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Abstract
This paper studies the spectral problem of a class of fractional differential equations
from nonlocal continuummechanics. By applying the spectral theory of compact
self-adjoint operators in Hilbert spaces, we show that the spectrum of this problem
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corresponding eigenfunctions form a complete orthogonal system. Furthermore, we
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1 Introduction
The present paper studies the spectral problem associated to the fractional differential
equation (FDE) with left and right fractional derivatives

–y′′ + q(x)y +μ
(
Dα

+ +Dα
–

)
y = λy on (, ), (.)

where q is a real-valued function, Dα
+ and Dα

– are the left and right Riemann-Liouville
fractional derivatives of order α, respectively, whose definitions are given later, μ is a real
constant and λ is the spectral parameter.
Recently, fractional differential equations have drawn much attention. It is caused both

by the development of fractional calculus itself and by the applications in various fields of
science and engineering such as control, electrochemistry, electromagnetic, porous me-
dia, and viscoelasticity. For details, see [–].
Fractional differential equations with both left and right fractional derivatives are also

applicable to many fields, such as the extremal problems of fractional Euler-Lagrange
equations [, ] and the optimal control theory for functionals involving fractional deriva-
tives []. For the study of FDEs with left and right fractional derivatives, we mention the
papers [–].
Sturm-Liouville Theory was the basis for the development of spectral theory of differen-

tial operators, which was profoundly influenced by the emergence of quantummechanics
in the early years of the twentieth century []. In the last few years, many problems in
science and engineering can be modeled accurately in the form of fractional calculus such

©2014 Li and Qi; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2014/1/85
mailto:qjg816@163.com
http://creativecommons.org/licenses/by/2.0


Li and Qi Advances in Difference Equations 2014, 2014:85 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2014/1/85

as multi-scale problems that span a wide range of time or length scales. In many situa-
tions, it need to consider the spectral problems of FDEs in order to tackle these practical
problems. Meanwhile, studying the spectral problems of FDEs is also very important for
enriching and improving the theories of FDEs. The spectral problems of FDEs have been
announced earlier [–], but they have not been thoroughly studied either qualitatively
or quantitatively. In addition, numerical computing of the spectral problems of FDEs has
attracted much research attention (see, e.g., [–]). However, these researches do not
examine the common properties of the eigenvalues and eigenfunctions. Up till now, there
are only a few papers on this topic (see [–]). Klimek and Agrawal [, ] investigated
the fractional differential equations

CDα
b–p(x)D

α
a+fλ(x) + q(x)fλ(x) + λωα(x)fλ(x) = 

and

CDα
a+p(x)D

α
b–fλ(x) + q(x)fλ(x) + λωα(x)fλ(x) = .

They demonstrated that the eigenvalues of the above two fractional eigenvalue problems
are real, and the eigenfunctions corresponding to different eigenvalues are orthogonal.
The fractional differential equation (.) arises from the nonlocal continuummechanics

[–]. It is a governing equilibrium equation of an elastic bar of finite length L with
long-range interactions among non-adjacent particles. In [], the equilibrium equation
of the bar may be written as

du(x)
dx

+
κα



{(
Dα

+ +Dα
L–

)
u(x) –

α(α – )

�( – α)

[
u()
xα

+
u(L)

(L – x)α

]}
= –

f (x)
E

,

where u(x) is the axial displacement of the bar at x, f (x) is the longitudinal force per unit
volume, E is Young’s modulus, Dα

+ and Dα
L– are the left and right Riemann-Liouville frac-

tional derivatives of order α ( < α < ), respectively, and κα is a material constant. In a re-
cent work, Qi and Chen [] studied analytically the eigenvalue problem of order α ∈ (, )
associated to the equation (.). They also proposed that the spectral problem associated
to (.) with  < α <  is more interesting. The reason is that (.) with  < α <  can over-
come some mechanical inconsistencies arising when the order of fractional derivative is
in the range (, ). Therefore, this paper will focus on the spectral problem which was
proposed in [].
In this study, by using the spectral theory of self-adjoint compact operators in Hilbert

spaces, we prove that the spectrum of the spectral problem associated to (.) with  < α <
/ consists of only countable real eigenvalues with finite multiplicity and the orthogonal
completeness of the corresponding eigenfunction system in the Hilbert spaces. Further-
more, we obtain the lower bound of the eigenvalues.
The rest of the paper is organized as follows. In Section , we give some preliminary

knowledge for fractional derivatives and the spectral theory of Sturm-Liouville problems
that will be needed to develop this work. In Section , we obtain the main results of this
paper.
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2 Preliminaries
2.1 Fractional derivatives
We will use the following properties of fractional integrals and derivatives which can be
found in [].

Definition  (cf. [, p.]) Let R(α) > . The left and right Riemann-Liouville integrals of
order α are defined by

(
Iα+f

)
(x) =


�(α)

∫ x



f (s)
(x – s)–α

ds, x ∈ (, ]

and

(
Iα–f

)
(x) =


�(α)

∫ 

x

f (s)
(s – x)–α

ds, x ∈ [, ),

respectively, where � denotes the Euler gamma function.

Definition  (cf. [, p.]) Let R(α) ∈ (n – ,n), D = d/dx. The left and right Riemann-
Liouville derivatives of order α are defined by (when they exist)

(
Dα

+f
)
(x) =Dn(In–α

+ f
)
(x), x ∈ (, ] (.)

and

(
Dα

–f
)
(x) = (–D)n

(
In–α
– f

)
(x), x ∈ [, ), (.)

respectively. In particular, when  < α < , we have

(
Dα

+f
)
(x) =D(I–α

+ f
)
(x) = �α

(∫ x



f (t)
(x – t)α–

dt
)′′

, x ∈ (, ] (.)

and

(
Dα

–f
)
(x) =D(I–α

– f
)
(x) = �α

(∫ 

x

f (t)
(t – x)α–

dt
)′′

, x ∈ [, ), (.)

where �α = /�( – α).

Proposition . (cf. [, Lemma ., p.]) Let R(α) ∈ (n–,n). If y(x) ∈ ACn[, ], then the
fractional derivatives Dα

+y and Dα
–y exist almost everywhere on [, ] and can be repre-

sented in the forms

(
Dα

+y
)
(x) =

n–∑
k=

y(k)()
�( + k – α)

xk–α +


�(n – α)

∫ x



y(n)(t)dt
(x – t)α–n+

, x ∈ (, ]

and

(
Dα

–y
)
(x) =

n–∑
k=

(–)ky(k)()
�( + k – α)

( – x)k–α +
(–)n

�(n – α)

∫ 

x

y(n)(t)dt
(t – x)α–n+

, x ∈ [, ).
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2.2 Eigenvalue problems for second order differential equations
This subsection collects some known results from the spectral theory of second order
differential equations with a view on the aim of this paper. Consider the regular Sturm-
Liouville eigenvalue problem

τy := –y′′ + qy = λy on (, ) (.)

subject to Dirichlet boundary conditions

y() =  = y(), (.)

where q ∈ L(, ) is a real-valued function. It is known that there exist countable simple
real eigenvalues satisfying

–∞ < λ < λ < · · · < λn < · · · , n → ∞. (.)

These results can be obtained by Prüfer transformation [, Theorem .].
Let L = L(, ) be the Hilbert space with the usual inner product 〈f , g〉 and the norm

‖f ‖ = 〈f , f 〉/. Let AC[, ] be the set of all absolutely continuous, complex-valued func-
tions on [, ]. Consider the associated operator T:

D(T) =
{
y ∈ L : y, y′ ∈ AC[, ], τy ∈ L, y() = y() = 

}
,

Ty = τy, y ∈D(T).
(.)

The operator T is self-adjoint, or T∗
 = T, i.e.,

(i) the domain D(T) is dense in L;
(ii) T is Hermitian, or 〈Tf , g〉 = 〈f ,Tg〉 for f , g ∈D(T);
(iii) D(T) =D(T∗

 ), where T∗
 is the adjoint of T.

For details of these definitions, the reader is referred to [, ]. If  is not an eigenvalue
of T, then there exists a Green function G(x, t) defined by

G(x, t) =

{
u(t)v(x),  ≤ t ≤ x≤ ,
u(x)v(t),  ≤ x ≤ t ≤ ,

(.)

such that for f ∈ L, y is a solution of Ty = f if and only if

y(x) =
∫ 


G(x, t)f (t)dt, (.)

where u, v are the solutions of τy =  such that

u() = , v() = , uv′ – u′v ≡ – on [, ].

We also call the function G the Green function associated to the operator T.
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3 The fractional operator
In this section, we will prove that the spectral problem of (.) with Dirichlet boundary
value conditions has only countable real eigenvalues with finite multiplicity. Consider the
spectral problem

{
–y′′(x) + q(x)y(x) +μ(Dα

+ +Dα
–)y(x) = λy(x) on (, ),

y() = y() = ,
(.)

where Dα
+ and Dα

– are the left and right Riemann-Liouville fractional derivatives of or-
der α, respectively, defined as in Definition . The fractional operator T associated to (.)
is defined by

Ty = Ty +μ
(
Dα

+ +Dα
–

)
y, y ∈D(T) :=D(T). (.)

Throughout this paper we always assume that q ∈ L(, ) and  < α < /.
The next lemma reveals the rationality of  < α < /.

Lemma . If q ∈ L and  < α < , then T is a linear operator fromD(T) to L if and only
if  < α < /.

Proof Since  < α < , for y ∈ D(T), it follows from Definition  that Dα
–y and Dα

+y exist.
Note that Ty ∈ L for y ∈ D(T). Then q ∈ L implies that y′′ ∈ L. By Proposition . and
the boundary conditions y() =  = y(),

(
Dα

+ +Dα
–

)
y(x) = �α

[∫ 



y′′(t)dt
|x – t|α– +

y′()
xα– –

y′()
( – x)α–

]
. (.)

Using the Cauchy-Schwarz inequality and integrating by parts, we have

∫ 



∣∣∣∣
∫ 



y′′(t)dt
|x – t|α–

∣∣∣∣


dx

≤
∫ 



(∫ 


|x – t|–α dt

)(∫ 



|y′′(t)| dt
|x – t|α–

)
dx

≤ α–

 – α

∫ 



(∫ 



|y′′(t)| dt
|x – t|α–

)
dx

=
α–

 – α

∫ 



(∫ 


|x – t|–α dx

)∣∣y′′(t)
∣∣ dt ≤

(
α–

 – α

)∥∥y′′∥∥. (.)

Here we have used the fact that

∫ 


|x – t|–α dt =

x–α + ( – x)–α

 – α
≤ α–

 – α
, for x ∈ [, ].

Therefore
∫ 
 |x – t|–αy′′(t)dt ∈ L.

Let  < α < /, then x–α , (–x)–α ∈ L by calculation, and henceTy ∈ L, which implies
that T is a linear operator from D(T) to L.

http://www.advancesindifferenceequations.com/content/2014/1/85
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Conversely, let T be a linear operator from D(T) to L. Note that for any y ∈ D(T), we
have Ty ∈ L, which implies that (Dα

+ +Dα
–)y ∈ L. It follows from | ∫ 

 |x– t|–αy′′(t)dt| ∈
L and (.) that, for any y ∈D(T),

y′()
xα– –

y′()
( – x)α–

∈ L. (.)

By the arbitrariness of y, we can choose y ∈ D(T) such that y′() �=  and y′() = . Then
by (.), we have x–α ∈ L, which implies that  < α < /. �

Lemma . T is symmetric for μ ∈R, i.e., D(T) is dense in L and

〈Ty, f 〉 = 〈y,Tf 〉, f , y ∈D(T). (.)

Proof SinceD(T) =D(T) andD(T) is dense in L,D(T) is also dense in L. Considering
the symmetry of T, it suffices to prove that

∫ 


f (x)

[(
Dα

+ +Dα
–

)
y
]
(x)dx =

∫ 


y(x)

[(
Dα

+ +Dα
–

)
f
]
(x)dx, for f , y ∈D(T). (.)

For y, f ∈D(T), by the definitions of Dα
+, Dα

– and integrating by parts, we have

∫ 


f (x)

(
Dα

+y
)
(x)dx

= �α

∫ 


f (x) ·

(
d
dx

)(∫ x



y(t)
(x – t)α–

dt
)
dx

= –�α

∫ 


f ′(x)

(∫ x



y(t)
(x – t)α–

dt
)′

dx

= –�α f ′()
∫ 



y(t)
( – t)α–

dt + �α

∫ 


f ′′(x)

(∫ x



y(t)
(x – t)α–

dt
)
dx

= –�α f ′()
∫ 



y(t)
( – t)α–

dt + �α

∫ 



(∫ 

t

f ′′(x)
(x – t)α–

dx
)
y(t)dt

= –�α f ′()
∫ 



y(t)
( – t)α–

dt +
∫ 



[(
Dα

–f
)
(t) + �αf ′()( – t)–α

]
y(t)dt

=
∫ 


y(x)

(
Dα

–f
)
(x)dx.

Here we have used f () =  = y() and exchanged the order of integration. Similarly, we
can prove that

∫ 


f (x)

(
Dα

–y
)
(x)dx =

∫ 


y(x)

(
Dα

+f
)
(x)dx,

and hence T is symmetric. �

We will use the following result to prove the self-adjointness of T .

http://www.advancesindifferenceequations.com/content/2014/1/85
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Lemma. (cf. [, Theorem ., p.]) If for some λ ∈R, the rangeR(T –λ) of T –λ

is the entire space L, then T is self-adjoint.

In order to apply Lemma ., we first prepare three lemmas.

Lemma . Let λ be the first eigenvalue of T.Choose λ < λ. Then for f ∈ L, (T –λ)y =
f can be rewritten as the integral equation

y = Ky + F , Ky =
∫ 


K (· , t)y(t)dt, F =

∫ 


G(· , t)f (t)dt, (.)

where

K (x, t) = μ�α

[
–K(x, t) –K(x, t) –


|x – t|α– +

v(x)u′()
tα–

–
u(x)v′()
( – t)α–

]
, (.)

K(x, t) =

{∫ x
t

v(x)u′′(s)
(s–t)α– ds +

∫ 
x

u(x)v′′(s)
(s–t)α– ds, ≤ t ≤ x ≤ ,∫ 

t
u(x)v′′(s)
(s–t)α– ds, ≤ x ≤ t ≤ ,

K(x, t) =

{∫ t


v(x)u′′(s)
(t–s)α– ds,  ≤ t ≤ x≤ ,∫ x


v(x)u′′(s)
(t–s)α– ds +

∫ t
x

u(x)v′′(s)
(t–s)α– ds,  ≤ x≤ t ≤ ,

and u(x), v(x) are the solutions of Ty =  such that u() = , v() = , uv′ – u′v ≡ – on
[, ].

Proof By the definition of λ and λ < λ, we know that  is not an eigenvalue of T – λ.
Thus it follows from (.) that y is a solution of (T – λ)y = f if and only if

y(x) =
∫ 


G(x, t)

[
f (t) –μ

(
Dα

+ +Dα
–

)
y(t)

]
dt, (.)

where G is the Green function associated to T – λ. A calculation gives

–μ

∫ 


G(x, t)

(
Dα

+ +Dα
–

)
y(t)dt =

∫ 


K (x, t)y(t)dt, (.)

where K (x, t) is defined as (.). Therefore

y(x) =
∫ 


K (x, t)y(t)dt +

∫ 


G(x, t)f (t)dt = Ky + F . �

Remark  The details of the computation of (.) are presented in the appendix.

Lemma . If |μ| < �( – α)/, then T is self-adjoint.

Proof Step . We prove that

∣∣〈(Dα
+ +Dα

–
)
y, y

〉∣∣ ≤ ‖y′‖
�( – α)

, for y ∈D(T). (.)

http://www.advancesindifferenceequations.com/content/2014/1/85
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It follows from the definition of Dα
+ and integrating by parts that

∣∣〈Dα
+y, y

〉∣∣ = ∣∣∣∣
∫ 


y(x) · (Dα

+y
)
(x)dx

∣∣∣∣ = �α

∣∣∣∣
∫ 


y(x) ·

(
d
dx

)(∫ x



y(t)
(x – t)α–

dt
)
dx

∣∣∣∣
= �α

∣∣∣∣
∫ 


y′(x)

(∫ x



y(t)
(x – t)α–

dt
)′

dx
∣∣∣∣ = �α

∣∣∣∣
∫ 


y′(x)

(∫ x



y′(t)
(x – t)α–

dt
)
dx

∣∣∣∣
≤ �α

(∫ 



∣∣y′(x)
∣∣ dx)/(∫ 



∣∣∣∣
∫ x



y′(t)dt
(x – t)α–

∣∣∣∣


dx
)/

≤ �α

∥∥y′∥∥[∫ 



(∫ x


(x – t)–α dt

)(∫ x



|y′(t)| dt
(x – t)α–

)
dx

]/

≤ �α‖y′‖√
 – α

[∫ 



(∫ 

t
(x – t)–α dx

)∣∣y′(t)
∣∣ dt]/

≤ �α‖y′‖
 – α

=
‖y′‖

�( – α)
, for y ∈D(T). (.)

Herewehave used y() =  = y(), theCauchy-Schwarz inequality and exchanged the order
of integration. Using a similar method as in proving (.), we have

∣∣〈Dα
–y, y

〉∣∣ ≤ ‖y′‖
�( – α)

, for y ∈D(T). (.)

A combination of (.) and (.) gives (.).
Step .We prove that if |μ| < �(–α)/, then there exists λ < λ such that for y ∈D(T),

〈(T – λ)y, y〉 ≥ ‖y‖.
Let Q(x) =

∫ x
 q(t)dt, Q =maxx∈[,]{|Q(x)|} and ε = �(–α)–|μ|

�(–α) . Integrating y′(x)y′(x) on
[, ] by parts, and using y() = y() =  and Ty = –y′′ + qy, we have

∥∥y′∥∥ =
∫ 



∣∣y′∣∣ = ∫ 


y(Ty – qy) = 〈Ty, y〉 – 〈qy, y〉, (.)

where

∣∣〈qy, y〉∣∣ ≤ Q

∫ 



∣∣y′∣∣|y| ≤ ε
∥∥y′∥∥ +

Q


ε
‖y‖. (.)

Then (.) and (.) give

〈Ty, y〉 =
∥∥y′∥∥ +

∫ 


q|y| ≥ ( – ε)

∥∥y′∥∥ –
Q


ε

‖y‖. (.)

A combination of (.) and (.) gives

〈
(T – λ)y, y

〉
= 〈Ty, y〉 +μ

〈(
Dα

+ +Dα
–

)
y, y

〉
– λ‖y‖

≥ ( – ε)
∥∥y′∥∥ –

Q


ε
‖y‖ – |μ|

�( – α)
∥∥y′∥∥ – λ‖y‖

=
�( – α) – |μ|

�( – α)
∥∥y′∥∥ +

(
–

�( – α)Q


�( – α) – |μ| – λ

)
‖y‖.

http://www.advancesindifferenceequations.com/content/2014/1/85
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Note that |μ| < �( – α)/. Then

〈
(T – λ)y, y

〉 ≥ ‖y‖ (.)

for

λ ≤min

{
–

�( – α)Q


�( – α) – |μ| – ,λ

}
. (.)

Step . We prove that T is self-adjoint for |μ| < �( – α)/.
Let λ be defined as in (.). It follows fromLemma . that y is a solution of (T –λ)y =

f , f ∈ L if and only if y = Ky + F , where K and F are defined as in (.) and (.), respec-
tively. From the definition ofK (x, t), we conclude thatK (x, t) is continuous on [, ]× [, ].
Hence the operatorK is compact and (.) is a Fredholm integral equation of the first kind.
Note that F ∈ L for f ∈ L by the definition of F . If y ∈D(T) is a solution of (T – λ)y = ,
then (.) implies y = , and hence y = Ky has only zero solution in L. It follows from the
Fredholm Alternative Theorem that the equation y = Ky + F has a unique solution, which
implies that (T – λ)y = f for f ∈ L has a unique solution. By the arbitrariness of f , we
know that R(T – λ) = L, and hence T is self-adjoint by Lemma .. �

Lemma . Let λ be defined as in (.). If |μ| < �(–α)/, then the resolvent R(T ,λ) :=
(T – λ)– is well defined, self-adjoint, compact and positive, i.e. 〈(T – λ)y, y〉 >  for  �=
y ∈D(T).

Proof The existence and self-adjointness of R(T ,λ) follow from the discussion in
Lemma .. The positivity follows from (.). It remains to prove that R(T ,λ) is com-
pact. Let fn be a bounded sequence in L, say, ‖fn‖ ≤  for n ≥ . Set yn = R(T ,λ)fn, or
(T –λ)yn = fn. Then (.) gives ‖yn‖ ≤ 〈(T –λ)yn, yn〉 = 〈fn, yn〉 ≤ ‖yn‖, n≥ , and hence
‖yn‖ ≤ . Since K is compact in L, {Kyn} possesses a convergent subsequence, denoted by
{Kyn} again for simplicity. Since G is also compact, we can find a convergent subsequence
{Fnk } of Fn = {Gfn} in L. Therefore, (.) means that ynk = Kynk + Fnk is convergent in L.
Thus, R(T ,λ) is compact. �

The following theorem is the main result of this paper.

Theorem . Let q ∈ L,  < α < / and |μ| < �( – α)/, then the eigenvalue problem
(.) has countable real eigenvalues λn with finite multiplicity, n≥ , such that

–∞ < λ ≤ λ ≤ · · · ≤ λn ≤ · · · , λn → ∞,n→ ∞ (.)

and the set of all corresponding eigenfunctions φn(x), n ≥ , forms a complete, orthogonal
system of L.Moreover, the first eigenvalue λ satisfies λ ≥ – �(–α)Q


�(–α)–|μ| .

Proof From the spectral theorem of compact self-adjoint operators in Hilbert spaces we
conclude that R(T ,λ) has only countable real eigenvalues ξn with finitemultiplicity, n ≥ .
Since R(T ,λ) is positive, its eigenvalues satisfy

ξ ≥ ξ ≥ · · · ≥ ξn ≥ · · · >  and ξn → +, n→ ∞. (.)

http://www.advancesindifferenceequations.com/content/2014/1/85
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Moreover, the eigenfunctions φn(x) of R(T ,λ) form a complete, orthogonal system of L.
Note that the eigenvalues λn of T and ξn of R(T ,λ) have the relations

λn = λ +

ξn
, n≥ .

The first part of this theorem follows from (.). We now prove λ ≥ – �(–α)Q


�(–α)–|μ| if |μ| <
�( – α)/. In fact, by (.) and (.), we have

λ‖y‖ = 〈λy, y〉 = 〈Ty, y〉 = 〈Ty, y〉 +μ
〈(
Dα

+ +Dα
–

)
y, y

〉
≥ �( – α) – |μ|

�( – α)
∥∥y′∥∥ –

�( – α)Q


�( – α) – |μ| ‖y‖
 ≥ –

�( – α)Q


�( – α) – |μ| ‖y‖
,

which implies λ ≥ – �(–α)Q


�(–α)–|μ| for |μ| < �( – α)/. �

Appendix: Calculation of Lemma 3.4
Let �α = /�( – α). It follows from the definitions of G(x, t), Dα

+ and Dα
– that

∫ 


G(x, t)

(
Dα

+ +Dα
–

)
y(t)dt

=
∫ x


u(t)v(x)

(
Dα

+ +Dα
–y

)
(t)dt +

∫ 

x
u(x)v(t)

(
Dα

+ +Dα
–y

)
(t)dt

= �α

∫ x


u(t)v(x)

(
d
dt

)(∫ t



y(s)ds
(t – s)α–

)
dt

+ �α

∫ 

x
u(x)v(t)

(
d
dt

)(∫ t



y(s)ds
(t – s)α–

)
dt

+ �α

∫ x


u(t)v(x)

(
d
dt

)(∫ 

t

y(s)ds
(s – t)α–

)
dt

+ �α

∫ 

x
u(x)v(t)

(
d
dt

)(∫ 

t

y(s)ds
(s – t)α–

)
dt. (A.)

Integrating by parts and changing the order of integration, we have

∫ x


u(t)v(x)

(
d
dt

)(∫ t



y(s)ds
(t – s)α–

)
dt

= v(x)
[
u(x)

∫ x



y′(s)
(x – s)α–

ds –
∫ x


u′(t)

(∫ t



y(s)ds
(t – s)α–

ds
)′

dt
]

= v(x)
[
u(x)

∫ x



y′(s)
(x – s)α–

ds – u′(x)
∫ x



y(s)
(x – s)α–

ds

+
∫ x



(∫ x

s

u′′(t)dt
(t – s)α–

)
y(s)ds

]
, (A.)

∫ 

x
u(x)v(t)

(
d
dt

)(∫ t



y(s)ds
(t – s)α–

)
dt

= u(x)
[
–v(x)

∫ x



y′(s)ds
(x – s)α–

–
∫ 

x
v′(t)

(∫ t



y(s)ds
(t – s)α–

)′
dt

]

http://www.advancesindifferenceequations.com/content/2014/1/85
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= u(x)
[
–v(x)

∫ x



y′(s)ds
(x – s)α–

– v′()
∫ 



y(s)ds
( – s)α–

+ v′(x)
∫ x



y(s)ds
(x – s)α–

+
∫ 

x

(∫ 

s

v′′(t)dt
(t – s)α–

)
y(s)ds +

∫ x



(∫ 

x

v′′(t)dt
(t – s)α–

)
y(s)ds

]
, (A.)

∫ x


u(t)v(x)

(
d
dt

)(∫ 

t

y(s)ds
(s – t)α–

)
dt

= v(x)
[
u(x)

∫ 

x

y′(s)ds
(s – x)α–

–
∫ x


u′(t)

(∫ 

t

y(s)ds
(s – t)α–

)′
dt

]

= v(x)
[
u(x)

∫ 

x

y′(s)ds
(s – x)α–

– u′(x)
∫ 

x

y(s)ds
(s – x)α–

+ u′()
∫ 



y(s)ds
sα–

+
∫ x



(∫ s



u′′(t)dt
(s – t)α–

)
y(s)ds +

∫ 

x

(∫ x



u′′(t)dt
(s – t)α–

)
y(s)ds

]
(A.)

and

∫ 

x
u(x)v(t)

(
d
dt

)(∫ 

t

y(s)ds
(s – t)α–

)
dt

= u(x)
[
–v(x)

∫ 

x

y′(s)ds
(s – x)α–

–
∫ 

x
v′(t)

(∫ 

t

y(s)ds
(s – t)α–

)′
dt

]

= u(x)
[
–v(x)

∫ 

x

y′(s)ds
(s – x)α–

+ v′(x)
∫ 

x

y(s)ds
(s – x)α–

+
∫ 

x

(∫ s

x

v′′(t)dt
(s – t)α–

)
y(s)ds

]
. (A.)

Combining (A.) with (A.)-(A.) gives

–μ

∫ 


G(x, t)

(
Dα

+ +Dα
–y

)
(t)dt

= –μ�α

[∫ x



(∫ x

t

v(x)u′′(s)ds
(s – t)α–

+
∫ 

x

u(x)v′′(s)ds
(s – t)α–

)
y(t)dt

+
∫ 

x

(∫ 

t

u(x)v′′(s)ds
(s – t)α–

)
y(t)dt

+
∫ x



(∫ t



v(x)u′′(s)ds
(t – s)α–

)
y(t)dt +

∫ 

x

(∫ x



v(x)u′′(s)ds
(t – s)α–

+
∫ t

x

u(x)v′′(s)ds
(t – s)α–

)
y(t)dt

–
(∫ x



y(t)dt
(x – t)α–

+
∫ 

x

y(t)dt
(t – x)α–

)
+

∫ 



v(x)u′()
tα–

y(t)dt –
∫ 



u(x)v′()
( – t)α–

y(t)dt
]

=
∫ 


K (x, t)y(t)dt, (A.)

where K (x, t) is defined as in (.).
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