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Abstract
In this paper, we investigate the asymptotical behavior for a partial sum sequence of
independent random variables, and we derive a law of the iterated logarithm type. It
is worth to point out that the partial sum sequence needs not to be an independent
increment process. As an application of the theory established, we also give a
sufficient criterion on the almost sure oscillation of solutions for a class of
second-order stochastic difference equation of neutral type.
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1 Introduction
To date, the asymptotic behavior of the solutions to deterministic difference equations has
been discussed in many papers. Among them there are many papers about the oscillation
of the solutions to deterministic difference equations. In a related field, the asymptotic
behavior of the solutions to stochastic difference equation was discussed in many papers,
and there have been also very fruitful achievements. However, there is little known about
the oscillation of the solutions of stochastic difference equations. Recently Appleby and
Rodkina [] and Appleby et al. [] first investigated the oscillation of the solutions of first-
order nonlinear stochastic difference equations. In [], the authors considered the follow-
ing equation:

X(n + ) = X(n) – f
(
X(n)

)
+ σ (n)ξ (n + ), n = , , . . . . (.)

The solution of (.) can be expressed as

X(n,ω) = X –
n–∑
i=

f
(
X(i,ω)

)
+

n–∑
i=

σ (i)ξ (i + ,ω), (.)

where (ξ (n))n≥ is a sequence of independent and identically distributed randomvariables.
Note that the sequence S∗

n =:
∑n

i= σ (i)ξ (i+ ) (n = , , . . .) has the independent increment
property, and as a result the authors can analyze the limit behavior of system (.) by the
law of the iterated logarithm and they obtain a beautiful result, i.e., the solution of (.) is
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an almost sure oscillation under some sufficient conditions. Motivated by [], in this pa-
per we investigate the oscillation of the solution for the following second-order nonlinear
stochastic difference equation:

�
(
r(k)�X(k)

)
+ f (k)F

(
X(k)

)
= ξ (k + ), k = , , . . . . (.)

Here �X(k) = X(k + ) – X(k) is the forward difference operator. This equation can be
viewed as a stochastic analog of the following classical deterministic difference equations:

�
(
r(k)�X(k)

)
+ f (k)F

(
X(k)

)
=  (.)

or

�
(
r(k)�X(k)

)
+ f (k)F

(
X(k)

)
= g(k). (.)

The solution of (.) can be expressed as

X(n + ) = X() +
n∑
k=

V (k)
r(k)

+
n∑
k=

{ n∑
i=k


r(i)

}
ξ (k + ), (.)

where V (k) is determined by �V (k) = –f (k)F(X(k)) and V () = r()(X() – X()). The
proof of (.) is to be given in Section . Denoting Sn =

∑n
k={

∑n
i=k


r(i) }ξ (k + ) for any n ∈

N, it implies Sn – Sn– = 
r(n)

∑n
i= ξ (i+ ). It is obvious that Sn – Sn– is not independent of

Sn– even though (ξ (k)) is a sequence of independent random variables. That is to say that
(Sn)n≥ does not have the independent increment property, which means that we do not
directly adopt law of the iterated logarithm to Sn to obtain their limit behavior. However,
under some restrictions we can use a roundabout way to analyze the limit behavior on
(Sn)n≥ by the law of the iterated logarithm, then we give some sufficient conditions on
the almost sure oscillation for (.). These results and proofs are deferred to the following
sections.

2 Definitions and assumptions
Throughout this paper, the following notation, definitions, and assumptions are needed.
N and R denote, respectively, the positive integer numbers and real numbers. Let Na =
{a,a+, . . .} for every a ∈N∪{}. (�,F ,P) denotes a complete probability space. {ξ (n)}n∈N

is a random variable sequence defined on (�,F ,P). We suppose that filtration (Fn)n∈N is
naturally generated, namely that Fn = σ {ξ (), ξ (), . . . , ξ (n)}. We use the standard abbre-
viations ‘a.s.’ and ‘i.i.d.’ instead of ‘almost surely’ and ‘independent identically distribution’,
respectively. For simplicity, we denote log · =: log log · throughout this paper.
For (.), the following elementary assumptions are needed.
(A.) r(n) >  for every n ∈N,
(A.) f (n) ≥  for every n ∈N,
(A.) F is assumed to be Borel measurable and to obey uF(u) >  for u �= , and

F() = ,
(A.) {ξ (n)}n∈N is assumed to be independent identically distributed random variable

sequence defined on (�,F ,P), and, moreover, Eξ (n) = , Eξ (n) = .

http://www.advancesindifferenceequations.com/content/2014/1/91
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Definition . {X(n)}n∈N is called a solution of (.) with initial values X(), X().
{X(n)}n∈N is constituted by X(n,ω) and X(), X(), where X(n,ω) is obtained by n – 
steps of iteration of (.) with initial values X(), X().

Definition . The solution {X(n)}n∈N of (.) is said to be a.s. oscillatory if

P
{
X(n) <  i.o.

}
= , P

{
X(n) >  i.o.

}
= ,

where ‘i.o.’ stands for infinitely often.

Definition . Equation (.) is said to be a.s. oscillatory if its any solution is a.s. oscilla-
tion.

3 Law of the iterated logarithm
The classical Kolmogorov law of the iterated logarithm is an effective tool in studying the
limit behavior of partial sum of independent random variable sequence (see []). In ,
Chow and Teicher [] generalized the classical results and obtained the following law of
the iterated logarithm for weighted averages.

Theorem . (Iterated logarithm laws of weighted averages) If {Xn,n ≥ } are i.i.d. ran-
dom variables with EXn = , EX

n =  and {an,n≥ } are real constants satisfying
(i) an/

∑n
 aj ≤ C/n, n≥ ,

(ii)
∑n

 aj → ∞
for some C in (,∞), then

P

{
lim
n→∞

∑n
j= ajXj

(
∑n

 aj log
∑n

 aj )/
= 

}
= 

and

P

{
lim
n→∞

∑n
j= ajXj

(
∑n

 aj log
∑n

 aj )/
= –

}
= .

On the above results, notice that
∑n

 ajXj–
∑n–

 ajXj = anXn is independent of
∑n–

 ajXj.
Now we establish a new result about law of iterated logarithm type. Suppose that

r : N → R satisfies r(n) >  for every n ∈ N, and {ξ (n)}n∈N is an i.i.d. random variable
sequence defined on (�,F ,P) with Eξ (n) = , Eξ (n) = . For n ∈N, set

an =
n∑
j=


r(j)

,

Sn =
n∑
k=

{ n∑
j=k


r(j)

}
ξ (k + ),

Sn() = an
n∑
j=

ξ (j + ),

Sn() =
n∑
j=

ajξ (j + ).

(.)
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Here we appoint
∑k

j=k (·) =  if k < k. It is obvious that Sn – Sn– is not independent of
Sn–, but we have

Sn =
n∑
k=

{ n∑
j=k


r(j)

}
ξ (k + )

=
n∑
k=

(an – ak–)ξ (k + )

=
n∑
k=

anξ (k + ) –
n∑

k=

ak–ξ (k + )

= an
n∑
k=

ξ (k + ) –
n–∑
k=

akξ (k + )

= Sn() – Sn–(). (.)

Note that {an} is amonotony increasing sequence, hencewe give the following hypothesis:
(C.) There exist constants α ≥  and d >  such that limn→∞ an/nα = d.

Lemma . If (C.) holds, then

lim
n→∞

nan∑n
j=aj

=  + α, (.)

lim
n→∞

log
∑n

 aj
log n

= , (.)

lim
n→∞

∑n
 aj log

∑n
 aj∑n–

 aj log
∑n–

 aj
= . (.)

Proof Set On = an
nα – d, for every n≥ , we have

an = (On + d)nα . (.)

In view of (C.), for any fixed positive integer number m, there exists N >  such that
|On| ≤ d

m for every n >N . As n is sufficiently large, we have

N∑
j=

aj +
(
m – 
m

)

d
n∑

j=N+

jα ≤
n∑
j=

aj ≤
N∑
j=

aj +
(
m + 
m

)

d
n∑

j=N+

jα . (.)

It is clear that

n∑
j=

jα/nα+ → 
α + 

, n→ ∞.

Hence
∑n

j=N+ jα

nα+
→ 

α + 
, n→ ∞. (.)

http://www.advancesindifferenceequations.com/content/2014/1/91
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In view of (.) and (.), as n is sufficiently large, we get

nα+(On + d)∑N
j= aj + (m+

m )d ∑n
j=N+ jα

≤ nan∑n
j= aj

≤ nα+(On + d)∑N
j= aj + (m–

m )d ∑n
j=N+ jα

. (.)

Letting n → ∞ in the above formula (.), and combining (.) and (C.), we have

α + 
(m+

m )
≤ lim

n→∞
nan∑n
j=aj

≤ lim
n→∞

nan∑n
j= aj

≤ α + 
(m–

m )
. (.)

Setting m→ ∞ in the above inequalities, we obtain (.).

Let A = ( + α)–, Pn =
∑n

j= a

j

nan
–A, n ∈N. According to (.), we have Pn →  (n→ ∞)

and
∑n

j= aj = (A + Pn)nan for every n ∈N. Therefore

log
∑n

j= aj
log n

=
log(A + Pn)nan

log n

=
log(logn + logan + log(A + Pn))

log n

=
log{( + α + log(d+On)+log(A+Pn)

logn ) logn}
log n

=
log n + log( + α + log(d+On)+log(A+Pn)

logn )
log n

=  +
log( + α + log(d+On)+log(A+Pn)

logn )
log n

.

Taking the limit on both sides of the above equation, result (.) follows.
Equation (.) can be proved similarly. �

Lemma . (Law of the iterated logarithm on Sn defined by (.)) If (C.) holds, then

P

{
( + α)/ –  ≤ lim

n→∞
Sn

(
∑n

 aj log
∑n

 aj )/
≤ ( + α)/ + 

}
=  (.)

and

P

{
–( + α)/ –  ≤ lim

n→∞
Sn

(
∑n

 aj log
∑n

 aj )/
≤ –( + α)/ + 

}
= . (.)

Here α is described as (C.).

Proof According to (.), it is clear that ξ (), . . . , ξ (j + ), . . . is an i.i.d. random variable
sequence and,moreover,Eξ (j+) = ,Eξ (j+) = . Setting an = ,Xn = ξ (n+) for any n ∈
N, it is obvious that

∑n
j= ξ (j+) =

∑n
j= ajXj, which satisfies the conditions of Theorem..

In Sn(), letting Xj = ξ (j + ), ∀j ∈ N, it is clear that
∑n

j= aj → ∞ (n → ∞) by (C.). By

(.), it is found that there is c >  such that an∑n
j= a


j

≤ c
n . It is also known that Sn() =

http://www.advancesindifferenceequations.com/content/2014/1/91
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∑n
j= ajξ (j + ) =

∑n
j= ajXj which satisfies the conditions of Theorem .. Hence

P

{
lim
n→∞

∑n
j= ξ (j + )

(n log n)/
= 

}
= , (.)

P

{
lim
n→∞

∑n
j= ξ (j + )

(n log n)/
= –

}
= , (.)

P

{
lim
n→∞

Sn()
(

∑n
 aj log

∑n
 aj )/

= 
}
= , (.)

P

{
lim
n→∞

Sn()
(

∑n
 aj log

∑n
 aj )/

= –
}
= . (.)

So there is � ⊂ � with P(�c
) =  such that all equalities of {·} of the left side of (.)-

(.) hold on �. Therefore by (.), for ω ∈ � there exists {nk(ω)} ⊂ {n} such that

lim
k→∞

∑nk (ω)
j= ξ (j + ,ω)

(nk(ω) log nk(ω))/
= . (.)

By (.) and (.), it is clear that

{
Snk (ω)–()(ω)

(
∑nk (ω)–

 aj log
∑nk (ω)–

 aj )/

}

is a bounded sequence. Therefore there is a {nkl (ω)} ⊂ {nk(ω)} and β ∈ [–, ] such that

lim
l→∞

Snkl–()(ω)

(
∑nkl–

 aj log
∑nkl–

 aj )/
= β . (.)

By (.)-(.) and (.)-(.), we get

lim
l→∞

Snkl (ω)

(
∑nkl

 aj log
∑nkl

 aj )/

= lim
l→∞

{ ankl
∑nkl

 ξ (j + )

(
∑nkl

 aj log
∑nkl

 aj )/
–

∑nkl–
 ajξ (j + )

(
∑nkl

 aj log
∑nkl

 aj )/

}

= lim
l→∞

{
( + α)/

∑nkl
 ξ (j + )

(nkl log nkl )/
–

∑nkl–
 ajξ (j + )

(
∑nkl–

 aj log
∑nkl–

 aj )/

}

= ( + α)/ – β .

Hence (.) holds.
Equation (.) can be proved similarly. �

To proceed the study, we give another assumption:
(C.) There exist α,d ∈ (,∞) such that limn→∞ an/nα = d.

Note that α �=  in (C.). It is obvious that the conclusions of Lemma . and Lemma .
are also right when (C.) replaces (C.).

http://www.advancesindifferenceequations.com/content/2014/1/91
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4 Themain results
In this section, we give the main results on the oscillation of the solution of (.).
Let {X(k)}k∈N be an any solution of (.) with arbitrary initial values X(),X() ∈R. Set

V () = r()
(
X() –X()

)
,

�V (k) = –f (k)F
(
X(k)

)
, ∀k ∈ N

and

D(k) =
k∑
j=

ξ (j + ), ∀k ∈N.

By (.), one obtains

�
(
r(k)�X(k)

)
=�V (k) +�D(k – ) =�

(
V (k) +D(k – )

)
, ∀k ∈N.

Hence

r(k)�X(k) = V (k) +D(k – ) + c.

Let k =  in the above equation, and one has

c = r()
(
X() –X()

)
–V () = .

Therefore

�X(k) =
V (k)
r(k)

+


r(k)
D(k – ).

So for any n ∈ N, one has

X(n + ) –

{
X() +

n∑
k=

V (k)
r(k)

}
=

n∑
k=


r(k)

D(k – )

=
n∑
k=


r(k)

k–∑
j=

ξ (j + )

=
n∑
k=

{ n∑
j=k


r(j)

}
ξ (k + )

= Sn. (.)

Theorem. Suppose that (.) satisfies, respectively, (A.)-(A.), then (.) is an almost
sure oscillation under condition (C.).

Proof Suppose that the result is not right, then (.) must have a solution, denoted as
{X(n)}n∈N , and it is not an almost sure oscillation. That is to say at least one is not true
between P{X(n) <  i.o.} =  and P{X(n) >  i.o.} = .

http://www.advancesindifferenceequations.com/content/2014/1/91
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. Firstly, we assume that P{X(n) <  i.o.} <  holds. For this case, it implies that there is
� ⊂ � with P(�) >  such that the following equation holds:

X(n,ω) ≥ , ∀ω ∈ � (.)

as n≥N(ω). Here N(ω) ∈N. By virtue of (.) of Lemma ., we have

lim
n→∞

an∑n
j=aj

= .

By Lemma ., we obtain

lim
n→∞

Sn(ω)
(
∑n

 aj )/
= ∞, a.s., lim

n→∞
Sn(ω)

(
∑n

 aj )/
= –∞, a.s.

Therefore there exists � ∈ � with P(�c
) =  such that for any ω ∈ �

lim
n→∞

Sn(ω)
an

=∞, lim
n→∞

Sn(ω)
an

= –∞. (.)

Setting � = � ∩ �, it is obvious that P(�) >  and (.) and (.) are also true for any
ω ∈ �. For any k ∈N, we have

V (k) = V () –
k–∑
j=

f (j)F
(
X(j,ω)

)
.

So for any ω ∈ �, we have

X(n + ,ω) = Sn(ω) +X() +
n∑
k=

V (k)
r(k)

= Sn(ω) +X() +
N(ω)∑
k=

V (k)
r(k)

+
n∑

k=N(ω)+

V () –
∑k–

j= f (j)F(X(j,ω))
r(k)

= Sn(ω) +X() +
N(ω)∑


V (k)
r(k)

+V ()
n∑

k=N(ω)+


r(k)

–
n∑

k=N(ω)+

∑N(ω)–
j= f (j)F(X(j,ω)) +

∑k–
j=N(ω) f (j)F(X(j,ω))

r(k)

as n >N(ω). Hence

X(n + ,ω) +
n∑

k=N(ω)+

∑k–
j=N(ω) f (j)F(X(j,ω))

r(k)

= Sn(ω) +X() +
N(ω)∑


V (k)
r(k)

+V ()(an – aN(ω)) –
n∑

k=N(ω)+

∑N(ω)–
j= f (j)F(X(j,ω))

r(k)

http://www.advancesindifferenceequations.com/content/2014/1/91
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= Sn(ω) +X() +
N(ω)∑


V (k)
r(k)

+

(
V () –

N(ω)–∑
j=

f (j)F
(
X(j,ω)

)) · (an – aN(ω))

= an

{
Sn(ω)
an

+
X() +

∑N(ω)


V (k)
r(k)

an

+

(
V () –

N(ω)–∑
j=

f (j)F
(
X(j,ω)

)) ·
(
 –

aN(ω)

an

)}
. (.)

Therefore the left-hand side of (.) is nonnegative.
On the right-hand side of (.), we have

X() +
∑N(ω)


V (k)
r(k)

an
→ ,

aN(ω)

an
→  (n→ ∞)

due to an → ∞ (n → ∞). Therefore we find that it is an oscillation by (.). This is a
contradiction.
. Secondly, we assume that P{X(n) >  i.o.} <  holds. We may get a contradiction for

case  similar to case . Thus we finish the proof of Theorem .. �

Remark  If the condition (C.) replaces the condition (C.) of Theorem . and the other
conditions are not changed, then the conclusions of Theorem . cannot be guaranteed
to be right as α = .

The example is as follows.

Example  Take r(k) = k , f (k) = , k ∈ N,

F(u) =

⎧⎪⎨
⎪⎩
 if u > ,
 if u = ,
– if u < 

(.)

in (.), then (.) becomes the following special equation:

�
(
k�X(k)

)
+ F

(
X(k)

)
= ξ (k + ), k ∈N, (.)

here {ξ (k + )}k∈N is assumed to satisfy (A.) and be locally bounded, i.e., there is h > 
and �′ ⊂ � with P(�′ > ) such that |ξ (n,ω)| ≤ h, ∀ω ∈ �′, n ∈N.
It is clear that r, f satisfy, respectively, (A.) and (A.), and F satisfies (A.), and∑n
j=


r(j) →  (n→ ∞), i.e., an =:

∑n
j=


r(j) satisfies (C.) but it does not satisfy (C.).

Nowwe illustrate that (.) is not an a.s. oscillation. Let {X(n)}n∈N be a solution of (.)
with initial values X(), X(), then we have

X(n + ,ω) = X() +
n∑
k=

V (k,ω)
k

+
n∑
k=

( n∑
i=k


i

)
ξ (k + ,ω)

= X() +
n∑
k=

V (k,ω)
k

+
n∑
k=

ξ (k + ,ω)
k–

–

n

n∑
k=

ξ (k + ,ω) (.)

http://www.advancesindifferenceequations.com/content/2014/1/91
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for every ω ∈ �. Here V (k) is determined by �V (k) = –F(X(k)), k ∈ N and V () = X() –
X().
About the terms of (.), the following assertions are right.
(i) 

n
∑n

k= ξ (k + )→ , a.s. (n→ ∞).
(ii) There is finite value measurable function h(ω) defined on (�,F ,P) such that∑n

k=
ξ (k+)
k– → h(ω), a.s. (n→ ∞).

(iii) V () –  ≤ ∑∞
k=

V (k)
k ≤ V () + .

Proof of the assertions
(i) Setting an = , X(n) = ξ (n + ), ∀n ∈ N, because {ξ (k)} is an i.i.d. random variable

sequence and, moreover, Eξ (k) = , Eξ (k) = , then the {Xk}k≥ have the same properties.
It is obvious that

an∑n
 aj

=

n
,

n∑


aj = n→ ∞.

By Theorem ., we have

lim
n→∞

∑n
 ξ (k + )

(n log n)/
= lim

n→∞

∑n
 akXk

(
∑n

 ak log
∑n

 ak)/
= , a.s.,

lim
n→∞

∑n
 ξ (k + )

(n log n)/
= –, a.s.

So we have

∑n
 ξ (k + )
n

=
(n log n)/

n
·

∑n
 ξ (k + )

(n log n)/
→  (n→ ∞).

(ii) Setting η(k) = ξ (k+)
k– , ∀k ∈N, we obviously have Eη(k) = , Var(η(k)) = 

k– , ∀k ∈N.
Therefore

∑∞
k=Var(η(k)) <∞. It is obvious that {η(k)} is an independent random variable

sequence, then the conclusion holds by [, Lemma , p.] or [, §., p.].
(iii) By (.) and �V (k) = –F(X(k)), we have

V () – k +  ≤ V (k) ≤ V () + k – , ∀k ∈N.

Hence

(
V () + 

) n∑
k=


k

–
n∑
k=

k
k

≤
n∑
k=

V (k)
k

≤ (
V () – 

) n∑
k=


k

+
n∑
k=

k
k

, ∀n ∈N. (.)

It is obvious that
∑∞

k=

k = ,

∑∞
k=

k
k = . So we get

V () – ≤
∞∑
k=

V (k)
k

≤ V () + .

http://www.advancesindifferenceequations.com/content/2014/1/91
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By (.) and the above assertions (i)-(iii), we obtain

lim
n→∞X(n + ,ω) = X() +

∞∑
k=

V (k)
k

+ h(ω)

≥ X() +V () –  + h(ω)

= X() +
(
X() –X() – F

(
X()

))
–  + h(ω)

≥ X() –X() –  + h(ω) (.)

for every ω ∈ �. Here h(ω) and (X(),X()) are mutually independent.
We chooseX(),X() satisfying X() > X()++h. Due to |ξ (n,ω)| ≤ h for anyω ∈ �′,

n ∈N and

n∑
k=

ξ (k + ,ω)
k–

→ h(ω), a.s.

as n→ ∞, one obtains

∣∣h(ω)∣∣ =
∣∣∣∣∣

∞∑
k=

ξ (k + ,ω)
k–

∣∣∣∣∣ ≤ h
∞∑
k=


k–

= h.

Thus limn→∞ X(n+) >  on�′ by (.). Therefore {X(n)} is not an almost sure oscillation,
and consequently, (.) is not almost surely oscillatory by Definition .. �
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