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Abstract
In this paper, we study the existence and stability of positive periodic solutions for an
n-species Lotka-Volterra system with deviating arguments,
x′
i (t) = xi(t)(biri(t) – aii(t)xi(t – τii(t)) –

∑n
j=1,j �=i kijaij(t)xj(t – τij(t))), i = 1, 2, . . . ,n, referred to

as (E). By using Mawhin’s coincidence degree, matrix spectral theory, and some new
estimation techniques for the prior bounds of unknown solutions to the equation
Lx = λNx, some new and interesting sufficient conditions are obtained guaranteeing
the existence and global stability of positive periodic solutions of the above system.
The model studied in this paper is more general, and it includes some known
Lotka-Volterra type systems, such as competitive systems, predator-prey systems, and
competitor-mutualist systems. Our new results are different from the known results in
the previous literature.
MSC: 34K13; 37B25
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1 Introduction
In recent years, various delay differential equation models have been proposed in the
study of population ecology and infectious diseases. One of themost famousmodels is the
Lotka-Volterra system. Because of its theoretical and practical significance, Lotka-Volterra
systems have been extensively and intensively studied for the past few years (see, e.g., [–
]). In particular, Xia and Han [] investigated the existence and stability of the following
periodic n-species Lotka-Volterra competitive system:

y′
i(t) = yi(t)

(
bi(t) –

n∑
j=

aij(t)yj(t)

)
, i = , , . . . ,n, (.)

where bi,aij ∈ C(R, [,∞)) are w-periodic functions (ω > ) with aii > . They obtain one
results as follows.

Theorem . Assume that the following conditions hold:

(A) m(bi) >
∑n

j=,j �=i m(aij)
m(bj)
m(ajj)

, i = , , . . . ,n;
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(A) ρ(K ) < , where K = (�ij)n×n and

�ij =

{
, i = j,
āija–jj , i �= j.

Then system (.) has at least one positive ω-periodic solution.

In the proof of Theorem ., the author did not consider the deviating arguments in
every terms aij(t)xj(t), i, j = , , . . . ,n. Thus, Theorem . cannot be applied to system (E)
when τij(t) �= .
Recently, by using the method of Krasnoselskii’s fixed point theorem, Tang and Zou

[] investigated the existence of positive periodic solutions of the following system with
deviating arguments:

x′
i(t) = xi(t)

(
ri(t) –

n∑
j=

aij(t)xj
(
t – τij(t)

))
, i = , , . . . ,n. (.)

By the same method of [], Lv et al. [] investigated the existence and global attractiv-
ity of positive periodic solutions of -species Lotka-Volterra predator-prey systems with
deviating arguments as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
(t) = x(t)(r(t) – a(t)x(t – τ(t))

– a(t)x(t – τ(t)) – a(t)x(t – τ(t))),
x′
(t) = x(t)(–r(t) + a(t)x(t – τ(t))

– a(t)x(t – τ(t)) – a(t)x(t – τ(t))),
x′
(t) = x(t)(–r(t) + a(t)x(t – τ(t))

– a(t)x(t – τ(t)) – a(t)x(t – τ(t))).

(.)

Compared to system (.), the front sign of coefficients of system (.) could change.
In this paper, motivating by some ideas in [], we generalize system (.) to a model with

n-species,

x′
i(t) = xi(t)

(
biri(t) – aii(t)xi

(
t – τii(t)

)
–

n∑
j=,j �=i

kijaij(t)xj
(
t – τij(t)

))
,

i = , , . . . ,n, (.)

where ri,aij ∈ C(R, [,∞)) and τij ∈ C(R,R) arew-periodic functions (ω > ), bi =  or –,
kij =  or –, with

m(ri) =

w

∫ w


ri(s)ds > , m(aij) =


w

∫ w


aij(s)ds≥ ,

τ ′
ij < , i, j = , , . . . ,n.

For the biological point of view, it is always assumed that aii is strictly positive.
It is not difficult to see that all the above mentioned models are special cases of this

model. Thus, it is worth investigating the existence and stability of positive periodic solu-
tions of system (.). To the best of our knowledge, very few authors have been concerned
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with employing matrix spectral theory to obtain the prior bounds for biological systems
so far. In this paper, by combing matrix spectral theory with Mawhin’s coincidence de-
gree theory, we manage to obtain a set of new and interesting conditions, which are very
different from the known results in the literature.
The structure of this paper is as follows. In Section , some new and interesting sufficient

conditions for the existence of positive periodic solutions of system (.) are obtained. In
Section , we will explore the stability of positive periodic solution of system (.). Finally,
an example is given to show that the results of this paper are easily applicable.

2 Existence of positive periodic solutions
In this section,we shall obtain somenew sufficient conditions for the existence of a positive
periodic solution of system (.).
For convenience, we introduce some notations, definitions, and lemmas. Let ω >  be a

constant, denote Cω = {x|x ∈ C(R,Rn),x(t +ω) = x(t)}, with the norm

‖x‖ = max
t∈[,ω]

( n∑
i=

∣∣xi(t)∣∣
) 



and |xi| =maxt∈[,ω] |xi(t)|, ∀x ∈ Cω . If f (t) is a continuous ω-periodic function defined on
R, denote

f = min
t∈[,ω]

∣∣f (t)∣∣, f̄ = max
t∈[,ω]

∣∣f (t)∣∣, m(f ) =

w

∫ w


f (t)dt.

For the matrix G = (gij)n×n, GT denotes the transpose of G, and En denotes the iden-
tity matrix of size n. diag(·) represents a diagonal matrix with specified diagonal entries.
Amatrix or vectorA ≥ means that all entries ofA are greater than or equal to zero.A > 
can be defined similarly. For matrices or vectors A and B, A ≥ B (resp., A > B) means that
A – B ≥  (resp., A – B > ). We denote the spectral radius of the matrix A by ρ(A).

Lemma . ([]) If τ ∈ Cω satisfies τ ∈ C(R,R) and τ ′(t) < , ∀t ∈ [,w], then the function
t – τ (t) has a unique inverse function satisfying σ ∈ C(R,R) and σ (t +ω) = σ (t), ∀t ∈R.

Remark . If g ∈ Cω , τ ∈ Cω and τ ′(t) < , ∀t ∈ [,w], from Lemma ., we have g(σ (t +
ω)) = g(σ (t) +ω) = g(σ (t)), ∀t ∈R, where σ (t) ∈ C(R,R) is the inverse function of t – τ (t),
thus g(σ (t)) ∈ Cω .

Definition . ([]) A real n × n matrix A = (aij) is said to be an M-matrix if aij ≤ ,
i, j = , , . . . ,n, i �= j, and A– ≥ .

Lemma . ([]) Let A ≥  be an n×nmatrix and let ρ(A) < .Then (En–A)– ≥ ,where
En denotes the identity matrix of size n.

In order to use Mawhin’s continuation theorem, we recall this theorem first.
Let X, Y be real Banach spaces, let L : D(L) ⊂ X → Y be a Fredholm operator with in-

dex zero. Here, D(L) denotes the domain of L. This means that ImL is closed in Y and
dimKerL = dim(Y / ImL) < +∞. Consider the supplementary subspaces X and Y such

http://www.advancesindifferenceequations.com/content/2014/1/93
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that X = KerL ⊕ X, Y = ImL ⊕ Y and let P : X → KerL, Q : Y → Y be the natural pro-
jections. Clearly, KerL ∩ (D(L) ∩ X) = {}, thus the restriction L : L|D(L)∩X is invertible.
Denote the inverse of L by KP .
Now, let � be an open bounded subset of X with D(L) ∩ � �= ∅, a map N : �̄ → Y is

said to be L-compact on �̄, if QN(�̄) is bounded and the operator KP(I –Q)N : �̄ → Y is
compact.

Lemma . (Mawhin []) Suppose that X and Y are two Banach spaces, and that L :
D(L) ⊂ X → Y is a Fredholm operator with index zero. Furthermore, � ∈ X is an open
bounded set, and N : �̄ → Y is L-compact on �̄. Assume of the following conditions to
hold:

(i) Lx �= λNx, ∀x ∈ ∂� ∩D(L), λ ∈ (, );
(ii) QNx �= , ∀x ∈ ∂� ∩KerL;
(iii) deg{JQN ,� ∩KerL, } �= . Here J : ImQ →KerL is an isomorphism. Then the

equation Lx =Nx has at least one solution on �̄ ∩D(L).

Using Lemma ., we denote the inverse function t – τij(t) by σij(t) (i, j = , , . . . ,n) and
let

pij(t) :=
aij(σij(t))

 – τ ′
ij(σij(t))

, i, j = , , . . . ,n. (.)

Theorem . Assume that the following conditions hold:
(H) The algebraic equation system

bim(ri) –m(aii)eyi –
n∑

j=,j �=i
kijm(aij)eyj = , i = , , . . . ,n,

has a unique solution (y∗
 , y∗

, . . . , y∗
n) ∈R

n;
(H) ρ(K ) < , where K = (�ij)n×n and

�ij =

{
, i = j,
p̄ijp–jj , i �= j,

where pij, i, j = , , . . . ,n, is defined by (.);
(H) rip̄–ii –

∑n
j=,j �=i p̄ijp̄–ii p–jj ω–hj > , i = , , . . . ,n, where

H = (h,h, . . . ,hn)T := (En –K )–D, D = (D,D, . . . ,Dn)T = (r̄ω, r̄ω, . . . , r̄nω)T .
Then system (.) has at least one positive ω-periodic solution.

Proof Make the change of variables

xi(t) = eyi(t), i = , , . . . ,n. (.)

Then system (.) can be rewritten as

y′
i(t) = biri(t) – aii(t)eyi(t–τii(t)) –

n∑
j=,j �=i

kijaij(t)eyj(t–τij(t)), i = , , . . . ,n. (.)

http://www.advancesindifferenceequations.com/content/2014/1/93
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Obviously, system (.) has a positive ω-periodic solution if and only if system (.) has a
ω-periodic solution.
By Lemma ., we set X = Y = Cω , D(L) = {y|y ∈ X, y(t) ∈ C

ω(R,Rn)}, and

L :D(L)∩X → Y , Ly =
dy(t)
dt

,

N : X → Y , [Ny](t) =
(
(Ny)(t), (Ny)(t), . . . , (Ny)n(t)

)T ,
where

(Ny)i(t) = biri(t) – aii(t)eyi(t–τii(t)) –
n∑

j=,j �=i
kijaij(t)eyj(t–τij(t)), i = , , . . . ,n. (.)

Obviously, KerL = Rn, ImL = {y ∈ Y | ∫ w
 y(t)dt = }. So ImL is closed in Cω and

dimKerL = codim ImL = n, then the operator L is a Fredholm operator with index zero.
Let the projectors P : X →KerL and Q : Y → ImQ be defined by

Px =

w

∫ w


x(t)dt, Qy =


w

∫ w


y(t)dt.

Then, P, Q are continuous operators such that KerL = ImP, KerQ = ImL. Furthermore,
the generalized inverse KP : ImL →D(L)∩KerP exists, which is given by

KP(y) =
∫ t


y(s)ds –


w

∫ w



∫ t


y(s)dsdt. (.)

Assume that y(t) is an arbitrary solution of the equation Ly = λNy for each λ ∈ (, ), that
is,

y′
i(t) = λ

(
biri(t) – aii(t)eyi(t–τii(t)) –

n∑
j=,j �=i

kijaij(t)eyj(t–τij(t))

)
, i = , , . . . ,n.

Integrating it on the interval [,ω] gives

∫ w


aii(s)eyi(s–τii(s)) ds =

∫ w


biri(s)ds –

∫ w



n∑
j=,j �=i

kijaij(s)eyj(s–τij(s)) ds, (.)

and by using Lemma ., Remark ., and (.), we see

∫ w


pii(s)eyi(s) ds =

∫ w


biri(s)ds –

∫ w



n∑
j=,j �=i

kijpij(s)eyj(s) ds,

it follows that

p
ii

∫ w


eyi(s) ds≤ r̄iω +

n∑
j=,j �=i

p̄ij
∫ w


eyj(s) ds. (.)

http://www.advancesindifferenceequations.com/content/2014/1/93
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Letting p
ii

∫ w
 eyi(s) ds = zi, it follows from (.) that

zi ≤ r̄iω +
n∑

j=,j �=i
p̄ijp–jj zj

or

zi –
n∑

j=,j �=i
p̄ijp–jj zj ≤ r̄iω, (.)

which implies

⎛
⎜⎜⎜⎜⎝

 –p–

p̄ · · · –p–

nn
p̄n

–p–

p̄  · · · –p–

nn
p̄n

· · · · · · · · · · · ·
–p–


p̄n –p–


p̄n · · · 

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
z
z
· · ·
zn

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎝
r̄ω
r̄ω
· · ·
r̄nω

⎞
⎟⎟⎟⎠ . (.)

It follows from (.) that

(En –K )(z, z, . . . , zn)T ≤D. (.)

In view of ρ(K ) <  and Lemma ., we have (En –K )– ≥ . That is,

H = (h,h, . . . ,hn)T := (En –K )–D≥ . (.)

Then it follows from (.) and (.) that

(z, z, . . . , zn)T ≤H or zi ≤ hi, i = , , . . . ,n, (.)

which implies that there exists a ξi ∈ [,ω], such that eyi(ξi) ≤ hi
piiω

, i = , , . . . ,n, i.e.,

yi(ξi) ≤ ln
hi
p
ii
ω
, i = , , . . . ,n. (.)

By (.), we have

∣∣∣∣
∫ w


pii(s)eyi(s) ds

∣∣∣∣ =
∣∣∣∣∣
∫ w


biri(s)ds –

∫ w



n∑
j=,j �=i

kijpij(s)eyj(s) ds

∣∣∣∣∣,
i.e.,

p̄ii
∫ w


eyi(s) ds≥

∫ w


ri(s)ds –

n∑
j=,j �=i

p̄ij
∫ w


eyj(s) ds

or

p̄ii
∫ w


eyi(s) ds≥ riω –

n∑
j=,j �=i

p̄ijp–jj hj,

http://www.advancesindifferenceequations.com/content/2014/1/93
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which implies there exists a ηi ∈ [,w], such that

eyi(ηi) ≥ rip̄
–
ii –

n∑
j=,j �=i

p̄ijp̄–ii p
–
jj

ω–hj,

and from the condition (H), we have

yi(ηi) ≥ ln

(
rip̄

–
ii –

n∑
j=,j �=i

p̄ijp̄–ii p
–
jj

ω–hj

)
,

using (.) and combining the continuous function intermediate value theorem, there
exists a ζi ∈ [,ω], such that

∣∣yi(ζi)∣∣ ≤max

{∣∣∣∣ln hi
p
ii
ω

∣∣∣∣,
∣∣∣∣∣ln

(
rip̄

–
ii –

n∑
j=,j �=i

p̄ijp̄–ii p
–
jj

ω–hj

)∣∣∣∣∣
}
:=Mi, i = , , . . . ,n,

i.e.,

|yi| ≤Mi +
∫ w



∣∣y′
i(s)

∣∣ds, i = , , . . . ,n. (.)

On the other hand,

∫ w



∣∣y′
i(s)

∣∣ds ≤
∫ w


ri(s)ds +

∫ w



n∑
j=

pij(s)eyj(s) ds

≤ r̄iω +
n∑
j=

p̄ij
∫ w


eyj(s) ds

≤ r̄iω +
n∑
j=

p̄ijp–jj hj

:= Ri.

Combining with (.), we have

|yi| ≤Mi + Ri, i = , , . . . ,n,

furthermore, we have

‖y‖ = max
t∈[,ω]

( n∑
j=

∣∣yi(t)∣∣
) 



≤
( n∑

j=

(Mi + Ri)
) 



:=M.

Clearly,M < +∞ is a constant independent of λ.
If y ∈KerL, then y ∈R

n is a constant vector, thus

QNyi = bim(ri) –m(aii)eyi –
n∑

j=,j �=i
kijm(aij)eyj , i = , , . . . ,n.

http://www.advancesindifferenceequations.com/content/2014/1/93
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If QNy = , then

m(aii)eyi –
n∑

j=,j �=i
kijm(aij)eyj = bim(ri).

It follows from (H) that the algebraic equation has a unique solution y∗ = (y∗
 , y∗

, . . . , y∗
n).

Let G := |y∗| = (
∑n

j=(y∗
i ))


 . Then G < +∞ is a constant.

Set � = {y = (y, y, . . . , yn)T ∈ X,‖y‖ < M + G}. Obviously, conditions (i) and (ii) in
Lemma . are satisfied. Moreover, it is easy to see that

deg{JQN ,� ∩KerL, } = sign
{
(–)n det

[
lijm(aij)

]
e
∑n

j= y
∗
j
} �= ,

where

lij =

{
, i = j,
kij, i �= j.

J is an identity mapping. Therefore, by using Lemma ., we find that system (.) has at
least one ω-periodic solution. By (.), system (.) has at least one positive ω-periodic
solution. This completes the proof of Theorem .. �

3 Global asymptotic stability of positive periodic solutions
Under the assumption of Theorem ., we know that system (.) has at least one posi-
tive ω-periodic solution, denoted by x∗ = (x∗

 ,x∗
, . . . ,x∗

n). In this section, we always assume
the existence of positive periodic solutions and we study the global stability of positive
periodic solutions of (.).
We recall some facts which will be used in the proof.

Definition . Let x∗(t) = (x∗
 (t),x∗

(t), . . . ,x∗
n(t))T be the ω-periodic solution of (.) and

let x(t) = (x(t),x(t), . . . ,xn(t))T be any positive solution of (.); we say that x∗(t) is globally
asymptotically stable if the following conditions hold:

(i) x∗(t) is Lyapunov stable;
(ii) x∗(t) is globally attractive in the sense that limt→+∞[xi(t) – x∗

i (t)] =  for all
i = , , . . . ,n.

Lemma . ([]) Let f be a nonnegative function defined on [, +∞) such that f is inte-
grable on [, +∞) and is uniformly continuous on [, +∞). Then limt→+∞ f (t) = .

Theorem. In addition to the existence of positive periodic solutions, assume that τii(t) ≡
, τ̇ij(t) < , i, j = , , . . . ,n, and that there exist νi > , i = , , . . . ,n, such that

νiaii(t) >
n∑

j=,j �=i

νjaij(σij(t))
 – τ̇ij(σij(t))

, i = , , . . . ,n, (.)

where σij(t) is the inverse function of t–τij(t), i, j = , , . . . ,n.Then system (.) has a unique
positive ω-periodic solution x∗(t) = (x∗

 (t),x∗
(t), . . . ,x∗

n(t))T which is globally asymptotically
stable.

http://www.advancesindifferenceequations.com/content/2014/1/93
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Proof Set

θi = max
t∈[,w]

{


νiaii(t)

n∑
j=,j �=i

νjaij(σij(t))
 – τ̇ij(σij(t))

}
, i = , , . . . ,n.

From (.), we have ≤ θi < , i = , , . . . ,n, and

θiνiaii(t)≥
n∑

j=,j �=i

νjaij(σij(t))
 – τ̇ij(σij(t))

, i = , , . . . ,n. (.)

Let x(t) = (x(t),x(t), . . . ,xn(t))T be any positive solution of system (.). We define a
Lyapunov function V (t) as follows:

V (t) =
n∑
i=

νi

[∣∣∣∣ln
(
xi(t)
x∗
i (t)

)∣∣∣∣ +
n∑

j=,j �=i

∫ t

t–τij(t)

aij(σij(s))
 – τ̇ij(σij(s))

∣∣xj(s) – x∗
j (s)

∣∣ds
]
, t ≥ . (.)

Let zi(t) = |xi(t) – x∗
i (t)|. Calculating the upper right derivative of V (t) at time t, it follows

from (.) and (.) that

D+V (t) ≤
n∑
i=

νi

(
–aii(t)

∣∣xi(t) – x∗
i (t)

∣∣ + n∑
j=,j �=i

aij(σij(t))
 – τ̇ij(σij(t))

∣∣xj(t) – x∗
j (t)

∣∣)

=
n∑
i=

(
–νiaii(t) +

n∑
j=,j �=i

νjaij(σij(t))
 – τ̇ij(σij(t))

)∣∣xi(t) – x∗
i (t)

∣∣

≤ –
n∑
i=

νi( – θi)aii(t)
∣∣xi(t) – x∗

i (t)
∣∣

≤ –c
n∑
i=

zi(t)≤ , t ≥ , (.)

where c =max≤i≤n supt∈[,ω]{νi( – θi)aii(t)} > . It follows from (.) thatD+V (t) ≤ . Ob-
viously, the zero solution of (.) is Lyapunov stable. On the other hand, let t represent
the initial time of system (.); t is an arbitrary time and t > t. Then, integrating (.) over
[t, t] leads to

V (t) –V (t) ≤ –c
∫ t

t

n∑
i=

zi(s)ds, t ≥ 

or

V (t) + c
∫ t

t

n∑
i=

∣∣xi(t) – x∗
i (t)

∣∣ds ≤ V (t) < +∞, t ≥ t.

Noting that V (t) ≥ , it follows that

∫ t

t

n∑
i=

∣∣xi(t) – x∗
i (t)

∣∣ds≤ V (t)
c

< +∞, t ≥ t.
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Therefore, by Lemma ., we have

lim
t→+∞

∣∣xi(t) – x∗
i (t)

∣∣ = , i = , , . . . ,n.

From Definition ., Theorem . follows. �

As an application, we consider the following example.

Example . Considering the following system:

{
x′
(t) = x(t)( – ( + 

 sin t)x(t –

 cos t) +


 ( –


 cos t)x(t –


 sin t)),

x′
(t) = x(t)( + 

 ( –

 cos t)x(t –


 sin t) –


 ( +


 sin t)x(t –


 cos t)).

(.)

Corresponding to system (.), we have n = , ω = π , r = , r = ,

p(t) =
 + 

 sin(μ(t))
 + 

 sin(μ(t))
= , p(t) =


 ( –


 cos(μ(t)))

 – 
 cos(μ(t))

=


,

p(t) =

 ( –


 cos(μ(t)))

 – 
 cos(μ(t))

=


, p(t) =


 ( +


 sin(μ(t)))

 + 
 sin(μ(t))

=


,

whereμ(t),μ(t),μ(t),μ(t) are the inverse of t– 
 cos t, t–


 sin t, t–


 sin t, t–


 cos t,

respectively. Then

K =

(
 

 × 


× 
 

)
,

ρ(K ) =
√



< ,

rp̄
–
 – p̄p̄– p

–


ω–h =



> ,

rp̄
–
 – p̄p̄–p

–


ω–h =



> ,

and the algebraic system

{
ey – 

e
y = ,

– 
e

y + 
e

y = 

has a unique solution y = (y, y) = (ln 
 , ln


 ). Then (H)-(H) of Theorem . are satis-

fied. Moreover, if we let v = , v = , we have

v
(
 +



sin t

)
>
v 

 ( –

 cos(σ(t)))

 – 
 cos(σ(t))

,

v


(
 +



sin t

)
>
v  ( –


 cos(σ(t)))

 – 
 cos(σ(t))

.

So the conditions of Theorem . are satisfied. Therefore, system (.) has a unique pos-
itive π-periodic solution which is globally asymptotically stable. In order to see these

http://www.advancesindifferenceequations.com/content/2014/1/93
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Figure 1 The phase portrait and time series of system (3.5). (a) The 2π -period solution of system (3.5) in
the (x1, x2) plane. (b), (c) Time series of x1 in (t, x1) plane. (d), (e) Time series of x2 in the (t, x2) plane.

dynamic properties clearly, we draw the figures for the evolution of the solutions of sys-
tem (.) by using the function ddesd in Matlab; see Figure .

Remark . In view of k = k = – and

τ(t) =


cos t, τ(t) =



sin t,

τ(t) =


sin t, τ(t) =



cos t,

http://www.advancesindifferenceequations.com/content/2014/1/93
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we know that k < , k < , τ(t) �= , τ(t) �= , τ(t) �= , τ(t) �= . So the result of the
above example cannot be obtained by [], which implies that the results of this paper are
essentially new.
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