)| > ρ such that

|g(x)|
|x|p– ≥ r – ε > ,

|g(x)|
|x|p– ≤ r + ε. (.)

Now we can claim that there are two constants a and b such that

∣∣x(ξ )∣∣ ≤ a‖x‖p + b, (.)

where

a =

⎧⎪⎨
⎪⎩
[ r

(r–ε)mmT

q
]


p– 

–p
p– , p –  < ,

[ r

(r–ε)mmT

q
]


p– , p –  > ,

(.)

b =

⎧⎨
⎩
[ k
(r–ε)mm

]


p– 
–p
p– , p –  < ,

[ k
(r–ε)mm

]


p– , p –  > .
(.)

In the following, we prove the above claim in two cases.
Case . If |x(ξ )| ≤ ρ , ξ ∈ [,T], then (.) holds.
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Case . If |x(ξ )| > ρ , ξ ∈ [,T], by (.), (.), and the condition (A)(), we have

|r – ε|∣∣x(ξ )∣∣p–mmT ≤ ∣∣g(x(ξ ))∣∣
∫ T



β(γ (u))
 – τ ′(γ (u))

du

≤
∫ T



∣∣f (x′(t)
)∣∣dt ≤ kT + r

∫ T



∣∣x′(t)
∣∣p– dt

≤ kT + rT

p

(∫ T



∣∣x′(t)
∣∣p dt

) p–
p

= kT + rT

p
∥∥x′∥∥p–

p ,

∣∣x(ξ )∣∣p– ≤ k
(r – ε)mm

+
r

(r – ε)mmT

q

∥∥x′∥∥p–
p .

When  < p –  ≤ , according to the Minkowski inequality, we have

∣∣x(ξ )∣∣ ≤
[

k
(r – ε)mm

] 
p–


–p
p– +

[
r

(r – ε)mmT

q

] 
p–


–p
p–

∥∥x′∥∥
p.

When p –  > , from (a + b) 
m ≤ (a) 

m + (b) 
m , a,b ∈ [, +∞),m > , we have

∣∣x(ξ )∣∣ ≤
[

k
(r – ε)mm

] 
p–

+
[

r
(r – ε)mmT


q

] 
p– ∥∥x′∥∥

p.

Therefore, (.) is also satisfied for case .
For any t ∈R, there exists t ∈ [,T], such that t = kT + t, where k is an integer. Then

∣∣x(t)∣∣ = ∣∣x(t)∣∣ ≤ ∣∣x(ξ )∣∣ +
∫ T



∣∣x′(s)
∣∣ds, ξ ∈ [,T].

By (.), we have

‖x‖∞ ≤ a
∥∥x′∥∥

p + b + T

q
∥∥x′∥∥

p =
(
a + T


q
)∥∥x′∥∥

p + b. (.)

At first, we prove that there is a constant R such that

‖x‖∞ ≤ R. (.)

By (.), we only need to prove that ‖x′‖p is bounded in order to prove (.).
If ‖x′‖p = , then ‖x′‖p is obviously bounded.
If b

a+T

q ‖x′‖p

≥ h, then ‖x′‖p ≤ b–ah

hT

q
, that is, ‖x′‖p is bounded as well.

If b

a+T

q ‖x′‖p

< h, we prove that ‖x′‖p is bounded in the following.

http://www.advancesindifferenceequations.com/content/2014/1/67
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By multiplying both sides of (.) by A(x(t)) = x(t) – cx(t – σ ) and integrating them over
[,T], we have

∣∣∣∣
∫ T



[
ϕp

(
Ax′)]′A

(
x(t)

)
dt

∣∣∣∣
=

∣∣∣∣ϕp
(
Ax′)A(

x(t)
)|T –

∫ T


ϕp

(
Ax′)Ax′ dt

∣∣∣∣
=

∫ T



∣∣Ax′∣∣p dt = ∥∥Ax′∥∥p
p

=
∣∣∣∣λ

∫ T


A

(
x(t)

)[
f
(
x′(t)

)
+ β(t)g

(
x
(
t – τ (t)

))
– e(t)

]
dt

∣∣∣∣
≤ (

 + |c|)‖x‖∞
∫ T



[∣∣f (x′(t)
∣∣ + ∣∣β(t)g(x(t – τ (t)

))∣∣ + ∣∣e(t)∣∣]dt. (.)

Let E = {t ∈ [,T] : |x(t – τ (t))| ≤ ρ}, E = {t ∈ [,T] : |x(t – τ (t))| > ρ}, then
∫ T



∣∣β(t)g(x(t – τ (t)
))∣∣dt =

∫
E

∣∣β(t)g(x(t – τ (t)
))∣∣dt +

∫
E

∣∣β(t)g(x(t – τ (t)
))∣∣dt

≤mmT +mT(r + ε)‖x‖p–∞ , (.)

where

m =max
|x|≤ρ

∣∣g(x)∣∣. (.)

By (.) and (.), we get

∥∥Ax′∥∥p
p ≤ (

 + |c|)‖x‖∞

×
[
mmT +mT(r + ε)‖x‖p–∞ + kT + rT


p
∥∥x′∥∥p–

p +
∫ T



∣∣e(t)∣∣dt
]

=
(
 + |c|)

(
mmT + kT +

∫ T



∣∣e(t)∣∣dt
)

‖x‖∞ +
(
 + |c|)mT(r + ε)‖x‖p∞

+
(
 + |c|)rT 

p ‖x‖∞
∥∥x′∥∥p–

p

≤ a
[
b +

(
a + T


q
)]∥∥x′∥∥

p + a
[
b +

(
a + T


q
)∥∥x′∥∥

p

]p
+ a

[
b +

(
a + T


q
)∥∥x′∥∥

p

]∥∥x′∥∥p–
p , (.)

where a = ( + |c|)(mmT + kT +
∫ T
 |e(t)|dt), a = ( + |c|)mT(r + ε), a = ( + |c|)rT


p .

By elementary analysis, we know that there is a constant h >  which satisfies b– ah > 
such that

( + u)p ≤  + ( + p)u, ∀u ∈ (,h]. (.)

http://www.advancesindifferenceequations.com/content/2014/1/67
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By (.), one has

[
b +

(
a + T


q
)∥∥x′∥∥

p

]p = (
a + T


q
)p∥∥x′∥∥p

p

(
 +

b

(a + T

q )‖x′‖p

)p

≤ (
a + T


q
)p∥∥x′∥∥p

p + b( + p)
(
a + T


q
)p–∥∥x′∥∥p–

p . (.)

By Lemma ., together with (.) and (.), we can derive

∣∣ – |c|∣∣p∥∥x′∥∥p
p

=
∣∣ – |c|∣∣p∥∥A–Ax′∥∥p

p ≤ ∥∥Ax′∥∥p
p

≤ a
[
b +

(
a + T


q
)]∥∥x′∥∥

p + a
[(
a + T


q
)p∥∥x′∥∥p

p + b( + p)
(
a + T


q
)p–∥∥x′∥∥p–

p

]

+ a
[
b +

(
a + T


q
)∥∥x′∥∥

p

]∥∥x′∥∥p–
p

= (a + a)
(
a + T


q
)∥∥x′∥∥p

p +
[
ab( + p)

(
a + T


q
)p– + ab

]∥∥x′∥∥p–
p

+ a
(
a + T


q
)∥∥x′∥∥

p + ab. (.)

From (.) and (.), we know that ‖x′‖p also is bounded in this case. Based on the above,
we can derive the result that ‖x′‖p has a bound; therefore, (.) holds.
Secondly, we prove that there is a constant R such that

∥∥x′∥∥∞ ≤ R. (.)

Based on (.), together with (.) and the condition (A)(), we get

∫ T



∣∣(φp
((
Ax′(t)

)))′∣∣

≤
∫ T



[∣∣f (x′(t)
)∣∣ + ∣∣β(t)g(x(t – τ (t)

))∣∣ + ∣∣e(t)∣∣)]dt

≤ kT + rT

p
∥∥x′∥∥p–

p +mmT +mT(r + ε)‖x‖p–∞ +
∫ T



∣∣e(t)∣∣dt := R.

Because A(x()) = A(x(T)), there exists t ∈ [,T] such that (Ax(t))′ = A(x′(t)) = .
Noting that φp() = , we have

∣∣φp
(
Ax′(t)

)∣∣ =
∣∣∣∣
∫ t

t

(
φp

(
A

(
x′(t)

)))′dt
∣∣∣∣ ≤

∫ T



∣∣φp
(
A

(
x′(t)

))′∣∣dt ≤ R,

then

∥∥Ax′∥∥∞ ≤ φq(R).

From Lemma ., we derive

∥∥x′∥∥∞ =
∥∥A–Ax′∥∥∞ ≤ ‖Ax′‖∞

| – |c|| ≤ φq(R)
| – |c|| := R,

therefore, (.) is satisfied.

http://www.advancesindifferenceequations.com/content/2014/1/67


Min He and Shen Advances in Difference Equations 2014, 2014:67 Page 8 of 9
http://www.advancesindifferenceequations.com/content/2014/1/67

Let y(t) = (Ax(t)), then (.) is equivalent to the following equation:

(
φp

(
y′(t)

))′ + λf
(
A–y′(t)

)
+ λg

(
A–y

(
t – τ (t)

))
= λe(t). (.)

Then x = A–y is a T-periodic solution of (.) if y is a T-periodic solution of (.). Let

F
(
y(t)

)
= e(t) – f

((
A–y(t)

)′) – g
(
A–(y(t – τ (t)

)))
, (.)

since f , g are continuous and A has a continuous inverse, the mapping F : C
T −→ CT in

(.) is continuous and takes bounded sets into bounded sets.
In addition, (.) can be represented as

(
φp

(
y′(t)

))′ = λF
(
y(t)

)
. (.)

Let R =Mmax{R,R,ρ}; M >  + |c| is a constant, � = {y(t) ∈ C
T ,‖y‖∞ < R,‖y′‖∞ < R},

then (.) has no solution on ∂� for λ ∈ (, ). In fact, if y = Ax is a solution to (.) on
∂�, then ‖y‖∞ = R or ‖y′‖∞ = R. If ‖y‖∞ = R, then ‖y‖∞ = ‖Ax‖∞ = ‖x(t) – cx(t – σ )‖∞ ≤
(+ |c|)‖x‖∞. That is to say, ‖x‖∞ ≥ ‖y‖∞

+|c| > R. This is a contradiction with (.). Similarly,
‖y′‖∞ �= R. Then (.) satisfies the condition (i) of Lemma ..
If y ∈ ∂� ∩R, y is a constant and |y| = ‖y‖∞ = R, then f ((A–y)′) =  and |y| ≤ ( + |c|)|x|,

|x| ≥ |y|
+|c| > ρ > d. By (A), we obtain g(A–(y(t – τ (t)))) = g(A–y) = g(x) �= . Therefore

�(y) =

T

∫ T


F(y)dt = –g

(
A–(y(t – τ (t)

)))
= –g(x) �=  (.)

on ∂� ∩R. This indicates that (.) satisfies the condition (ii) of Lemma ..
We know ∂(� ∩R) = {–R,R}, then for ∀y ∈ ∂(� ∩R), we have y = R > d or y = –R < –d.

By (.) and the condition (A), we conclude that�(y) �= μ�(–y),μ ∈ [, ], y ∈ ∂(�∩R).
Based on Lemma ., we get deg{�,� ∩R, } �= .
Based on the above, (.) satisfies all the conditions of Lemma .. So does (.). By

Lemma., (.) has at least oneT-periodic solution, then (.) has also at least a periodic
solution. �

4 Example
Consider the following equation:

(
φ

(
x′(t) –




x′
(
t –




)))′
+ f

(
x′(t)

)
+ β(t)g

(
x
(
t –



sin t

))
=




cos t, (.)

where p = , c = 
 , σ = 

 , τ (t) =

 sin t, e(t) =


 cos t, T = π . Obviously we get τ ′(t) < ,

m = 
 .

If we take f (x) =
{ 

 x, |x| ≤ ,


 x
, |x| > ,

g(x) = x
 +

x
 , β(t) =


(+sin t) , then the condition (A) of

Theorem . is satisfied and

∣∣f (x)∣∣ ≤ 


+



∣∣x∣∣, lim|x|−→∞

|g(x)|
|x| ≤ 


, m =




, m =



. (.)

By (.), we obtain k = 
 , r =


 , r =


 .
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If we choose ε = ., ρ > , then when |x| > ρ , we have

|g(x)|
|x| ≥ r – ε,

|g(x)|
|x| ≤ r + ε.

We calculate easily that

a = .,
∣∣ + |c|∣∣(a + T


q
)[
mT(r + ε) + rT


p
]
= . <

∣∣ – |c|∣∣ = ..

Based on the above, we know that (.) satisfies all conditions included in Theorem .;
therefore, (.) has at least one T-periodic solution.
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