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Abstract
In this paper, the authors consider the following fractional high-order three-point
boundary value problem: Dα

0+u(t) + f (t,u(t)) = 0, t ∈ (0, 1), u(0) = u′(0) = · · · =
u(n–2)(0) = 0, Dα–1

0+ u(η) = kDα–1
0+ u(1), where k > 1, η ∈ (0, 1), n – 1 < α ≤ n, n ≥ 3, Dα

0+ is
the standard Riemann-Liouville derivative of order α, and
f : [0, 1]× [0, +∞)→ [0, +∞) is continuous. By using some fixed point index theorems
on a cone for differentiable operators, the authors obtain the existence of positive
solutions to the above boundary value problem.
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1 Introduction
In this paper, we investigate the existence of solutions for the following fractional high-
order equation:

Dα
+u(t) + f

(
t,u(t)

)
= , t ∈ (, ) (.)

with the three-point boundary value conditions

u() = u′() = · · · = u(n–)() = , Dα–
+ u(η) = kDα–

+ u(), (.)

where k > , η ∈ (, ), n –  < α ≤ n, n ≥ , Dα
+ is the standard Riemann-Liouville deriva-

tive of order α and f : [, ]× [, +∞)→ [, +∞) is continuous.
Differential equations with fractional order are a generalization of the ordinary differ-

ential equations to non-integer order. This generalization is not a mere mathematical cu-
riosity but rather has interesting applications in many areas of science and engineering
such as electrochemistry, control, porousmedia, electromagnetism, etc. (see [–]). There
has been a significant development in the study of fractional differential equations in re-
cent years; see for example [–]. Furthermore, several kinds of the high-order boundary
value problems of fractional equations have been studied; see [–, –] for example.
In [], using the Guo-Krasnosel’skii fixed point theorem, Goodrich discussed the exis-
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tence of positive solutions for the following fractional boundary value problem:

⎧⎪⎨
⎪⎩
Dv

+u(t) + f (t,u(t)) = ,  < t < ,n –  ≤ v ≤ n,
u(i)() = ,  ≤ i≤ n – ,
Dα

+u(t)|t= = ,  ≤ α ≤ n – ,

where f ∈ C([, ]× [, +∞), [, +∞)), n > .
Moreover, Goodrich [] investigated the existence of a positive solution to system of

fractional boundary value problems and extended his previous study in [].
Recently, motivated by the above work of Goodrich, Xu et al. [] investigated the ex-

istence and uniqueness of positive solution for the following fractional boundary value
problem:

⎧⎪⎨
⎪⎩
Dv

+u(t) + h(t)f (t,u(t)) = ,  < t < ,n –  < v≤ n,
u(i)() = ,  ≤ i≤ n – ,
Dα

+u(t)|t= = ,  ≤ α ≤ n – ,

where f ∈ C([, ]× [, +∞), [, +∞)), h ∈ C(, )∩ L(, ) and n > .
More recently, by the method of upper and lower solution together with Schauder fixed

position theorem, Vong [] studied the existence of positive solutions of the nonlocal
boundary value problem for fractional equation:

{
Dα

+u(t) + f (t,u(t)) = ,
u′() = · · · = u(n–)() = , u() =

∫ 
 u(s)dμ(s),

where n≥ , α ∈ (n – ,n), and μ(s) is a function of bounded variation.
Moreover, Waug et al. [], El-Shahed and Shammakh [], Yang et al. [], Zhang and

Han [], Wu et al. [] also studied similar problems.
It is worth pointing out that the fixed point index theorems on cone for differentiable

operators are the effective tools to investigate positive solutions of fractional equation.
However, to the author’s knowledge, such theorems are rarely used in the literature. Dif-
ferent from the literature mentioned above, in the present paper, the authors apply some
fixed point theorems for differentiable operators to establish the existence results on pos-
itive solutions to the fractional nonlocal boundary value problem (.)-(.). That is one of
the features of this paper. Another feature of this paper is that some spectral properties of
a correlative linear integral operator are introduced to obtain some positive eigenvector.
The rest of this paper is organized as follows. In Section , we present some necessary

definitions and preliminary results that will be used to prove our main results. In Sec-
tion , we put forward and prove our main results. Finally, we will give two examples to
demonstrate our main results.

2 Preliminaries
In this section, we introduce some preliminary facts which are used throughout this paper.
Let N be the set of positive integers, R be the set of real numbers. R+ be the set of

real positive numbers. Denote by C([a,b],R) the Banach space endowed with the norm
‖u‖ =maxt∈[a,b] |u(t)|. Let E = C([, ],R).

http://www.advancesindifferenceequations.com/content/2014/1/90
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Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a function
y : (a,b]→ R is given by

Iαa+y(t) =


�(α)

∫ t

a
(t – s)α–y(s)ds, t ∈ (a,b].

Definition . ([]) The Riemann-Liouville fractional derivative of order α >  of func-
tion y : (a,b]→R is given by

Dα
a+y(t) =


�(n – α)

(
d
dt

)n ∫ t

a

y(s)ds
(t – s)α–n+

, t ∈ (a,b],

where n = [α] + , [α] denotes the integer part of α.

Lemma . ([]) Let α > . If u ∈ C(, ) ∩ L(, ) with a fractional derivative of order α

that belongs to C(, )∩ L(, ), then

Iα+D
α
+u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

for some ci ∈ R, i = , , . . . ,n, n –  < α ≤ n.

To study the existence of solutions to the boundary value problems (BVPs, for short),
we first consider the following auxiliary BVP:

{
Dα

+u(t) + h(t) = ,
u() = u′() = · · · = u(n–)() = , Dα–

+ u(η) = kDα–
+ u(),

(.)

where h ∈ E, and α, η, k, n are given in (.).
We have the following lemma.

Lemma . For h ∈ E, the BVP (.) has a unique solution given by

u(t) =
∫ 


G(t, s)h(s)ds, t ∈ [, ],

where

G(t, s) =


�(α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tα– – (t – s)α–,  ≤ s ≤min{η, t},
tα–, t ≤ s≤ η,
k

k– t
α– – (t – s)α–, η < s ≤ t,

k
k– t

α–, max{η, t} < s≤ .

(.)

Proof By Lemma ., it follows from h ∈ E that there exist some constants ck ( ≤ k ≤ n)
such that

u(t) = –Iα+h(t) + ctα– + ctα– + · · · + cntα–n, t ∈ [, ].

The boundary value conditions u() = u′() = · · · = u(n–)() =  in (.) imply that c =
c = · · · = cn = , and so

u(t) = –Iα+h(t) + ctα–, t ∈ [, ]. (.)

http://www.advancesindifferenceequations.com/content/2014/1/90
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Hence

Dα–
+ u(t) = –

∫ t


h(s)ds + c�(α), t ∈ [, ].

Thus,

Dα–
+ u(η) = –

∫ η


h(s)ds + c�(α), (.)

Dα–
+ u() = –

∫ 


h(s)ds + c�(α). (.)

The condition Dα–
+ u(η) = kDα–

+ u() together with (.) and (.) yields

c =
(k – )

∫ η

 h(s)ds + k
∫ 
η
h(s)ds

(k – )�(α)

and so

u(t) = –Iα+h(t) +
(k – )

∫ η

 h(s)ds + k
∫ 
η
h(s)ds

(k – )�(α)
tα–, t ∈ [, ]

from (.).
() If  ≤ t ≤ η, then

u(t) =


�(α)

[∫ t



(
tα– – (t – s)α–

)
h(s)ds

+
∫ η

t
tα–h(s)ds +

k
k – 

∫ 

η

tα–h(s)ds
]

.= Th(t). (.)

() If t ≥ η, then

u(t) =


�(α)

[∫ η



(
tα– – (t – s)α–

)
h(s)ds

+
∫ t

η

(
k

k – 
tα– – (t – s)α–

)
h(s)ds +

k
k – 

∫ 

t
tα–h(s)ds

]
.= Th(t). (.)

So, we always have

u(t) =
∫ 


G(t, s)h(s)ds, t ∈ [, ],

where Green’s function G(t, s) is given by (.). The proof is complete. �

Now, we give some properties of G(t, s).

Lemma . The Green function G has the following properties:
() G(t, s) >  for all t, s ∈ (, ];
() mint∈[η,]G(t, s)≥ ωG(τ , s) for all s, τ ∈ [, ], where ω = ηα–

+k
and

k = 
(k–)(–(–η)α–) .

http://www.advancesindifferenceequations.com/content/2014/1/90
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Proof It is easy to see that the conclusion () of Lemma . is true from the expression of
G(t, s) in (.). So, it remains to show that the conclusion () of Lemma . is true. Our
proof is divided into two steps.
Step . In this step, we show that

min
t∈[η,]

G(t, s)≥ 
�(α)

ηα–( – ( – s)α–
)
, s ∈ [, ]. (.)

Let φ(t, s) = �(α)G(t, s), t ∈ [η, ], s ∈ [, ]. Then we have the following cases to consider.
(i) If s ∈ [,η], then

φ(t, s) = tα– – (t – s)α– = tα–
[
 –

(
 –

s
t

)α–]
≥ tα–

[
 – ( – s)α–

]
≥ ηα–[ – ( – s)α–

]
.

(ii) If s ∈ (η, t], then

φ(t, s) =
k

k – 
tα– –(t–s)α– > tα– –(t–s)α– ≥ tα–

[
–(–s)α–

] ≥ ηα–[–(–s)α–],
because k > .
(iii) If s ∈ (t, ], then

φ(t, s) =
k

k – 
tα– >

k
k – 

ηα– >
k

k – 
ηα–[ – ( – s)α–

]
> ηα–[ – ( – s)α–

]
.

So, from the above analysis, we know that the inequality (.) holds.
Step . Now, we show that

G(τ , s)≤ 
�(α)

( + k)
[
 – ( – s)α–

]
, τ , s ∈ [, ]. (.)

Let φ(τ , s) = �(α)G(τ , s), τ , s ∈ [, ]. Similar to the proof in Step , we deduce the relation
(.).
(i) If  ≤ s ≤ min{η, τ }, then φ(τ , s) = τα– – (τ – s)α–. Owing to that α > , it is easy to

know that

τα– – (τ – s)α– ≤  – ( – s)α–,

and so

φ(τ , s)≤  – ( – s)α–.

(ii) If max{η, τ } < s, then

φ(τ , s) =
k

k – 
τα– ≤ k

k – 
sα– <

k
k – 

[
 – ( – s)α–

] ≤ ( + k)
[
 – ( – s)α–

]

noting that sα– + ( – s)α– ≤  for s ∈ (, ] and k = 
(k–)(–(–η)α–) .
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(iii) If τ ≤ s ≤ η, then

φ(τ , s) = τα– ≤ sα– ≤  – ( – s)α–

noting that sα– + ( – s)α– ≤  for s ∈ [, ).
(iv) If η < s ≤ τ , then

φ(τ , s) =
k

k – 
τα– – (τ – s)α–.

From

φ′
τ (τ , s) = (α – )

[
k

k – 
τα– – (τ – s)α–

]
≥ ,

we have

φ(τ , s) ≤ φ(, s) =
k

k – 
– ( – s)α– =  – ( – s)α– +


k – 

=  – ( – s)α– + k
(
 – ( – η)α–

)
< ( + k)

[
 – ( – s)α–

]
noting that k = 

(k–)(–(–η)α–) .
Summing up the above discussion, we know that the inequality (.) holds.
Now, from (.) and (.), the conclusion () of Lemma . follows. The proof is com-

plete. �

We introduce a cone P ⊂ E as follows:

P =
{
u ∈ E : u(t) ≥ , t ∈ [, ];u(t) ≥ ω‖u‖ for all t ∈ [η, ]

}
.

Define an operator T : E → E by

Th =
∫ 


G(t, s)h(s)ds, for h ∈ E. (.)

We establish the following lemma, which will be used in the next section.

Lemma . T : P → P is completely continuous.

Proof Let B be an arbitrary bounded set in E. Then there existsM >  such that ‖h‖ ≤M
for any h ∈ B. First, we show that the set G = {w|w = Th,h ∈ B} is equicontinuous on [, ].
In fact, for an arbitrary ε >  and any h ∈ B as well as t, t ∈ [, ] with t < t, there are

three cases to consider.
Case . If t < t ≤ η, then from (.) and (.), it follows that

∣∣Th(t) – Th(t)
∣∣

=
∣∣Th(t) – Th(t)

∣∣

http://www.advancesindifferenceequations.com/content/2014/1/90
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≤ 
�(α)

[∣∣∣∣
∫ t



(
tα– – (t – s)α–

)
h(s)ds –

∫ t



(
tα– – (t – s)α–

)
h(s)ds

∣∣∣∣
+

∣∣∣∣
∫ η

t
tα– h(s)ds –

∫ η

t
tα– h(s)ds

∣∣∣∣ + k
k – 

∣∣∣∣
∫ 

η

(
tα– – tα–

)
h(s)ds

∣∣∣∣
]

≤ M
�(α)

[
k – 
k – 

(
tα– – tα–

)
+ (t – t)

]
. (.)

Therefore, there is a δ >  such that

∣∣Th(t) – Th(t)
∣∣ < ε


, when  < t – t < δ, t < t ≤ η. (.)

Case . If η ≤ t < t, then by a similar argument to (.), from (.) and (.), we have

∣∣Th(t) – Th(t)
∣∣ = ∣∣Th(t) – Th(t)

∣∣
≤ M

�(α)

[
k – 
k – 

(
tα– – tα–

)
+

k
k – 

(t – t)
]
.

Thus, there exists a δ >  such that

∣∣Th(t) – Th(t)
∣∣ < ε


, when  < t – t < δ,η ≤ t < t. (.)

Case . If t < η < t with  < t – t < δ = min{δ, δ}, then from (.)-(.), it follows
that

∣∣Th(t) – Th(t)
∣∣ ≤ ∣∣Th(t) – Th(η)

∣∣ + ∣∣Th(η) – Th(t)
∣∣ < ε

noting that Th(η) = Th(η).
Summing up the above analysis onCases -, we conclude that |Th(t)–Th(t)| < ε when

 < t – t < δ =min{δ, δ}, for t, t ∈ [, ], that is, G is equicontinuous on [, ].
Now, we show that G is bounded in E.
In fact, from the fact that  ≤G(t, s) ≤ k

k– , t, s ∈ [, ], we immediately have

∣∣Th(t)∣∣ ≤
∫ 


G(t, s)

∣∣h(s)∣∣ds≤ k
k – 

M, t ∈ [, ], for all h ∈ E. (.)

So, by the Arzela-Ascoli theorem, we know that T : E → E is a compact operator. Again,
because T is a bounded operator on E owing to (.), T : E → E is continuous, and there-
fore T is completely continuous on E.
Finally, we apply the Lemma . to obtain

Th(t) =
∫ 


G(t, s)h(s)ds≥ , t ∈ [, ]

and

min
t∈[η,]

Th(t) = min
t∈[η,]

∫ 


G(t, s)h(s)ds≥ ω

∫ 


G(τ , s)h(s)ds = ωTh(τ ), τ ∈ [, ]

for any h ∈ P. So, mint∈[η,](Th)(t) ≥ ‖Th‖, that is, T : P → P. The proof is complete. �

http://www.advancesindifferenceequations.com/content/2014/1/90
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For the remainder of this section, we introduce the following lemmas, whichwill be used
to obtain our main result in the next section.

Lemma. ([]) Let P be a cone in aBanach space E,A : P → P be completely continuous,
and Aθ = θ . Suppose that A is differentiable at θ along P and  is not an eigenvalue of
A′
+(θ ) corresponding to a positive eigenvector.Moreover, if A′

+(θ ) has no positive eigenvectors
corresponding to an eigenvalue greater than one, then there exists r >  such that

i(A,Pr ,P) = , ∀ < r ≤ r,

where Pr = {x ∈ P : ‖u‖ < r}.

Lemma . ([]) Let P be a cone in a Banach space E, A : P → P be completely contin-
uous. Suppose that A is differentiable at ∞ along P and  is not an eigenvalue of A′

+(∞)
corresponding to a positive eigenvector.Moreover, if A′

+(∞) has no positive eigenvectors cor-
responding to an eigenvalue greater than one, then there exists R >  such that

i(A,�R,P) = , ∀R ≤ R,

where �R = {x ∈ P : ‖u‖ < R}.

Lemma . ([]) Let k(x, y) be nonnegative on [a,b] × [a,b], and let the operator K :
C[a,b] → C[a,b] be completely continuous, where K is defined as Kφ =

∫
[a,b] k(x, y)φ(y)dy.

If the spectral radius r(A) �= , then K has a positive eigenfunction φ corresponding to its
first eigenvalue λ = (r(A))–, i.e. there exists φ(t) ∈ C[a,b] with λKφ = φ, φ(t) ≥ ,
φ(t) �≡ , t ∈ [a,b].

3 Main results
Let E = C([η, ],R), ‖u‖ =maxt∈[η,] |u(t)|. Define an operator T on E as

Tu(t) =
∫ 

η

G(t, s)u(s)dt, t ∈ [η, ],

for u ∈ E, where G(t, s) is the Green function (.), whose domain is restricted on [η, ]×
[, ].
Let P = {u ∈ E : u(t) ≥ ω‖u‖, t ∈ [η, ]}, where ω is given in Lemma .. Obviously,

P is a cone in E. We have the following lemma.

Lemma. T : E → E is completely continuous.Moreover, the spectral radius r(T) > .

Proof Since the proof of the complete continuity of T is similar to that in Lemma ., we
omit it. Here, we only show that r(T) > .
Let φ(t) =

∫ 
η
G(t, s)ds, t ∈ [η, ]. Because

φ(t) =
k

k – 
tα–( – η) –


α
(t – η)α , t ∈ [η, ],

http://www.advancesindifferenceequations.com/content/2014/1/90
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and

φ′(t) =
k

k – 
(α – )tα–( – η) – (t – η)α–

> tα–( – η) – (t – η)α– > , t ∈ [η, ],

we have

min
t∈[η,]

φ(t) = φ(η) =
k

k – 
ηα–( – η) = γ > .

For any u ∈ P\{θ}, from

(Tu)(t) =
∫ 

η

G(t, s)u(s)ds≥ ω‖u‖
∫ 

η

G(t, s)ds

≥ ωγ‖u‖ ≥ ωγu(t), t ∈ [η, ],

we have

(
T
u

)
(t) = T(Tu) ≥ ωγTu ≥ (ωγ)u(t), t ∈ [η, ],

and so

∥∥Tn
u

∥∥
 ≥ (

Tn
u

)
(t)≥ (ωγ)nu(t), t ∈ [η, ].

Hence, ‖Tn
u‖ ≥ (ωγ)n‖u‖, and so ‖Tn

u‖
‖u‖ ≥ (ωγ)n, which implies that ‖Tn

‖ ≥
(ωγ)n. So, we obtain

r(T) = lim
n→∞

∥∥Tn∥∥ 
n ≥ ωγ > .

The proof is complete. �

Let us list the following assumptions, which will be used later.

(H) f ∈ C([, ]×R+,R+).
(H) f (t, ) = , fx(t, ) ≥ , t ∈ [, ], fx(t, ) �≡ , t ∈ [η, ], where the partial derivative

fx(t, ) = fx(t,x)|(t,). Moreover, ∃b >  such that fx(t,x) is continuous on [, ]× [,b].
(H)

∫ 
 ( – ( – s)α–)fx(s, )ds < �(α)

+k
, where k = 

(k–)(–(–η)α–) , fx(s, ) = fx(s,x)|(s,).
(H) There exists φ ∈ C([, ],R+) such that limx→+∞ f (t,x)

x = φ(t) holds uniformly on [, ]
with respect to t. Moreover, φ(t) �≡ , t ∈ [η, ].

(H)
∫ 
 ( – ( – s)α–)φ(s)ds < �(α)

+k
, where k = 

(k–)(–(–η)α–) .

Define an operator A on P as

(Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds, t ∈ [, ], for u ∈ P.

Obviously, the following lemma is true in view of Lemma ..

http://www.advancesindifferenceequations.com/content/2014/1/90
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Lemma . Let (H) hold. Then A : P → P is completely continuous.

We need the following two lemmas, which will play an important role to obtain the
existence results.

Lemma . Let (H)-(H) hold. Then the operator A is differentiable at θ along P, and
Aθ = θ , A′

+(θ )h = Bh, h ∈ P, where

Bh =
∫ 


G(t, s)fx(s, )h(s)ds, h ∈ P.

Proof For any (s,x) ∈ [, ]× [,b], by the mean value theorem, there exists ξ ∈ (,x) such
that

f (s,x) = f (s,x) – f (s, ) = fx(s, ξ )x,

that is,

f (s,x) – fx(s, ξ )x = . (.)

Again, due to the fact that fx(s,x) is uniformly continuous on [, ] × [,b], for arbitrary
ε > , there exists δ ∈ (,b) such that

∣∣fx(s,x) – fx(s, )
∣∣ < α�(α)

(α – )( + k)
ε, (.)

when  < x < δ, for all s ∈ [, ].
So, from (.)-(.), it follows that

∣∣f (s,x) – fx(s, )x
∣∣ ≤ ∣∣f (s,x) – fx(s, ξ )x

∣∣ + ∣∣fx(s, ξ ) – fx(s, )
∣∣x

<
α�(α)

(α – )( + k)
εx, (.)

when  < x < δ, for all s ∈ [, ].
Consequently, for any h ∈ P with ‖h‖ < δ, from (.) and (.), it follows that

∣∣(Ah)(t) – (Bh)(t)
∣∣ ≤

∫ 


G(t, s)

∣∣f (s,h(s)) – fx(s, )h(s)
∣∣ds

≤ α�(α)
(α – )( + k)

ε‖h‖
∫ 


G(t, s)ds

≤ α

α – 
ε‖h‖

∫ 



(
 – ( – s)α–

)
ds = ε‖h‖.

So, ‖Ah – Bh‖ ≤ ε‖h‖, that is, A′
+(θ )h = Bh, h ∈ P. The proof is complete. �

Lemma . Let (H)-(H) hold. Then A′
+(θ ) has no positive eigenvectors corresponding to

an eigenvalue greater than or equal to one.
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Proof If not, then there exist a λ ≥  and h ∈ P\{θ} with λh = A′
+(θ )h, and so

h(t) ≤ λh(t) =
(
A′
+(θ )h

)
(t) =

∫ 


G(t, s)fx(s, )h(s)ds

≤  + k
�(α)

∫ 



(
 – ( – s)α–

)
fx(s, )h(s)ds.

Thus,

(
 – ( – t)α–

)
fx(t, )h(t) ≤  + k

�(α)
(
 – ( – t)α–

)
fx(t, )

×
∫ 



(
 – ( – s)α–

)
fx(s, )h(s)ds,

and so
∫ 



(
 – ( – t)α–

)
fx(t, )h(t)dt ≤  + k

�(α)

∫ 



(
 – ( – t)α–

)
fx(t, )dt

×
∫ 



(
 – ( – s)α–

)
fx(s, )h(s)ds. (.)

Because h ∈ P\{θ}, fx(t, )≥ , t ∈ [, ], fx(t, ) �≡ , t ∈ [η, ] and fx(t, ) is continuous on
[, ], the following inequality:

∫ 



(
 – ( – t)α–

)
fx(t, )h(t)dt > 

holds. Immediately, from (.) it follows that +k
�(α)

∫ 
 ( – ( – t)α–)fx(t, )dt ≥ , which

contradicts (H). So, the conclusion of Lemma . is true. The proof is complete. �

Lemma . Let (H), (H), and (H) hold. Then A is differentiable at ∞ along P and
A′
+(∞)h =Gh, h ∈ P, where

Gh =
∫ 


G(t, s)φ(s)h(s)ds, h ∈ P.

Proof From (H), it follows that, for arbitrary ε > , there exists R >  such that
∣∣∣∣ f (t,x)x

– φ(t)
∣∣∣∣ < ε, t ∈ [, ],

when x > R, and so

∣∣f (t,x) – φ(t)x
∣∣ < εx, t ∈ [, ],

when x > R.
LetM = sup(t,x)∈[,]×[,R] |f (t,x) – φ(t)x|. Then

∣∣f (t,x) – φ(t)x
∣∣ <M + εx, t ∈ [, ]

holds for any x ∈R+.
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Chai and Hu Advances in Difference Equations 2014, 2014:90 Page 12 of 17
http://www.advancesindifferenceequations.com/content/2014/1/90

Now, for any h ∈ P, by the above inequality, we have

∣∣(Ah)(t) – (Gh)(t)
∣∣ ≤

∫ 


G(t, s)

∣∣f (s,h(s)) – φ(s)h(s)
∣∣ds

≤ (
M + ε‖h‖) ∫ 


G(t, s)ds

≤ (
M + ε‖h‖)L, t ∈ [, ],

where L =maxt∈[,]
∫ 
 G(t, s)ds. Thus

‖Ah–Gh‖
‖h‖ ≤ ML

‖h‖ +Lε. So, ‖Ah–Gh‖
‖h‖ < Lε when ‖h‖ > M

ε
,

that is, A′
+(∞)h =Gh. The proof is complete. �

Lemma . Let (H), (H), and (H) hold. Then A′
+(∞) has no positive eigenvectors corre-

sponding to an eigenvalue greater than or equal to one.

Proof The proof is similar to the proof of Lemma .. In fact, if not, then there exist a
λ ≥  and h ∈ P\{θ} such that λh = A′

+(∞)h, and so

h(t) ≤ λh(t) =
(
A′
+(∞)h

)
(t) =

∫ 


G(t, s)φ(s)h(s)ds

≤  + k
�(α)

∫ 



(
 – ( – s)α–

)
φ(s)h(s)ds.

Thus,

(
 – ( – t)α–

)
φ(t)h(t)≤  + k

�(α)
(
 – ( – t)α–

)
φ(t)

∫ 



(
 – ( – s)α–

)
φ(s)h(s)ds,

and so

∫ 



(
 – ( – t)α–

)
φ(t)h(t)dt ≤  + k

�(α)

∫ 



(
 – ( – t)α–

)
φ(t)dt

×
∫ 



(
 – ( – s)α–

)
φ(s)h(s)ds.

Because h ∈ P\{θ} and φ(t) �≡ , t ∈ [η, ], φ ∈ C([, ],R+), the relation

∫ 



(
 – ( – t)α–

)
φ(t)h(t)dt > 

holds, and therefore +k
�(α)

∫ 
 ( – ( – t)α–)φ(t)dt ≥ , which contradicts (H). The proof is

complete. �

Let f∞ = limx→∞ infmint∈[η,] f (t,x)
x . We are in a position to state our main result in the

present paper.

Theorem . Let (H)-(H) hold. If f∞ > r–(T), then BVP (.)-(.) has a positive solu-
tion.
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Proof In view of Lemmata .-. and by applying Lemma ., we conclude that there
exist a r >  such that

i(A,�r ,P) = , (.)

where �r = P ∩ Br , Br = {x ∈ E : ‖u‖ < r} and P is defined as before.
By Lemma . and Lemma ., we know that there exists a φ ∈ C[η, ] with φ(t) ≥ ,

φ(t) �≡ , t ∈ [η, ] satisfying

r–(T)
∫ 

η

G(t, s)φ(s)ds = φ(t), t ∈ [η, ].

So, from Lemma ., it follows that

φ(t)≥ ωr–(T)
∫ 

η

G(τ , s)φ(s)ds = ωφ(τ ), t, τ ∈ [η, ].

Thus, φ(t)≥ ω‖φ‖, t ∈ [η, ], that is, φ ∈ P.
Let

φ(t) =

{
φ(η), t ∈ [,η],
φ(t), t ∈ [η, ].

It is easy to see that φ ∈ P.
On the other hand, by f∞ > r–(T), there exists a R >  such that

f (t,x) > r–(T)x, t ∈ [η, ]

when x ≥ R. Take R ≥max{ω–
 R, r}. Set�R = {u ∈ P : ‖u‖ < R}. Then for any u ∈ ∂�R ,

the inequality u(t) ≥ ω‖u‖ = ωR ≥ R, t ∈ [η, ] implies

f
(
t,u(t)

)
> r–(T)u(t), t ∈ [η, ]. (.)

We show that the following relation holds:

u(t) – (Au)(t) �= λφ(t), ∀λ ≥ ,∀u ∈ ∂�R , t ∈ [, ]. (.)

In fact, if not, then there exist a u ∈ ∂�R and a λ ≥  such that

u(t) = (Au)(t) + λφ(t), t ∈ [, ]. (.)

Obviously, we can assume that λ > . From (.), it follows that

u(t) ≥ λφ(t), t ∈ [, ]

because AP ⊂ P.

http://www.advancesindifferenceequations.com/content/2014/1/90
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Let λ∗ = sup{λ|u(t) ≥ λφ(t), t ∈ [η, ]}. Then  < λ∗ < +∞ and

u(t) ≥ λ∗φ(t), t ∈ [η, ]. (.)

Again, from (.), (.), and (.), for t ∈ [η, ], we have

u(t) = (Au)(t) + λφ(t)

=
∫ 


G(t, s)f

(
s,u(s)

)
ds + λφ(t)

≥
∫ 

η

G(t, s)f
(
s,u(s)

)
ds + λφ(t)

> r–(T)
∫ 

η

G(t, s)u(s)ds + λφ(t)

≥ r–(T)λ∗
∫ 

η

G(t, s)φ(s)ds + λφ(t)

= r–(T)λ∗(Tφ)(t) + λφ(t)

=
(
λ∗ + λ

)
φ(t), t ∈ [η, ],

which contradicts the definition of λ∗. Hence, the relation (.) holds. So, in terms of the
fixed point index theorem on a cone, we have

i(A,�R ,P) = . (.)

Thus, (.) and (.) imply that

i(A,�R\�r ,P) = –.

So, A has a fixed point ū ∈ �R\�r , that is, ū is a positive solution of BVP (.)-(.). The
proof is complete. �

Let μ = �(α)
ω

k–
k η–α(–η)–, where ω is given as in Lemma ..We state another result

in this paper.

Theorem . Let (H), (H), and (H) hold. Assume that there exists r such that

f (t,x)≥ μx, x ∈ [, r], t ∈ [, ]. (.)

Then BVP (.)-(.) has a positive solution.

Proof We show that

‖Au‖ ≥ ‖u‖, ∀u ∈ �r , (.)

where �r = {u ∈ P : ‖u‖ < r}.

http://www.advancesindifferenceequations.com/content/2014/1/90
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In fact, for any u ∈ ∂�r , from (.) we have

f
(
t,u(t)

) ≥ μu(t), t ∈ [, ]

owing to

 ≤ u(t) ≤ r, t ∈ [, ].

Thus, by Lemma .,

‖Au‖ ≥ (Au)(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds

≥ μ

∫ 


G(t, s)u(s)ds

≥ μω‖u‖
∫ 


G(τ , s)ds

≥ μω‖u‖
∫ 

η

G(τ , s)ds, τ ∈ [, ], t ∈ [η, ].

So,

‖Au‖ ≥ μω‖u‖
∫ 

η

G(η, s)ds = ‖u‖,

because

ω

∫ 

η

G(η, s)ds =
ω

�(α)
k

k – 
ηα–( – η) = μ–

 .

Therefore, the relation (.) holds. Consequently, applying the fixed point index theorem,
we get

i(A,�r ,P) = . (.)

On the other hand, by Lemma ., Lemma ., Lemma ., and Lemma ., we know
that there exists R > r such that

i(A,�R ,P) = . (.)

So, by (.) and (.), we have

i(A,�R\�r ,P) = –.

Therefore, A has a fixed point ū ∈ �R\�r , that is, ū is a positive solution of BVP (.)-
(.). The proof is complete. �
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Example . Consider the following boundary value problem:

⎧⎨
⎩D



+u(t) = ln( + t) sin u(t) + t u(t)eu(t)

+u(t) , t ∈ (, ),

u() = u′() = , D


+u(


 ) = D



+u().

(.)

To obtain the existence result, we will apply Theorem . with α = 
 , n = , η = 

 , k = 
and function f (t,x) = ln( + t) sin x + txex

+x , t ∈ [, ], x ∈ [, +∞). Clearly, the function
f (t,x) satisfies f ∈ C([, ] × R+,R+), f (t, ) = , fx(t,x) = ln( + t) sinx + t ex(+x–x+x)

(+x)

and fx(t, ) = t > , t ∈ [  , ]. Further,
∫ 
 ( – ( – s)  )fx(s, )ds = 

 <
(–

√
)


√

π = �(α)
+k

and f∞ = +∞. So, all the assumptions of Theorem . are satisfied and therefore BVP (.)
has at least one positive solution.

Example . Consider the following boundary value problem:

⎧⎨
⎩D



+u(t) =


e

t( + u(t)) + ln( + t)| cosu(t)|, t ∈ (, ),

u() = u′() = , D


+u(


 ) = D



+u().

(.)

To obtain the existence result, we will apply Theorem . with α = 
 , n = , η = 

 , k =
 and function f (t,x) = 

e
t( + x) + ln( + t)| cosx|, t ∈ [, ], x ∈ [, +∞). Clearly, the

function f (t,x) satisfies f ∈ C([, ]×R+,R+), limx→+∞ f (t,x)
x

.= φ(t) = 
e

t holds uniformly
on [, ] with respect to t. Further,

∫ 
 ( – ( – s)  )φ(s)ds < 

 < (–
√
)


√

π = �(α)
+k

. On the
other hand, it is easy to see that exists a r ∈ (, π

 ) such that f (t,x) ≥ μx, x ∈ [, r], t ∈
[, ] noting that f (t,x) > (ln) cosx, x ∈ [, π

 ], t ∈ [, ] and ((ln) cosx – μx)|x= = ln,
((ln) cosx – μx)′ < , x ∈ [, π

 ], t ∈ [, ]. So, all the assumptions of Theorem . are
satisfied and therefore BVP (.) has at least one positive solution.
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