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Abstract
Given the second-order difference equation xn = f (xn–2, xn–1), if f ∈ C[(0,∞)2, (0,∞)]
and f (x, y) < x, then (x2n, x2n+1) tends either to (L, 0) or to (0, L) for some L≥ 0. In this
paper we show that if f (x, y) decreases in y, then for any x0 there is an x1 such that xn
monotonically decreases to 0. We also prove that if x – y ≥ f (x, y) – f (y, f (x, y)), then for
any L≥ 0 and x0 > L there is an x1 such that (x2n, x2n+1)→ (L, 0) and similarly, for any x0
there is an x1 such that (x2n, x2n+1)→ (0, L). The class of functions satisfying the latter
condition includes any function of the form f (x, y) = x

1+h(x,y)y , where h is symmetric and
increases in y.
MSC: 39A11; 39A23
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1 Introduction
Let F be the set of functions f ∈ C[(,∞), (,∞)] satisfying the condition
(A) f (x, y) < x.

In this paper, we investigate the convergence of the solutions of the second-order differ-
ence equation

xn = f (xn–,xn–), n = , , . . . ()

for the following two subsets of F :

F =
{
f ∈F : f (x, y) decreases in y

}
,

F =
{
f ∈F : x – y≥ f (x, y) – f

(
y, f (x, y)

)}
.

Wenote that by ‘decreasing’ and ‘increasing’ wemeannon-increasing andnon-decreasing,
respectively.
Continuity and (A) imply that if f ∈ F , then (xn,xn+) tends either to (L, ) or to (,L)

for some L ≥ . The convergence of the positive solutions of equation () has been in-
vestigated before for functions whose restriction to (,∞) is in F and which are strictly
monotonic in both of their variables, typically assuming that
(a) f ∈ C[[,∞) , [,∞)] and its restriction f̄ to (,∞) is in F ,
(b) f (x, ) = x,
(c) f̄ strictly increases in x and strictly decreases in y.
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Let f be of this type. Then, since f̄ ∈F , every positive solution tends either to (L, ,L, , . . .)
or to (,L, ,L, . . .) for some L ≥ , the only periodic solutions of equation (), with
(, , , , . . .) being the unique equilibrium solution (see, e.g. []). The question of the ex-
istence of positive solutions converging to the equilibrium solution in the special case
f (x, y) = x

+αy (x, y ≥ ) was raised by Kulenovic and Ladas in []. Kent gave an affirmative
answer in [] by showing that, in general, if f satisfies (a), (b), (c) and the condition that
(d) f is differentiable and there is a differentiable function g such that xn– = g(xn–,xn),

with some further properties detailed in [],
then for any x >  there is an x >  such that xn monotonically decreases to . We note
that Janssen and Tjaden [] had previously proved this for f (x, y) = x

+y and x = . As we
shall see, Kent’s conclusion follows frommuch weaker assumptions, namely that (a) holds
and f̄ (x, y) decreases in y.
To be more precise, we show (cf. Theorem .) that if f ∈F, then for any x there is an

x such that xn monotonically decreases to . Also, for any x, if x ≤ f (x,x) for some x,
then there is an x such that xn monotonically decreases to . Theorem . also applies
to f (x, y) = x αy+βx

Ay+βx , investigated by Chan et al. in []. In their paper, they prove, inter alia,
that if  < α < A and  < β , then there are positive initial values for which xn in equation
() monotonically decreases to . Since the restriction of f to (,∞) is in F, their result
also follows from Theorem . in a stronger form.
For functions in F we show (cf. Theorem .) that if L ≥ , then for any x > L there is

an x such that (xn,xn+) → (L, ) and for any x, if x +L ≤ f (x,x) for some x, then there
is an x such that (xn,xn+) → (L, ). Similar results hold for convergence to (,L).
The class F includes several types of functions of interest. For instance, as we shall

see later on, F ∩ F contains any function of the form f (x, y) = x
+h(x,y)y , where h ∈

C[(,∞), (,∞)] is symmetric, i.e. h(x, y) = h(y,x), and increases in y. In particular,
F ∩ F includes f (x, y) = x

+αy for any α > . Actually, functions of this form, defined
on [,∞) , belong to another subset of the set of functions satisfying (a), (b) and (c)
above, for which a result similar to, but stronger than Theorem . was proved in [].
Given any function in this set, for any L ≥ , the set of positive initial values (x,x) for
which (xn,xn+) → (L, ) is a surjective, strictly increasing (and hence continuous) func-
tion from (L,∞) to (,∞).

2 Main results
In order to prove our main results, we shall think of the difference equation () as a recur-
sively defined sequence of functions of the initial conditions, namely

f(x, y) = x,

f(x, y) = y,

fn(x, y) = f
(
fn–(x, y), fn–(x, y)

)
for n ≥ .

Putting rn = fn, sn = fn+, we have r(x, y) = x, s(x, y) = y and, for n≥ ,

rn(x, y) = f
(
rn–(x, y), sn–(x, y)

)
,

sn(x, y) = f
(
sn–(x, y), rn(x, y)

)
.
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Let f ∈F . Then the recursive relationships above imply that rn, sn ∈ C[(,∞), (,∞)] for
any n, and by (A)

x = r(x, y) > r(x, y) > r(x, y) > · · · ,
y = s(x, y) > s(x, y) > s(x, y) > · · · .

In particular, for n≥ , rn satisfies (A), hence rn ∈F , and sn satisfies the condition

(A∗) f (x, y) < y.

We shall write R and S for the pointwise limits of rn and sn, respectively. R and S map
(,∞) to [,∞) and, since rn(x, y) > R(x, y), sn(x, y) > S(x, y), R and S satisfy (A) and (A∗),
respectively. However, as we shall see in Example ., R and S are not necessarily contin-
uous. If L = R(x, y) and M = S(x, y) were both positive, then, by the recursive relationship
between rn and sn and the continuity of f , L = f (L,M), contradicting (A). Therefore, either
R(x, y) =  or S(x, y) = , i.e. R(x, y) · S(x, y) =  for any x and y. We also observe that R and
S have the same range, since R(x, y) = S(y, f (x, y)) and S(x, y) = R(y, f (x, y)). In particular, 
is in the range of both functions.
Our main results will characterise, in terms of the functions R and S, the sets of initial

conditions under which (xn,xn+) in equation () tends to (L, ) or to (,L). For any L ≥ ,
let us put RL and SL, respectively, for these sets, so that

RL =
{
(x, y) : R(x, y) = L and S(x, y) = 

}
,

SL =
{
(x, y) : R(x, y) =  and S(x, y) = L

}
.

We note that for L > , since R(x, y) · S · S(x, y) = , RL and SL are simply the L-level sets of
R and S, respectively. Also, R is the intersection of the -level sets of R and S and R = S.
Regarding RL and SL as relations, the theorems below characterise their domain and

their range, Theorem . for L =  and any f ∈F and Theorem . for any L≥  and any
f ∈F.

Theorem . Let f ∈F. Then
(i) for any a there is a b in the interval [f (a,a),a] for which R(a,b) = S(a,b) = ,
(ii) for any b, if there is a b′ such that b ≤ f (b′,b), then there is an a in the interval [b,b′]

for which R(a,b) = S(a,b) = .

Theorem . Let f ∈F and L ≥ . Then
(i) for any a > L there is a b in the interval [f (a – L,a),a – L] for which R(a,b) = L,

S(a,b) = ,
(ii) for any b, if there is a b′ such that b + L ≤ f (b′,b), then there is an a in the interval

[b + L,b′] for which R(a,b) = L, S(a,b) = ,
(iii) for any a there is a b in the interval [f (a + L,a),a + L] for which R(a,b) = ,

S(a,b) = L,
(iv) for any b > L, if there is a b′ such that b – L ≤ f (b′,b), then there is an a in the

interval [b – L,b′] for which R(a,b) = , S(a,b) = L.

Remark . If limx→∞ f (x,b) = ∞, then of course there is a b′ satisfying the condition
in (ii) of Theorem . and in (ii), (iv) of Theorem .. The condition is not necessary, as
shown later on by Example ..
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The proofs of Theorem . and Theorem . will follow immediately from the two lem-
mas below. In order to motivate these lemmas, we observe that given f ∈ F and L ≥ ,
a sufficient condition for R(a,b) = L, S(a,b) =  is that for all n

rn(a,b) – L ≥ sn(a,b)≥ rn+(a,b) – L,

i.e. rn(a,b) – sn(a,b) – L ≥  and sn(a,b) – rn+(a,b) + L ≥ . This is sufficient, since either
R(a,b) =  or S(a,b) = . Similarly, a sufficient condition for R(a,b) = , S(a,b) = L is that
for all n

rn(a,b)≥ sn(a,b) – L ≥ rn+(a,b),

i.e. rn(a,b) – sn(a,b) + L ≥  and sn(a,b) – rn+(a,b) – L ≥ . In particular, if L = , then
rn(a,b) ≥ sn(a,b) ≥ rn+(a,b) and so R(a,b) = S(a,b) = . We also observe that if f ∈ F,
then the first condition is also necessary for R(a,b) = L, S(a,b) =  and the second one is
also necessary for R(a,b) = , S(a,b) = L. This is because if f ∈F, then for any x, y and n,
rn(x, y) – sn(x, y)≥ rn+(x, y) – sn+(x, y) and sn(x, y) – rn+(x, y)≥ sn+(x, y) – rn+(x, y).
According to the discussion above, in order to prove that given a there is a b such that

R(a,b) = L and S(a,b) = , it is sufficient to show that there is a b for which the functions
pn(y) = rn(a, y) – sn(a, y) – L and qn(y) = sn(a, y) – rn+(a, y) + L are both non-negative for
all n. Similarly, given a and pn(y) = rn(a, y) – sn(a, y) + L, qn(y) = sn(a, y) – rn+(a, y) – L, if
both functions are non-negative for all n, then R(a,b) =  and S(a,b) = L.
Lemma . below provides sufficient conditions ensuring that, in general, the functions

in two sequences of continuous real functions are all non-negative for some argument.
Lemma . uses Lemma . to show that if L ≥  and f ∈F has the property that f (x, y) –
f (y, f (x, y))≤ ±Lwhenever x–y =±L, then statements (i), (ii), (iii) and (iv) in Theorem .
are true for L and f . Since any function in F has this property for L = , Theorem .
follows from Lemma ., and since any function in F has this property for any L ≥ , so
does Theorem ..

Lemma . Let pn,qn ∈ C[[a,b], (–∞,∞)], n = , , . . . , and put

Sab =
{
x : pn(x)≥  and qn(x)≥  for all n

}
.

(i) If

(a) for all n and x, either pn(x) >  or qn(x) > ,
(b) for all n and x, if pn(x) =  then pn+(x)≤  and if qn(x) =  then qn+(x)≤ ,
(c) p(b) ≤  and q(a)≤ ,

then Sab 
= ∅.
(ii) If (a) holds and (b), (c) are replaced by

(b′) for all n and x, pn(x)≥ pn+(x) and qn(x) ≥ qn+(x),
(c′) pN (b)≤  and qM(a)≤  for some N ,M ≥ ,

then Sab 
= ∅.
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Proof (i) Let p,q ∈ C[[a,b], (–∞,∞)] be any two functions such that for any x either p(x) >
 or q(x) >  and p(b) ≤ , q(a) ≤ . Then q(a) ≤  implies that p(a) >  and so, since
p(b) ≤ , p has a smallest root b′ in (a,b]. Therefore, p >  on [a,b′) and p(b′) = . But then
q(b′) >  and so, since q(a) ≤ , q has a greatest root a′ in [a,b′). Hence, q >  on (a′,b′]
and q(a′) = . Thus, there is an interval [a′,b′] ⊆ [a,b] such that p >  on [a′,b′) and q > 
on (a′,b′] and p(b′) = q(a′) = .
Let us nowassume that the hypothesis of (i) holds. Then, by the above, there is an interval

[a,b] ⊆ [a,b] such that p >  on [a,b) and q >  on (a,b] and p(b) = q(a) = .
Now suppose that there is an interval [an,bn] such that pn >  on [an,bn), qn >  on (an,bn]
and pn(bn) = qn(an) = . Then, by (b), pn+(bn) ≤ pn(bn) =  and qn+(an) ≤ qn(an) = .
Therefore, by the above, there is an interval [an+,bn+] ⊆ [an,bn] such that pn+ >  on
[an+,bn+), qn+ >  on (an+,bn+] and pn+(bn+) = qn+(an+) = . Hence, by induction,
there is a descending sequence [a,b] ⊇ [a,b] ⊇ [a,b] ⊇ · · · of intervals such that
pn >  on [an,bn), qn >  on (an,bn] and pn(bn) = qn(an) = .
Finally, let I =

⋂
n[an,bn]. Then I is a non-empty closed interval and I ⊆ Sab. We note

that if int(I) 
= ∅, then pn and qn are both positive on int(I).
(ii) If, say,M ≤N , then pN (a)≤  by (b′). Therefore, by (i)

{
x : pn(x)≥  and qn(x)≥  for n≥N

} 
= ∅

and by (b′), {x : pn(x)≥  and qn(x)≥  for n≥N} = Sab. �

Remark . (Approximating an element of Sab) Suppose that pn, qn satisfy the conditions
of Lemma .(ii) on an interval [a,b], so that Sab 
= ∅. Choose a c ∈ (a,b), say c = (a + b)/.
Suppose that either pN (c) ≤  or qN (c) ≤  for some N ≥ . Then, by Lemma .(ii), pn
and qn satisfy the conditions of Lemma .(ii) either on [a, c] if pN (c) ≤ , or on [c,b]
if qN (c) ≤ . Therefore, if pN (c) ≤ , then Sac 
= ∅ and if qN (c) ≤ , then Scb 
= ∅. Since
Sac,Scb ⊆ Sab, in either case we have a better approximation of an element of Sab. The
method will fail if pn(c) >  and qn(c) >  for all n≥  (in which case c ∈ Sab).

Lemma . Let f ∈F . Suppose that for an L ≥  and any x and y,

if x – y =±L then f (x, y) – f
(
y, f (x, y)

) ≤ ±L. ()

Then statements (i), (ii), (iii) and (iv) in Theorem . are true for f and L.

Proof First we observe that

(
rn(x, y) – sn(x, y)± L

)
+

(
sn(x, y) – rn+(x, y)∓ L

)
= rn(x, y) – rn+(x, y)

> . ()

Also, it follows from () that

if rn(x, y) – sn(x, y)± L =  then rn+(x, y) – sn+(x, y)± L ≤ ,

if sn(x, y) – rn+(x, y)± L =  then sn+(x, y) – rn+(x, y)± L ≤ .
()

http://www.advancesindifferenceequations.com/content/2014/1/8
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Then:
(i) Let a > L. Put pn(y) = rn(a, y) – sn(a, y) – L and qn(y) = sn(a, y) – rn+(a, y) + L. Then

p(a–L) = a–(a–L)–L = . By (), f (a–L,a)– f (a, f (a–L,a))≤ –L and so q(f (a–L,a)) =
f (a – L,a) – f (a, f (a – L,a)) + L ≤ . Together with () and () this means that pn and qn
satisfy the hypothesis of Lemma .(i) on the interval [f (a – L,a),a – L]. Therefore, there
is a b in the interval [f (a – L,a),a – L] such that pn(b) ≥  and qn(b) ≥  for all n ≥  and
so R(a,b) = L, S(a,b) = .
(ii) Given b, suppose that there is a b′ such that b + L ≤ f (b′,b). Put pn(x) = sn(x,b) –

rn+(x,b) + L and qn(x) = rn(x,b) – sn(x,b) – L. Then p(b′) = b – f (b′,b) + L ≤  and q(b +
L) = (b + L) – b – L = . Together with () and () this means that pn and qn satisfy the
hypothesis of Lemma .(i) on the interval [b+L,b′]. Therefore, there is an a in the interval
[b + L,b′] such that pn(b)≥  and qn(b) ≥  for all n≥  and so R(a,b) = L, S(a,b) = .
(iii) Given a, put pn(y) = rn(a, y) – sn(a, y) + L and qn(y) = sn(a, y) – rn+(a, y) – L. Then

p(a+L) = a– (a+L) +L = . By (), f (a+L,a) – f (a, f (a+L,a))≤ L and so q(f (a+L,a)) =
f (a + L,a) – f (a, f (a + L,a)) – L ≤ . Together with () and () this means that pn and qn
satisfy the hypothesis of Lemma .(i) on the interval [f (a + L),a + L]. Therefore, there is
a b in the interval [f (a + L,a),a + L] such that pn(b) ≥  and qn(b)≥  for all n≥  and so
R(a,b) = , S(a,b) = L.
(iv) Let b > L and suppose that there is a b′ such that b – L ≤ f (b′,b). Put pn(x) =

sn(x,b) – rn+(x,b) – L and qn(x) = rn(x,b) – sn(x,b) + L. Then p(b′) = b – f (b′,b) – L ≤ 
and q(b – L) = (b – L) – b + L = . Together with () and () this means that pn and qn
satisfy the hypothesis of Lemma .(i) on the interval [b – L,b′]. Therefore there is an a
in the interval [b – L,b′] such that pn(b) ≥  and qn(b) ≥  for all n ≥  and so R(a,b) = ,
S(a,b) = L. �

We can now prove Theorem . and Theorem ..

Proof of Theorem . and Theorem . If f ∈ F, then f (x,x) – f (x, f (x,x)) ≤ , since
f (x,x) < x. Thus f satisfies the hypothesis of Lemma . for L =  and so Theorem .
holds.
If f ∈F then x – y ≥ f (x, y) – f (y, f (x, y)) and so f satisfies the hypothesis of Lemma .

for any L ≥  and Theorem . follows. �

Remark . (Approximating initial conditions for convergence) Let f ∈ F and L ≥ .
Given any a > L, define pn and qn as in (i) of the proof of Lemma . above. Then, using
the bisection method described in Remark ., we can (usually) approximate a b such that
R(a,b) = L and S(a,b) =  to any degree of accuracy. Similarly, if we define pn and qn as in
(iii) of the proof of Lemma ., then, given any a, we can (usually) approximate a b such
that R(a,b) =  and S(a,b) = L.

3 Applications
In this section, we give a few examples of applying the results of Section . We also show
that R (and hence S) is not necessarily continuous for functions in F . We note that, in
general, the elements of F can be written as f (x, y) = x

+g(x,y) , with g ∈ C[(,∞), (,∞)]
and vice versa.
We shall use the following proposition in the examples.

http://www.advancesindifferenceequations.com/content/2014/1/8
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Proposition .
(i) Let F be the set of functions of the form

f (x, y) =
x

 + h(x, y)y
, x, y > ,

where h ∈ C[(,∞), (,∞)] is symmetric and increases in y (and hence also in x).
Then F ⊆F ∩F.

(ii) Let F be the set of functions of the form

f (x, y) =
x

 + g(y)
, x, y > ,

where g : (,∞) → (,∞) is differentiable, g(y) →  as y→ , y ≤ g(y) and
g ′(y) ≤ ( + g(y)). Then F ⊆F.

Proof (i) First of all, functions inF (strictly) decrease in y and so they are in F. Next we
note that if f ∈ F is written as f (x, y) = x

+g(x,y) , then x – f (x, y) = f (x, y)g(x, y). Therefore, if
f ∈F, then

x – f (x, y) = f (x, y)h(x, y)y = f (x, y)h(y,x)y

> f (x, y)h
(
y, f (x, y)

)
f
(
y, f (x, y)

)
= f

(
y, f (x, y)

)
h
(
y, f (x, y)

)
f (x, y)

= y – f
(
y, f (x, y)

)
.

Therefore, F ⊆F.
(ii) Let us put e(x, y) = (x–y)– (f (x, y)– f (y, f (x, y))). Then, for any y, e(x, y) →  as x → ,

and so in order to show that e(x, y) ≥ , i.e. that F ⊆ F, it will be sufficient to demon-
strate that for any y, e(x, y) increases in x.
The partial derivative ex can be written as

ex(x, y) =  –
(
fx(x, y) – fy

(
y, f (x, y)

)
fx(x, y)

)
=  – fx(x, y)

(
 – fy

(
y, f (x, y)

))

=  –


 + g(y)

(
 + y

g ′(f (x, y))
( + g(f (x, y)))

)
.

If g ′(y) ≤ ( + g(y)) and y ≤ g(y), then  + y g′(f (x,y))
(+g(f (x,y))) ≤  + y ≤  + g(y) and so ex(x, y) ≥ ,

i.e. e(x, y) increases in x for any y, as claimed. �

Functions in F do not have to be monotonic in x. For instance, f (x, y) = x
+xy is not

monotonic in x (for any y). Also, functions inF strictly increase in x, but they are not nec-
essarily monotonic in y (cf. Example .). Finally, we note that f (x, y) = x

+y is in F ∩F.

Example . Let f (x, y) = x
+xy , x, y > . We note that if we extend f to [,∞) , then it

satisfies (a), (b) and (c) of Section .
Since f is in F, Theorem . holds for f by Proposition .(i). For instance, if L =  and

a = , then there is a b in the interval [f (–, ), –] = [ 
 , ] such that R(,b) = . Using

http://www.advancesindifferenceequations.com/content/2014/1/8
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the bisectionmethod described in Remark ., we can get a better approximation for such
a b. After seven iterations we find that the interval [.,.] contains a b such
that R(,b) = .
Similarly, after seven iterations of the bisection method we find that there is a b in the

interval [., .] such that R(,b) = S(,b) = . Given such a b, f (x,b) < 
b <  < b

for any x, showing that the condition in (ii) and (iv) of Lemma . - and hence in (ii) of
Theorem . and (ii) and (iv) of Theorem . - is not necessary.
Since R(x, y) < r(x, y) = f (x, y) < 

y , given any b and L such that L ≥ 
b , there is no a

satisfying R(a,b) = L. In fact, there is a B >  such that if b ≥ B then R(x,b) =  and S(x,b) >
 for any x. In order to show this, let us put h(u, v) = v– f (u, v) and let z = {(u, v) : h(u, v) = }
be the level set of h for . As h(u, v) (strictly) decreases in u and strictly increases in v, z is
a strictly increasing function. Since h(u, v) strictly increases in v,

if v < z(u) then v < f (u, v). ()

For any u ∈ (,∞), limv→ h(u, v) = –u <  and h(u, ) =  – u
+u > . Therefore,  < z(u) < ,

i.e. zmaps (,∞) to (, ). Also, for any v ∈ (, ), h( v
–v , v) =  and so z is surjective. Thus z

is a strictly increasing surjective function from (,∞) to (, ), hence it is also continuous.
Therefore, since limu→ z(u) =  and limu→∞ z(u) = , z(u) = 

u has a unique solutionB > ,
and then


u

≤ z(u) for any u≥ B. ()

Since f (x,b) < 
b for any x and, by (), 

b ≤ z(b) for any b ≥ B, we see that if b ≥ B, then
f (x,b) < z(b) for any x. Therefore, by (), if b ≥ B then r(x,b) = f (x,b) < f (b, f (x,b)) =
s(x,b) for any x. Since f ∈ F, this means that if b ≥ B then R(x,b) =  and S(x,b) > 
for any x.

Example . Let f (x, y) = x
+y+ 

 y sin
(y)

, x, y > . Put g(y) = y + 
y sin

(y). Then g(y) →  as

y→ , y≤ g(y) and g ′(y) = + 
 sin

(y)+ 
y sin(y) ≤ +y≤ +g(y) ≤ (+g(y)). Therefore,

f ∈F and so, by Proposition .(ii), Theorem . holds for f . We observe that g(y) is not
monotonic in y (for any x), so neither is f (x, y).

Example . Let f (x, y) = x
+y/x , x, y > . Since

(x – y) –
(
f (x, y) – f

(
y, f (x, y)

))
=

xy

x + xy + xy + y
≥ ,

f is in F and so Theorem . is true for f . We also note that for any b, limx→∞ f (x,b) = ∞
and so the consequent of Theorem .(ii) holds for any L ≥  and b and that of Theo-
rem .(iv) for any L ≥  and b > L.

Finally, we show that R (and hence S) is not necessarily continuous for functions in F .
Our counterexample uses Proposition . below, which is a kind of comparison test for
functions in F . In what follows, we use superscripts (e.g. rfn) to distinguish between rn, sn,
R and S for different functions.
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Proposition . Let f , g ∈F , C >  and assume that
(i) g(x, y) increases in x and decreases in y,
(ii) if C < x then g(x, y) ≤ f (x, y) and if x ≤ C then g(x, y) ≥ f (x, y).

Let C ≤ L < a, where L is a value of Rg . Then there is a b′ ≤ C such that Rf (a,b) ≥ L for all
b ≤ b′.

Proof Let x′ ≤ x, y′ ≥ y. Then, by (i), g(x′, y′) ≤ g(x, y) and so, by (ii), if C < x then g(x′, y′) ≤
g(x, y) ≤ f (x, y). Similarly, if x′ ≥ x, y′ ≤ y and x≤ C then g(x′, y′) ≥ g(x, y) ≥ f (x, y).
If C ≤ L < a, where L is a value of Rg , then Rg(a′,b′) = L for some a′, b′ such that C ≤ L <

a′ ≤ a, C ≥ b′. Then, by the above, for any b such that b′ ≥ b

g
(
a′,b′) ≤ f (a,b),

g
(
b′, g

(
a′,b′)) ≥ f

(
b, f (a,b)

)

and also, C ≤ L ≤ L < g(a′,b′), C ≥ g(b′, g(a′,b′)).
Hence, by induction, for all n≥ , rgn(a′,b′) ≤ rfn(a,b) (and s

g
n(a′,b′) ≥ sfn(a,b)). Therefore,

Rf (a,b)≥ Rg(a,b) = L, as claimed. �

Example . Let f ∈F be defined as

f (x, y) =

⎧⎨
⎩

x
+(–x)+y if x≤ ,
x
+y if x > ,

and put g(x, y) = x
+y . We note that f is actually in F, in fact it strictly decreases in y and

strictly increases in x.
By Theorem ., the range of Rg is [,∞). Therefore, by Proposition ., Rf has values

≥, since f (x, y)≤ g(x, y) for x≤  and f (x, y) = g(x, y) for x > . IfRf (x, y) < , then eventually
rfn(x, y) <  and hence Rf (x, y) = Rf (x,y)

+(–Rf (x,y))+Sf (x,y) . Therefore, R
f (x, y) = , i.e. Rf has no posi-

tive values <. Since  is a value of Rf , Rf is not continuous. Since Rf and Sf have the same
range, Sf is not continuous either. We also note that if x, y ≤ , then Rf (x, y) = Sf (x, y) = ,
since then Rf (x, y) <  and Sf (x, y) < .
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