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Abstract
In this paper, the problems of robust stability, stabilization, and H∞-control for
uncertain systems with impulsive perturbations are investigated. The parametric
uncertainties are assumed to be time-varying and norm-bounded. The sufficient
conditions for the above problems are developed in terms of linear matrix
inequalities. Numerical examples are given which illustrate the applicability of the
theoretical results.
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1 Introduction
Many evolutionary processes are subject to short temporary perturbations that are neg-
ligible compared to the process duration. Thus the perturbations act instantaneously in
the form of impulses. For example, biological phenomena involving thresholds, bursting
rhythmmodels in pathology, optimal control of economic systems, frequency-modulated
signal processing systems do exhibit impulse effects. Impulsive differential systems pro-
vide a natural description of observed evolutionary processes with impulse effects.
Problems with qualitative analysis of impulsive systems has been extensively studied in

the literature, we refer to [–] and the references therein. Also, the control of impulsive
or nonlinear systems receivedmore recently researchers’ special attention due to their ap-
plications; see, for example [–]. In [], Guan et al. studied theH∞ control problem for
impulsive systems. In terms of the solutions to an algebraic Riccati equation, they obtained
sufficient conditions for the existence of state feedback controllers guaranteeing asymp-
totic stability and prescribedH∞ performance of the closed-loop system. But the result in
[] is based on the assumption that the state jumping at the impulsive time instant has a
special form. This assumption is not satisfied for most impulsive systems. Therefore, the
results in [] are less applicable. Furthermore, the parameter uncertainties of impulsive
systems were not considered in [].
The goal of this paper is to study the robust stability, stabilization, and H∞-control of

uncertain impulsive systems under more general assumption on state jumping. Sufficient
conditions for the existence of the solutions to the above problems are derived. More-
over, these sufficient conditions are all in linear matrix inequality (LMI) formalism, which
makes their resolution easy.

©2014 Hu and Wang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/79
mailto:humeng2001@126.com
http://creativecommons.org/licenses/by/2.0


Hu and Wang Advances in Difference Equations 2014, 2014:79 Page 2 of 11
http://www.advancesindifferenceequations.com/content/2014/1/79

The rest of this paper is organized as follows: Section  describes the system model;
Section  addresses the robust stability and stabilization problems; Section  studies the
robust H∞ problem; Section  provides two examples to demonstrate the applicability of
the proposed approach.

2 Problem statement
In the sequel, if not explicitly stated, matrices are assumed to have compatible dimensions.
The notation M > (≥, <, ≤)  is used to denote a symmetric positive-definite (positive-
semidefinite, negative, negative-semidefinite) matrix. λmin(·) and λmax(·) represent the
minimum and maximum eigenvalues of the corresponding matrix, respectively. ‖ · ‖ de-
notes the Euclidean norm for vectors or the spectral norm of matrices.
Consider uncertain linear impulsive systems described by the following state equation:

ẋ(t) = A(t)x(t) + B(t)u(t) +Hw(t), t �= tk ,

�x(t) = Ckx(tk), t = tk ,

z(t) = E(t)x(t) + B(t)u(t) +Hw(t),

x(t) = x, t = ,

(.)

where x(t) ∈R
n is the state, u(t) ∈R

m is the control input, w(t) ∈R
p is the disturbance in-

put which belongs to L[,∞), z(t) ∈R
q is the controlled output. �x(tk) = x(t+k ) –x(t

–
k ) de-

scribes the state jumping at impulsive time instant t = tk , x(t–k ) = x(tk) = limh→+ x(tk – h),
x(t+k ) = limh→+ x(tk + h), k = , , . . . , and  < t < t < · · · < tk < · · · (tk → ∞ as t → ∞).
H ∈ R

n×p, H ∈ R
q×p, Ck ∈ R

n×n, k = , , . . . , are known constant matrices, and A(t) ∈
R

n×n, B(t) ∈R
n×m, E(t) ∈ R

q×n, B(t) ∈R
q×m are matrix functions with time-varying un-

certainties, that is,

A(t) = A +�A(t), B(t) = B +�B(t),

E(t) = E +�E(t), B(t) = B +�B(t),

where A ∈ R
n×n, B ∈ R

n×m, E ∈ R
q×n, B ∈ R

q×m are known real constant matrices,
�A(t) ∈ R

n×n, �B(t) ∈ R
n×m, �E(t) ∈ R

q×n, and �B(t) ∈ R
q×m are unknown matrices

representing time-varying parameter uncertainties. We assume that the uncertainties are
norm-bounded and can be described as[

�A(t) �B(t)
�E(t) �B(t)

]
=

[
D

D

]
F(t)[N Nb], (.)

where D ∈ R
n×nf , D ∈ R

q×nf , N ∈ R
nf ×n, Nb ∈ R

nf ×m are known real constant matrices
and F(·) ∈ R

nf ×nf is an unknown matrix functions satisfying FT (t)F(t) ≤ I . It is assumed
that the elements of F(t) are Lebesgue measurable.
Throughout this paper, we shall use the following concepts of robust stability and robust

performance for system (.).

Definition . System (.) with u(t) =  and w(t) =  is said to be robustly stable if the
trivial solution of (.) with u(t) =  and w(t) =  is asymptotically stable for all admissible
uncertainties satisfying (.).
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Definition . Given a scalar γ > , the uncertain impulsive system (.) with u(t) =  is
said to have robust stabilization with disturbance attenuation γ if it is robustly stable in
the sense of Definition . and under zero initial conditions,

∫ ∞


zT (t)z(t)dt < γ 

∫ ∞


wT (t)w(t)dt.

The following lemma is essential for the developments in the next sections.

Lemma . (see []) For any vectors x, y ∈ R
n, matrices A,P ∈ R

n×n, D ∈ R
n×nf , E,N ∈

R
nf ×n, and D ∈ R

n×nf , E,N ∈ R
nf ×n, with P > , ‖F‖ ≤ , and scalar ε > , the following

inequalities hold:
(i) DFN +NTFTDT ≤ ε–DDT + εNTN ;
(ii) if εI – EPET > ,

(A +DF(t)E)P(A +DF(t)E)T ≤ APAT +APET (εI – EPET )–EPAT + εDDT ;
(iii) xTy≤ xTP–x + yTPy;
(iv) if P – εDDT > , (A +DF(t)E)TP–(A +DF(t)E)≤ AT (P – εDDT )–A + ε–ETE.

3 Robust stability and robust stabilization
In this section, we restrict our study to the case of w(t) =  in system (.), i.e.

ẋ(t) = A(t)x(t) + B(t)u(t), t �= tk ,

�x(t) = Ckx(tk), t = tk ,

x(t) = x, t = .

(.)

First, we present some sufficient conditions for robust stability of system (.) with
u(t) = .

Theorem . Assume that there exist α >  and β >  such that ‖Ck‖ ≤ α, k = , , . . . ,
β = infi{ti+ – ti}. If for the prescribed scalars μ >  and μ >  satisfying ln(μ) – βμ < ,
there exist matrix P >  and scalars ε > , ε >  such that the following linear matrix
inequalities hold:

[
μP + PA +APT + εNTN PD

DT
 P –εI

]
< , (.)

[
–(μ – )P + εI αP

αP –εI + αP

]
< , (.)

then system (.) with u(t) =  is robustly asymptotically stable.

Proof Take the Lyapunov function for system (.),

V (t) = xT (t)Px(t). (.)

http://www.advancesindifferenceequations.com/content/2014/1/79
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For t ∈ (tk , tk+], the time derivative of V (t) is

V̇ (t) = xT (t)
(
PA(t) +AT (t)P

)
x(t)

= xT (t)
(
PA +ATP

)
x(t) + xT (t)P�A(t)x(t). (.)

By (i) of Lemma ., for any ε > , we get

xT (t)P�A(t)x(t) ≤ xT
(
ε–PDDT

 P + εNTN
)
x(t). (.)

By Schur complement, condition (.) is equivalent to

PA +ATP + εNTN + ε–PDDT
 P < –μP. (.)

Combining (.)-(.) yields

V̇ (t) < –μV (t), t ∈ (tk , tk+],

which implies that

V (t) < V
(
t+k

)
e–μ(t–tk ), t ∈ (tk , tk+]. (.)

On the other hand, since ‖Ck‖ ≤ α, it follows that Ck can be written as Ck = DFkE with
D = αI , E = I and ‖Fk‖ ≤ . Using (ii) of Lemma ., for any ε satisfying εI – αP > , we
get

V
(
t+k

)
= xT (tk)(I +Ck)TP(I +Ck)x(tk)

= xT (tk)(I +DFkE)TP(I +DFkE)x(tk)

≤ xT (tk)
(
P + αP

(
εI – αP

)–P + εI
)
x(tk). (.)

By Schur complement, condition (.) is equivalent to

P + αP
(
εI – αP

)–P + εI < μP.

Substituting the above inequality into (.) gives

V
(
t+k

)
< μxT (tk)Px(tk) = μV (tk). (.)

On the basis of (.) and (.), we obtain

V (t) < μk
e

–μ(t–t)V (t), t ∈ (tk , tk+].

By the assumption of β = infi{ti+ – ti}, we get t– t ≥ kβ . Noticing that μ >  and ln(μ) –
βμ < , we deduce that

V (t) < exp

((

β
lnμ –μ

)
(t – t)

)
V (t), t ≥ t. (.)

http://www.advancesindifferenceequations.com/content/2014/1/79
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It follows that system (.) with u(t) =  is robustly asymptotically stable. The proof is
completed. �

Remark . When α = , that is, there is no impulse jumping in the states, let ε → +

and μ → +, μ → +, then the LMI conditions in Theorem . reduces to a single LMI

[
PA +APT + εNTN PD

DT
 P –εI

]
<  (.)

for some matrix P >  and some scalar ε > . Condition (.) is exactly the sufficient
condition for robust stability of continuous-time linear systems with norm-bounded un-
certainty, for example, see [].

Remark . From (.), we can show that

∥∥x(t)∥∥ ≤
√

λ

λ
exp

(
–



(
μ –


β
ln(μ)

)
(t – t)

)
‖x‖, t ≥ t,

where λ = λmax(P), λ = λmin(P). It follows that under the conditions of Theorem ., sys-
tem (.) with u(t) =  is robustly exponentially stable with decay rate δ = 

 (μ – 
β
ln(μ)).

For prescribed decay rate δ, we can choose μ = δ + 
β
ln(μ) to find the feasible solution

to LMIs (.) and (.) by tuning parameter μ.

Let us now design a memoryless state feedback controller of the following form:

u(t) = Kx(t) (.)

to stabilize system (.), where K ∈R
m×n is a constant gain to be designed.

Substituting (.) into (.) yields the dynamics of the closed-loop system as follows:

ẋ(t) =
(
A(t) + B(t)K

)
x(t), t �= tk ,

�x(t) = Ckx(tk), t = tk , (.)

x(t) = x, t = .

Theorem . Assume that there exist α >  and β >  such that ‖Ck‖ ≤ α, k = , , . . . ,
β = infi{ti+ – ti}. If for prescribed scalars μ >  and μ >  satisfying ln(μ) – βμ < ,
there exist matrix X > , K̄ and scalars ε > , ε >  such that the following linear matrix
inequalities hold:

[
μX +AX +XAT + BK̄ + K̄TBT

 + εDDT
 K̄TNT

b +XNT

NbK̄ +NX –εI

]
< , (.)

⎡
⎢⎣
–μX X X
X –X + αεI 
X  –εI

⎤
⎥⎦ < , (.)

then the controller (.) with K = K̄X– robustly stabilizes system (.).

http://www.advancesindifferenceequations.com/content/2014/1/79
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Proof From the proof of the Theorem ., the sufficient condition for asymptotic stability
of closed-loop system (.) is that there exist positive scalars μ, μ satisfying ln(μ) –
βμ <  such that the following two inequalities hold:

V̇ (t) < –μV (t), t ∈ (tk , tk+], (.)

V̇
(
t+k

)
< μV (tk), k = , , . . . , (.)

where V (x) = xTPx with P > .
Using the technique as in the proof of Theorem ., it can easily be shown that if there

exists a positive scalar ε such that the following inequality is satisfied:

μP + P(A + BK ) +
(
AT +KTBT


)
P +


ε

(
KTNT

b +NT)
(N +NbK )

+ εPDDT
 P < , (.)

then (.) holds.
Now we consider the sufficient condition for inequality (.). As in the proof of Theo-

rem ., we represent Ck in the form of Ck = DFkE with D = αI , E = I and ‖Fk‖ ≤ . Then
using (iv) of Lemma ., for any positive scalar ε satisfying P– – αεI > , we have

V
(
t+k

)
= xT (tk)(I +Ck)TP(I +Ck)x(tk)

= xT (tk)(I +DFkE)TP(I +DFkE)x(tk)

≤ xT (tk)
((
P– – αεI

)– + ε– I
)
x(tk).

It follows that if

(
P– – αεI

)– + ε– I < μP, (.)

then (.) holds. Thus, if (.) and (.) hold, then closed-loop system (.) is asymp-
totically stable. Define X = P–, K̄ = KX. Pre- and post-multiplying (.) by X yields

μX +AX + BK̄ +XAT + K̄TBT
 +


ε

(
K̄TNT

b +XNT)
(NX +NbK̄ ) + εDDT

 < ,

which combined with Schur complement leads to (.).
Pre- and post-multiplying (.) by X yields

–μX +X
(
X – αεI

)–X + ε– X ≤ ,

which combined with Schur complement leads to (.). The proof is completed. �

4 Robust H∞-control
This section is devoted to studying the robust H∞-control problem for system (.).

Theorem . Assume that there exist α >  and β >  such that ‖Ck‖ ≤ α, k = , , . . . ,
β = infi{ti+ – ti}. If for the prescribed scalarsμ >  andμ >  satisfying  ln(μ)–βμ ≤ ,

http://www.advancesindifferenceequations.com/content/2014/1/79
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there exist matrix X > , Q > , K̄ and scalars ε > , ε >  and ε >  such that (.),
(.), and the following linear matrix inequalities hold:

⎡
⎢⎢⎢⎢⎢⎢⎣

	 H L XNT + K̄TNT
b μI

HT
 –γ I +μHT

 QH HT
  

LT H –I + εDDT
  

NX +NbK̄   –εI 
μI    –μQ

⎤
⎥⎥⎥⎥⎥⎥⎦
< ,

(.)

where	 = AX +XAT +BK̄ + K̄TBT
 +εDDT

 , L = XET + K̄TBT
 +εDDT

 , then system (.)
has robust stabilization with disturbance attenuation γ . Moreover, the controller (.)
with K = K̄X– robustly stabilizes system (.).

Proof With the memoryless state feedback control law (.), system (.) becomes

ẋ(t) =
(
A(t) + B(t)K

)
x(t) +Hw(t), t �= tk ,

�x(t) = Ckx(tk), t = tk ,

z(t) =
(
E(t) + B(t)K

)
x(t) +Hw(t),

x(t) = x, t = .

(.)

By  ln(μ) – βμ ≤  and μ > , it is easy to see that ln(μ) – βμ < . So, if w(t) = ,
then by (.) and (.) and Theorem ., we can conclude that system (.) has robust
stabilization. Next, we proceed to prove that system (.) verifies noise attenuation γ . To
this end, we assume the zero initial condition, that is, x(t) = , for t = .
Applying Lyapunov function (.) with P = X– to (.), for t ∈ (tk , tk+], the time deriva-

tive of V (t) is

V̇ (t) = xT (t)
(
P
(
A(t) + B(t)K

)
+

(
A(t) + B(t)K

)TP)
x(t) + xT (t)PHw(t). (.)

Using Lemma . and condition (.), we obtain

V̇ (t)≤ –μV (t) + xT (t)PHw(t), t ∈ (tk , tk+].

It follows that

V (t) ≤ e–μ(t–tk )V
(
t+k

)
+ 

∫ t

tk
e–μ(t–s)xT (s)PHw(s)ds, t ∈ (tk , tk+],

which yields

V (tk+) ≤ e–μ(tk+–tk )V
(
t+k

)
+ 

∫ tk+

tk
e–μ(tk+–s)xT (s)PHw(s)ds

≤ e–μβV
(
t+k

)
+ 

∫ tk+

tk

∣∣xT (s)PHw(s)
∣∣ds. (.)

http://www.advancesindifferenceequations.com/content/2014/1/79


Hu and Wang Advances in Difference Equations 2014, 2014:79 Page 8 of 11
http://www.advancesindifferenceequations.com/content/2014/1/79

From the proof of Theorem., condition (.) impliesV (t+k+) ≤ μV (tk+), k = , , , . . . .
Substituting this inequality into (.) gives

V
(
t+k+

) ≤ μ
e

–μβV (tk) + μ

∫ tk+

tk

∣∣xT (s)PHw(s)
∣∣ds

≤ V (tk) + μ

∫ tk+

tk

∣∣xT (s)PHw(s)
∣∣ds. (.)

It follows that for T ∈ (tk , tk+]

∫ T


V̇ (t)dt =

∫ T

tk
V̇ (t)dt +

∫ tk

tk–
V̇ (t)dt + · · · +

∫ t

t
V̇ (t)dt

= V (T) –V
(
t+k

)
+V (tk) –V

(
t+k–

)
+ · · · +V (t) –V (t)

= V (T) +
k∑
i=

V (ti) –
k∑
i=

V
(
t+i

)

≥ V (T) +
k∑
i=

V (ti) –
k∑
i=

[
V (ti–) + μ

∫ ti

ti–

∣∣xT (s)Hw(s)
∣∣ds]

≥ –μ

∫ T



∣∣xT (s)PHw(s)
∣∣ds.

By (iii) of Lemma ., for any Q > , we have


∣∣xT (t)PHw(t)

∣∣ ≤ xT (t)PQ–Px(t) +wT (t)HT
 QHw(t).

Thus, for any T > , we have

∫ T


V̇ (t)dt ≥ –μ

∫ T



(
xT (t)PQ–Px(t) +wT (t)HT

 QHw(t)
)
dt. (.)

Set Ẽ(t) = [E(t) + B(t)K H], ηT (t) = [xT (t) wT (t)], ηe(t) = Ẽ(t)η(t), ξT (t) = [ηT (t) ηT
e (t)].

Define

JT =
∫ T



[
zT (t)z(t) – γ wT (t)w(t)

]
dt.

Since V () =  by the zero initial condition, it follows from (.) and (.) that

JT =
∫ T



[
zT (t)z(t) – γ wT (t)w(t) + V̇ (t)

]
dt –

∫ T


V̇ (t)dt

≤
∫ T



{
ηT (t)ẼT (t)Ẽ(t)η(t) – γ wT (t)w(t) + xT (t)P

(
A(t) + B(t)K

)
x(t)

+ xT (t)PHw(t) +μ
(
xT (t)PQ–Px(t) +wT (t)HT

 QHw(t)
)}

dt

=
∫ T


ξT (t)

(
� + DF(t)N + T

NF
T (t)T

D
)
ξ (t)dt, (.)

http://www.advancesindifferenceequations.com/content/2014/1/79
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where T
D = [DT

 P  DT
 ], N = [N +NbK  ], Ẽ = [E + BK H], and

� =

⎡
⎢⎣

[
P(A + BK ) + (AT +KTBT

 )P +μPQ–P PH

HT
 P –γ I +μHT

 QH

]
ẼT

Ẽ –I

⎤
⎥⎦ .

By (i) of Lemma ., for any scalar ε > ,

DF(t)N + T
NF

T (t)T
D ≤ εDT

D + ε– T
NN .

Thus, if the following inequality holds:

� + εDT
D + ε– T

NN < , (.)

then by (.), we have

∫ ∞


zT (t)z(t)dt < γ 

∫ ∞


wT (t)w(t)dt,

so the proof will be completed.
Pre- and post-multiplying (.) by diag{X, I, I} and using Schur complement, it is easy

to prove that (.) is equivalent to (.). The proof is completed. �

Remark . In [], under the assumption that Ck = ckI and ck ∈ (–, ), sufficient condi-
tion for the existence of H∞ state feedback controller was derived in terms of the Riccati
equation. As compared to [], our results can be used for a wider class of impulsive sys-
tem. Moreover, Theorem . cast the existence problem of H∞ state feedback controller
into the feasibility problem of the LMIs (.), (.), and (.), the latter can be efficiently
solved by the developed interior-point algorithm [].

5 Numerical example
In this section, we shall give two numerical examples to demonstrate the effectiveness of
the proposed results.

Example  Consider the linear uncertain impulsive system (.) with u(t) = . Assume
that the system data are given as

A =

[
–. 
–. –

]
, D =

[
 
 

]
, N =

[
c 
 c

]
, c ≥ ,α = .,β = ..

If we select decay rate δ = ., then by Theorem ., choosing μ = . and μ = δ +

β
ln(μ), the obtained maximum value of c such that the above system is robustly expo-

nentially stable is c = .. If we select the decay rate δ = ., by choosing the same values
of μ and μ, the corresponding maximum value of c is c = ..

Example  Consider the uncertain impulsive system (.) with parameters as follows:

A =

[
 
 

]
, B =

[



]
, H =

[
.
.

]
, E = [ ],

http://www.advancesindifferenceequations.com/content/2014/1/79
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B = , H = ., D =

[
. 
 .

]
, D = [. .],

N =

[
 
 

]
, Nb =

[



]
.

First we assume that α = ., β = .. By Theorem ., choosing μ = . and μ =

β
ln(μ), it has been found that the smallest value of γ for the above system to have robust

stabilization with disturbance attenuation γ is γ = .. The corresponding stabilizing
control law is given by u(t) = [–. .]x(t).
Next we assume that α = ., β = .. By Theorem ., choosing μ = . and μ =


β
ln(μ), it has been found that the smallest value of γ is γ = . and the correspond-

ing stabilizing control law is given by u(t) = [–. .]x(t).

6 Conclusion
Three problems for uncertain impulsive systems have been studied, namely, robust stabil-
ity, robust stabilization, and robust H∞-control. In each case, the sufficient conditions in
terms of linear matrix inequalities have been established. Moreover the method to design
a state feedback H∞ controller is provided. Our method is helpful to improve the existing
technologies used in the analysis and control for uncertain impulsive systems. Numeri-
cal examples have been provided to demonstrate the effectiveness and applicability of the
proposed approach.
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