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Abstract
In this paper, we discuss the existence and multiplicity of positive solutions to
m-point boundary value problems of nonlinear fractional differential equations with
p-Laplacian operator

{
Dβ
0+(ϕp(Dα

0+u(t))) + ϕp(λ)f (t,u(t)) = 0, 0 < t < 1,
u(0) = 0, Dγ

0+u(1) =
∑m–2

i=1 ξiD
γ
0+u(ηi), Dα

0+u(0) = 0,

where Dα
0+, D

β
0+ and Dγ

0+ are the standard Riemann-Liouville fractional derivatives with
1 < α ≤ 2, 0 < β ,γ ≤ 1, 0≤ α – β – 1, λ ∈ (0, +∞), 0 < ξi ,ηi < 1, i = 1, 2, . . . ,m – 2,∑m–2

i=1 ξiη
α–β–1
i < 1, 0≤ α – γ – 1, f ∈ C([0, 1]× [0, +∞), [0, +∞)), and ϕp(s) = |s|p–2s,

p > 1, ϕ–1
p = ϕq, 1p +

1
q = 1. Our results are based on the monotone iterative technique

and the theory of the fixed point index in a cone. Furthermore, two examples are also
given to illustrate the results.

Keywords: fractional differential equation; m-point boundary value problems;
p-Laplacian operator

1 Introduction
Fractional differential equations arise in various areas of science and engineering. Due
to their applications, fractional differential equations have gained considerable attention
(see, e.g., [–] and the references therein).
Recently, there have been some papers dealing with the existence of solutions for non-

linear fractional differential equations with p-Laplacian operator. In [], Wang et al. in-
vestigated the following boundary value problem for fractional differential equations with
p-Laplacian operator:

{
Dβ

+(ϕp(Dα
+u(t))) + f (t,u(t)) = ,  < t < ,

u() = , u() = au(ξ ), Dα
+u() = , Dα

+u() = bDα
+u(η),

where Dα
+, D

β
+ are the standard Riemann-Liouville fractional derivatives,  < α,β ≤ ,

 ≤ a,b≤ ,  < ξ ,η < , f (t,u) ∈ C[(, )× (, +∞), [, +∞)].
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In [], Chai studied the existence of positive solutions of the following fractional differ-
ential equations with p-Laplacian operator:

{
Dβ

+(ϕp(Dα
+u(t))) + f (t,u(t)) = ,  < t < ,

u() = , u() + σDγ
+u() = , Dα

+u() = ,

where Dα
+, D

β
+ and Dγ

+ are the standard Riemann-Liouville fractional derivatives with
 < α ≤ ,  < β ≤ ,  < γ ≤ ,  ≤ α – γ – , the constant σ is a positive number, f (t,u) ∈
C(I ×R+,R+).
In [], Chen and Liu studied the following fractional differential equations with p-

Laplacian operator:

{
Dβ

+(ϕp(Dα
+x(t))) = f (t,x(t)), t ∈ [, ],

x() = –x(), Dα
+x() = –Dα

+x(),

where  < α,β ≤ ,  < α+β ≤ ,Dα
+,D

β
+ are Caputo fractional derivatives, and f : [, ]×

R →R is continuous.
In [], Lu et al. studied the following fractional differential equations with p-Laplacian

operator:

{
Dβ

+(ϕp(Dα
+u(t))) = f (t,u(t)), t ∈ [, ],

u() = u′() = u′() = , Dα
+u() =Dα

+u() = ,

where  < α ≤ ,  < β ≤ ,Dα
+,D

β
+ are the standard Riemann-Liouville fractional deriva-

tives, and f (t,u) ∈ C([, ]× [, +∞), [, +∞)).
On the other hand, in [], Bai studied an eigenvalue interval of the following fractional

boundary problem:

{
cDα

+u(t) + λh(t)f (u(t)) = ,  < t < ,
u() = u′() = u′′() = ,

where  < α ≤ , cDα
+ is the standard Caputo fractional derivative, λ > .

In [], Zhang et al. studied the following singular eigenvalue problem for a higher order
fractional differential equation:

{
–Dαx(t) = λf (x(t),Dμx(t),Dμx(t), . . . ,Dμn–x(t)),  < t < ,
x() = , Dμi x() = , Dμx() =

∑p–
j= ajDμx(ξj),  ≤ i≤ n – ,

where n ≥ , n –  < α ≤ n, n – l –  < α –μl < n –  for l = , , . . . ,n – , and μ –μn– > ,
α –μn– ≤ , α –μ > . Dα

+ is the standard Riemann-Liouville fractional derivative.
Moreover, in recent years, we have done some work on fractional differential equations

[–]. In [], we considered the following m-point boundary value problem for fractional
differential equations:

{
Dα

+u(t) + f (t,u(t)) = ,  < t < ,
u() = , Dβ

+u() =
∑m–

i= ξiDβ
+u(ηi),
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where Dα
+ is the standard Riemann-Liouville fractional derivative, n = [α] + , f : [, ] ×

[,∞) → [,∞) is continuous,  < α ≤ ,  ≤ β ≤ ,  ≤ α – β – ,  < ξi,ηi < , i =
, , . . . ,m – , and

∑m–
i= ξiη

α–β–
i < .

Combining our work, in this paper, we discuss the existence of positive solutions for the
following fractional differential equations with p-Laplacian operator:

{
Dβ

+(ϕp(Dα
+u(t))) + ϕp(λ)f (t,u(t)) = ,  < t < ,

u() = , Dγ
+u() =

∑m–
i= ξiDγ

+u(ηi), Dα
+u() = ,

(.)

where Dα
+, D

β
+ and Dγ

+ are the standard Riemann-Liouville fractional derivatives with
 < α ≤ ,  < β ,γ ≤ ,  ≤ α – β – , λ ∈ (, +∞),  < ξi,ηi < , i = , , . . . ,m – ,∑m–

i= ξiη
α–β–
i < ,  ≤ α – γ – , f ∈ C([, ]× [, +∞), [, +∞)), and ϕp(s) = |s|p–s, p > ,

ϕ–
p = ϕq, 

p +

q = .

Our work presented in this paper has the following features. Firstly, to the best of the
author’s knowledge, there are few results on the existence of solutions for nonlinear frac-
tional p-Laplacian differential equations with m-point boundary value problems. Sec-
ondly, we transform (.) into an equivalent integral equation and discuss the eigenvalue
interval for the existence of multiplicity of positive solutions. The paper is organized as
follows. In Section , we present some background materials and preliminaries. Section 
deals with some existence results. In Section , two examples are given to illustrate the
results.

2 Backgroundmaterials and preliminaries
Definition . ([, ]) The fractional integral of order α with the lower limit t for a
function f is defined as

Iαf (t) =



(α)

∫ t

t
(t – s)α–f (s)ds, t > t,α > ,

where 
 is the gamma function.

Definition . ([, ]) The Riemann-Liouville derivative of order α with the lower limit
t for a function f is

Dα
t f (t) =



(n – α)

(
d
dt

)n ∫ t

t
(t – s)n–α–f (s)ds, t > t,α > ,n = [α] + .

Lemma . ([]) Assume that u ∈ C(, ) ∩ L(, ) with a fractional derivative of order
α >  that belongs to C(, )∩ L(, ). Then

Iα+D
α
+u(t) = u(t) +Ctα– +Ctα– + · · · +CNtα–N for some Ci ∈R, i = , , . . . ,N ,

where N is the smallest integer greater than or equal to α.

Lemma . ([]) Let y ∈ C[, ]. Then the fractional differential equation

{
Dα

+u(t) + y(t) = ,  < t < ,  < α ≤ ,
u() = , Dβ

+u() =
∑m–

i= ξiDβ
+u(ηi)
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has a unique solution which is given by

u(t) =
∫ 


G(t, s)y(s)ds,

where

G(t, s) =G(t, s) +G(t, s),

in which

G(t, s) =

{ tα–(–s)α–β––(t–s)α–

(α) , ≤ s ≤ t ≤ ,

tα–(–s)α–β–


(α) ,  ≤ t ≤ s ≤ ,

G(t, s) =

{


A
(α) [
∑

≤s≤ηi
(ξiηiα–β–tα–( – s)α–β– – ξitα–(ηi – s)α–β–)], t ∈ [, ],


A
(α) (

∑
ηi≤s≤ ξiηi

α–β–tα–( – s)α–β–), t ∈ [, ],

where

A =  –
m–∑
i=

ξiη
α–β–
i .

Lemma . ([]) If
∑m–

i= ξiη
α–β–
i < , then the function G(t, s) in Lemma . satisfies the

following conditions:
(i) G(t, s) > , for s, t ∈ (, ),
(ii) G(t, s)≤G∗(s, s), for s, t ∈ [, ],

where

G∗(s, s) =



(α)
( – s)α–β– +


A
(α)

m–∑
i=

ξiη
α–β–
i ( – s)α–β–.

Lemma . G(t, s) in [] has the following property:

G(t, s)≥ tα–G(, s).

Proof For ≤ s ≤ t ≤ , we conclude that

tα–( – s)α–β– – (t – s)α–

= tα–
[
( – s)α–β– –

(
 –

s
t

)α–]

≥ tα–
[
( – s)α–β– – ( – s)α–

]
.

Thus

G(t, s)≥ tα–G(, s).

It is obvious that

G(t, s)≥ tα–G(, s).

http://www.advancesindifferenceequations.com/content/2014/1/69
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Therefore

G(t, s)≥ tα–G(, s). �

Lemma . Let f ∈ C([, ]× [, +∞), [, +∞)), then BVP (.) has a unique solution

u(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds.

Proof Let w =Dα
+u, v = ϕp(w). From (.), we have

{
Dβ

+v(t) + ϕp(λ)f (t,u(t)) = ,  < t < ,
v() = .

By Lemma ., we have

v(t) = ctβ– – Iβ+
(
ϕp(λ)f

(
t,u(t)

))
,  < t < .

It follows from v() =  that

v(t) = –Iβ+
(
ϕp(λ)f

(
t,u(t)

))
,  < t < .

Thus, from (.) we know that

{
Dα

+u(t) = ϕ–
p (–Iβ+(ϕp(λ)f (t,u(t)))),  < t < ,

u() = , Dγ
+u() =

∑m–
i= ξiDγ

+u(ηi).

By Lemma ., (.) has a unique solution

u(t) = –λ

∫ 


G(t, s)ϕ–

p
(
–Iβ+f

(
s,u(s)

))
ds.

It follows from f ∈ C([, ]× [, +∞), [, +∞)) that

–
∫ 


G(t, s)ϕ–

p
(
–Iβ+f

(
s,u(s)

))
ds =

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds.

Thus

u(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds. �

Lemma . ([]) Let E be a real Banach space, P ⊂ E be a cone, �r = {u ∈ P : ‖u‖ ≤ r}.
Let the operator T : P ∩ �r → P be completely continuous and satisfy Tx �= x, ∀x ∈ ∂�r .
Then

(i) If ‖Tx‖ ≤ ‖x‖, ∀x ∈ ∂�r , then i(T ,�r ,P) = ,

(ii) If ‖Tx‖ ≥ ‖x‖, ∀x ∈ ∂�r , then i(T ,�r ,P) = .

http://www.advancesindifferenceequations.com/content/2014/1/69
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3 Main results
We consider the Banach space E = C([, ],R) endowed with the norm defined by ‖u‖ =
sup≤t≤ |u(t)|. Let P = {u ∈ E|u(t)≥ }, then P is a cone in E. Define an operator T : P → P
as

(Tu)(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds. (.)

Then T has a solution if and only if the operator T has a fixed point.

Lemma . If f ∈ C([, ] × [, +∞), [, +∞)), then the operator T : P → P is completely
continuous.

Proof From the continuity and non-negativeness of G(t, s) and f (t,u(t)), we know that
T : P → P is continuous.
Let � ⊂ P be bounded. Then, for all t ∈ [, ] and u ∈ �, there exists a positive constant

M such that |f (t,u(t))| ≤M. Thus,

∣∣(Tu)(t)∣∣ = ∣∣∣∣λ
∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds

∣∣∣∣
≤ λ

∫ 


G∗(s, s)

(∫ s


(s – τ )β– dτ

)q–

ds
Mq–

(
(β))q–

= λ
Mq–

(
(β + ))q–

∫ 


G∗(s, s)s(q–)β ds

≤ λ
Mq–

(
(β + ))q–

∫ 


G∗(s, s)ds

= λ
Mq–L

(
(β + ))q–
,

where

L =
∫ 


G∗(s, s)ds.

This means that T(�) is uniformly bounded.
On the other hand, from the continuity of G(t, s) on [, ] × [, ], we see that it is uni-

formly continuous on [, ]× [, ]. Thus, for fixed s ∈ [, ] and for any ε > , there exists
a constant δ >  such that t, t ∈ [, ] and |t – t| < δ,

∣∣G(t, s) –G(t, s)
∣∣ < (
(β + ))q–

λMq– ε.

Hence, for all u ∈ �,

∣∣(Tu)(t) – (Tu)(t)
∣∣

≤ λ

∫ 



∣∣G(t, s) –G(t, s)
∣∣ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds

http://www.advancesindifferenceequations.com/content/2014/1/69
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≤ λ

∫ 



∣∣G(t, s) –G(t, s)
∣∣(∫ s


(s – τ )β– dτ

)q–

ds
Mq–

(
(β))q–

= λ
Mq–

(
(β + ))q–

∫ 



∣∣G(t, s) –G(t, s)
∣∣s(q–)β ds

≤ λ
Mq–

(
(β + ))q–

∫ 



∣∣G(t, s) –G(t, s)
∣∣ds

= ε,

which implies that T(�) is equicontinuous. By the Arzela-Ascoli theorem, we obtain that
T : P → P is completely continuous. The proof is complete. �

Theorem . If f ∈ C([, ] × [, +∞), [, +∞)), f (t,u) is nondecreasing in u and λ ∈
(, +∞), then BVP (.) has a minimal positive solution v in Br and a maximal positive
solution w in Br . Moreover, vm(t) → v(t), wm(t) → w(t) as m → ∞ uniformly on [, ],
where

vm(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s, vm–(s)

))
ds (.)

and

wm(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,wm–(s)

))
ds. (.)

Proof Let

Br =
{
u ∈ P : ‖u‖ ≤ r

}
,

where

r ≥ λM
q–

(
(β + ))q–

∫ 


G∗(s, s)ds.

Step : Problem (.) has at least one solution.
For u ∈ Br , there exists a positive constantM such that |f (t,u(t))| ≤M,

∣∣(Tu)(t)∣∣ = ∣∣∣∣λ
∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds

∣∣∣∣
≤ λ

(
(β))q–

∫ 


G∗(s, s)

(∫ s


(s – τ )β–f

(
τ ,u(τ )

)
dτ

)q–

ds

≤ λM
q–

(
(β))q–

∫ 


G∗(s, s)

(∫ s


(s – τ )β– dτ

)q–

ds

=
λM

q–

(
(β + ))q–

∫ 


G∗(s, s)sβ(q–) ds

≤ λM
q–

(
(β + ))q–

∫ 


G∗(s, s)ds.

http://www.advancesindifferenceequations.com/content/2014/1/69
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Thus

T : Br → Br .

By Lemma ., we can see that T : Br → Br is completely continuous. Hence, by means of
the Schauder fixed point theorem, the operator T has at least one fixed point, and BVP
(.) has at least one solution in Br .
Step : BVP (.) has a positive solution in Br , which is a minimal positive solution.
From (.) and (.), one can see that

vm(t) = (Tvm–)(t), t ∈ [, ],m = , , , . . . . (.)

This, together with f (t,u) being nondecreasing in u, yields that

 = v(t) ≤ v(t) ≤ · · · ≤ vm(t)≤ · · · , t ∈ [, ].

Since T is compact, we obtain that {vm} is a sequentially compact set. Consequently, there
exists v ∈ Br such that vm → v (m → ∞).
Let u(t) be any positive solution of BVP (.) in Br . It is obvious that  = v(t) ≤ u(t) =

(Tu)(t).
Thus,

vm(t) ≤ u(t) (m = , , , , . . .). (.)

Taking limits asm → ∞ in (.), we get v(t) ≤ u(t) for t ∈ [, ].
Step : BVP (.) has a positive solution in Br , which is a maximal positive solution.
Let w(t) = r, t ∈ [, ] and w(t) = Tw(t). From T : Br → Br , we have w ∈ Br . Thus

 ≤ w(t)≤ r = w(t).

This, together with f (t,u) being nondecreasing in u, yields that

· · · ≤ wm(t) ≤ · · · ≤ w(t)≤ w(t), t ∈ [, ].

Using a proof similar to that of Step , we can show that

wm(t) → w(t) (m → ∞)

and

w(t) =
∫ 


G(t, s)f

(
s,w(s)

)
ds.

Let u(t) be any positive solution of BVP (.) in Br .
Obviously,

u(t) ≤ w(t).

http://www.advancesindifferenceequations.com/content/2014/1/69
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Thus

u(t) ≤ wm(t). (.)

Taking limits asm → ∞ in (.), we obtain u(t) ≤ w(t) for t ∈ [, ].
The proof is complete. �

Define

f  = lim
u→+

sup
t∈[,]

f (t,u)
ϕp(l‖u‖) , f = lim

u→+
inf

t∈[,]
f (t,u)

ϕp(l‖u‖) ,

f ∞ = lim
u→+∞ sup

t∈[,]
f (t,u)

ϕp(l‖u‖) , f∞ = lim
u→+∞ inf

t∈[,]
f (t,u)

ϕp(l‖u‖) .

Let

B =
∫ 


G∗(s, s)sβ(q–) ds and B =

∫ 


G(, s)sβ(q–) ds.

Theorem . Assume that f ∈ C([, ] × [, +∞), [, +∞)), and the following conditions
hold:

(H) f = f∞ = +∞.
(H) There exists a constant ρ >  such that f (t,u) ≤ ϕp(l‖u‖) for t ∈ [, ], u ∈ [,ρ].

Then BVP (.) has at least two positive solutions u and u such that

 < ‖u‖ < ρ < ‖u‖

for

λ ∈
(
(
(β + ))q–

lB
,
(
(β + ))q–

lB

)
∩

(
(
(β + ))q–

lB
,
(
(β + ))q–

lB

)
, (.)

where

lB > lB and lB > lB.

Proof Since

f = lim
u→+

inf
t∈[,]

f (t,u)
ϕp(l‖u‖) = +∞,

there is ρ ∈ (,ρ) such that

f (t,u) ≥ ϕp
(
l‖u‖) for t ∈ [, ],u ∈ [,ρ].

Let

�ρ =
{
u ∈ P : ‖u‖ ≤ ρ

}
.

http://www.advancesindifferenceequations.com/content/2014/1/69
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Then, for any u ∈ ∂�ρ , it follows from Lemma . that

(Tu)(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds

≥ λ

∫ 


tα–G(, s)ϕ–

p
(
Iβ+

(
ϕp

(
l‖u‖)))ds

= λl
∫ 


tα–G(, s)

(



(β)

∫ s


(s – τ )β– dτ

)q–

ds‖u‖

=
λl

(
(β + ))q–

∫ 


tα–G(, s)sβ(q–) ds‖u‖.

Thus

‖Tu‖ ≥ λlB

(
(β + ))q–
‖u‖.

This, together with (.), yields that

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂�ρ .

By Lemma ., we have

i(T ,�ρ ,P) = . (.)

In view of

f∞ = lim
u→+∞ inf

t∈[,]
f (t,u)

ϕp(l‖u‖) = +∞,

there is ρ∗
,ρ∗

 > ρ, such that

f (t,u) ≥ ϕp
(
l‖u‖) for t ∈ [, ],u ∈ [

ρ∗
, +∞)

.

Let

�ρ∗

=

{
u ∈ P : ‖u‖ ≤ ρ∗


}
.

Then, for any u ∈ ∂�ρ∗

, it follows from Lemma . that

(Tu)(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds

≥ λ

∫ 


tα–G(, s)ϕ–

p
(
Iβ+

(
ϕp

(
l‖u‖)))ds

= λl
∫ 


tα–G(, s)

(



(β)

∫ s


(s – τ )β– dτ

)q–

ds‖u‖

=
λl

(
(β + ))q–

∫ 


tα–G(, s)sβ(q–) ds‖u‖.

http://www.advancesindifferenceequations.com/content/2014/1/69
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Thus

‖Tu‖ ≥ λlB

(
(β + ))q–
‖u‖.

This, together with (.), yields that

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂�ρ∗

.

By Lemma ., we have

i(T ,�ρ∗

,P) = . (.)

Finally, let �ρ = {u ∈ P : ‖u‖ ≤ ρ}. For any u ∈ ∂�ρ , it follows from Lemma . and (H)
that

(Tu)(t) = λ

∫ 


G(t, s)ϕ–

p
(
Iβ+f

(
s,u(s)

))
ds

≤ λ

∫ 


G∗(s, s)ϕ–

p
(
Iβ+

(
ϕp

(
l‖u‖)))ds

= λl
∫ 


G∗(s, s)

(



(β)

∫ s


(s – τ )β– dτ

)q–

ds‖u‖

=
λl

(
(β + ))q–

∫ 


G∗(s, s)sβ(q–) ds‖u‖.

Thus

‖Tu‖ ≤ λlB
(
(β + ))q–

‖u‖.

This, together with (.), yields that

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂�ρ .

Using Lemma ., we get

i(T ,�ρ ,P) = . (.)

From (.)-(.) and ρ < ρ < ρ∗
 , we have

i(T ,�ρ∗

\�ρ ,P) = –, i(T ,�ρ\�ρ ,P) = .

Therefore, T has a fixed point u ∈ �ρ\�ρ and a fixed point u ∈ �ρ∗

\�ρ . Clearly, u, u

are both positive solutions of BVP (.) and  < ‖u‖ < ρ < ‖u‖. The proof of Theorem.
is completed. �

In a similar way, we can obtain the following result.
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Corollary . Assume that f ∈ C([, ] × [, +∞), [, +∞)), and the following conditions
hold:

(H) f  = f ∞ = .
(H) There exists a constant ρ >  such that f (t,u) ≥ ϕp(l‖u‖) for t ∈ [, ], u ∈ [,ρ].

Then BVP (.) has at least two positive solutions u and u such that

 < ‖u‖ < ρ < ‖u‖

for

λ ∈
(
(
(β + ))q–

lB
,
(
(β + ))q–

lB

)
∩

(
(
(β + ))q–

lB
,
(
(β + ))q–

lB

)
,

where

lB > lB and lB > lB.

4 Examples
Example . Consider the following boundary value problem:

⎧⎨
⎩D



+(ϕ(D



+u(t))) + ϕ(λ)((t + )π |u(t)|

+|u(t)| ) = ,  < t < ,

u() = , D


+u() =

∑
i= ξiD



+u(ηi), D



+u() = ,

(.)

where

α =


, β =



, γ =



, m = , p = q = ,

ξ = η =


, ξ = η =



, λ ∈ (, +∞), f (t,u) = (t + )π

|u(t)|
 + |u(t)| .

Thus

f ∈ C
(
[, ]× [, +∞), [, +∞)

)
and

∣∣f (t,u)∣∣ = ∣∣∣∣(t + )π
|u(t)|

 + |u(t)|
∣∣∣∣ ≤ π .

By computation, we deduce that

∑
i=

ξiη
α–β–
i = ξi + ξ =



,

A =  –
∑
i=

ξiη
α–β–
i =




and

α – γ –  ≥ .
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On the other hand,

∫ 


G∗(s, s)ds =



(α)

∫ 


( – s)α–β– ds +


A
(α)

∑
i=

ξiη
α–β–
i

∫ 


( – s)α–β– ds

=

(



(α)
+


A
(α)

∑
i=

ξiη
α–β–
i

)∫ 


( – s)α–β– ds

=



(α)
+


A
(α)

∑
i=

ξi

=


√
π



+





√
π






=
√
π

+
√
π

=
√
π
.

Take

r ≥ λM
q–

(
(β + ))q–

∫ 


G∗(s, s)ds

=
λπ
√

π



√
π

= λ.

Hence, by Theorem ., BVP (.) has a minimal positive solution v in Br and a maximal
positive solution w in Br .

Example . Consider the following boundary value problem:

⎧⎨
⎩D



+(ϕ 


(D



+u(t))) + ϕ 


(λ)( + t)(  |u(t)|


 + 

‖u‖ 
 + ‖u‖) = ,  < t < ,

u() = , D


+u() =

∑
i= ξiD



+u(ηi), D



+u() = ,

(.)

where

α =


, β =



, γ =



, p =



, q = , m = ,

ξ = η =


, ξ = η =



, α – γ –  = , α – β –  = 

and

f (t,u) = ( + t)
(


∣∣u(t)∣∣ 

 +


‖u‖ 

 + ‖u‖
)
.

It follows from Example . that

∑
i=

ξiη
α–β–
i = ξi + ξ =



, A =  –

∑
i=

ξiη
α–β–
i =



.
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By computation, we deduce that

B =
∫ 


G∗(s, s)sβ(q–) ds

=



(α)

∫ 


( – s)α–β–sβ(q–) ds +


A
(α)

∑
i=

ξiη
α–β–
i

∫ 


( – s)α–β–sβ(q–) ds

=



(α)

∫ 


s

×(–) ds +


A
(α)

∑
i=

ξi

∫ 


s

×(–) ds

=



(α)

∫ 


s ds +


A
(α)

∑
i=

ξi

∫ 


s ds

=



(



(α)
+


A
(α)

∑
i=

ξi

)

=



(
√
π

+
√
π

(


+



))

=



× √
π

=
√
π

and

B =
∫ 


G(, s)sβ(q–) ds

=
∫ 


G(, s)sβ(q–) ds +

∫ 


G(, s)sβ(q–) ds

=



(  )

∫ 



[
 – ( – s)



]
sβ(q–) ds +


A
(  )

∫ 




[
ξη


 ( – s) – ξ(η – s)

]
sβ(q–) ds

+


A
(  )

∫ 




ξη

 ( – s)sβ(q–) ds

+


A
(  )

∫ 




[
ξη


( – s) – ξ(η – s)

]
sβ(q–) ds

+


A
(  )

∫ 




ξη

( – s)sβ(q–) ds

=



(  )

∫ 



[
s – s( – s)



]
ds +


A
(  )

∫ 




ξs ds +


A
(  )

∫ 




ξs ds

=
√
π

∫ 



[
s – s( – s)



]
ds +

√
π

∫ 




s ds +
√
π

∫ 




s ds

=
√
π

(


–




)
+

√
π



s

∣∣∣∣





+
√
π



s

∣∣∣∣





=



√

π
.
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Taking

ρ = , l = ,,

we have

f (t,u) ≤ ( + )( + ) =  = ϕp
(
l‖u‖) = ϕ 


(,× ) for t ∈ [, ],u ∈ [,ρ].

Thus, condition (H) is satisfied. It is obvious that condition (H) holds.
On the other hand, let l = ,, l = ,, we have lB > lB, lB > lB and

λ ∈
(
(
(β + ))q–

lB
,
(
(β + ))q–

lB

)
∩

(
(
(β + ))q–

lB
,
(
(β + ))q–

lB

)

=
(
(
(β + ))q–

lB
,
(
(β + ))q–

lB

)

=
( (

√
π

 )

,× 


√
π

,
(
√

π

 )

,× √
π

)

=
(

π



,
,

π



,

)
.

Hence, by Theorem ., BVP (.) has at least two solutions u and u such that  < ‖u‖ <
 < ‖u‖ for

λ ∈
(

π



,
,

π



,

)
.
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