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Abstract
This paper is concerned with a delayed Lotka-Volterra system on time scales. By using
the theory of exponential dichotomy on time scales and fixed point theory based on
monotone operator, some simple conditions are obtained for the existence and
uniqueness of positive almost periodic solution of the system. Further, by means of
the theory of calculus on time scales and Lyapunov functional, the global attractivity
of the almost periodic solution is also investigated. The main results in this paper
improve and extend the previously known results. Finally, some examples are given to
illustrate the feasibility and effectiveness of the main result.
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1 Introduction
Let

f – = inf
s∈T

f (s), f + = sup
s∈T

f (s), m(f ) = lim
T→∞


T

∫ T


f (s) ds,

where f is a continuous bounded function defined on T, T is a time scale.
The Lotka-Volterra type system with delay is very important in the models of multi-

species population dynamics and has interesting applications in epidemiology, physics,
chemistry, economics, biological science, and other areas (see [–]). The assumption of
almost periodicity is a way of incorporating the time dependent variability of the environ-
ment, especially when the various components of the environment are periodic with not
necessarily commensurate periods. Therefore, in recent years, more andmore researchers
have been studying the almost periodic solutions of the Lotka-Volterra system with delay
[–].
In [, ], the authors considered the following Lotka-Volterra system with time delays:

x′
i(t) = xi(t)

[
ri(t) – aii(t)xi(t) –

n∑
j=,j �=i

aij(t)xj
(
t – τij(t)

)]
, i = , , . . . ,n, (.)

where all the coefficients of system (.) are positive continuous almost periodic func-
tions. In [], with the help of a variable substitution and by applying Schauder’s fixed point
theorem, sufficient conditions for the existence of positive almost periodic solutions are
obtained.
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Theorem . ([]) Assume that

(N) r–i > , a–ij > , i, j = , , . . . ,n;
(N) m[ri(t) –

∑n
j=,j �=i aij(t)Gj(t)] > , where

Gj(t) =
[∫ t

–∞
e–

∫ t
s rj(u) duajj(s) ds

]–

, i, j = , , . . . ,n.

Then system (.) has at least one positive almost periodic solution.

In [, ], the authors studied the following Lotka-Volterra type systemwith continuously
distributed delays:

x′
i(t) = xi(t)

[
ri(t) – aii(t)xi(t) –

n∑
j=,j �=i

aij(t)xj
(
t – τij(t)

)
–

n∑
j=

∫ t

–∞
kij(t, θ )xj(θ ) dθ

]
, (.)

where all the coefficients of system (.) are positive almost periodic functions. Applying
Schauder’s fixed point theorem, the theory of the comparison theorem and the Lyapunov
functional, the following theorem can be obtained.

Theorem . ([, ]) Assume that (N) and the following conditions hold:

(T) supt∈R τ ′
ij(t) < , i, j = , , . . . ,n;

(T) inft∈R[ri(t) –
∑n

j=,j �=i aij(t)Mj –
∑n

j=Mj
∫ t
–∞ kij(t, θ ) dθ ] > , where Mj = supt∈R

rj(t)
ajj(t)

,
i, j = , , . . . ,n;

(T) There exists a constant ρ >  such that

min
≤i≤n

inf
t∈R

[
aii(t) –

n∑
j=,j �=i

aji(ν–
ji (t))

 – τ ′
ji(ν–

ji (t))
–

n∑
j=

∫ ∞


kji(t + θ , t) dθ

]
> ρ,

where ν–
ji (t) is the inverse function of t – τij(t).

Then system (.) has a unique positive almost periodic solutionwhich is globally attractive.

The aim of this paper is to use the fixed point theory based on monotone operator and
the Lyapunov functional to investigate the positive almost periodic solution of Lotka-
Volterra type systems (.)-(.). The following useful results on systems (.)-(.) are
obtained without condition (N) of Theorem . and condition (T) of Theorem ..

Theorem . Assume that (N) holds, then system (.) has a unique positive almost peri-
odic solution.

Theorem . Assume that (N), (T), and (T) of Theorem . hold, then system (.) has
a unique positive almost periodic solution which is globally attractive.

Many authors have argued that the discrete time models governed by difference equa-
tions are reflecting the reality in a better way than the continuous ones when the popu-
lations have nonoverlapping generations. Discrete time models can also provide efficient
computational models of continuous models for numerical simulations (see [–]). For
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example, in [], Li et al. studied an almost periodic solution of the following discrete Lotka-
Volterra system with delays:

{
x(n + ) = x(n) exp{r(n)[ – x(n)

K
–μ(n)x(n – τ)]},

x(n + ) = x(n) exp{r(n)[ – x(n)
K

–μ(n)x(n – τ)]}.
(.)

By means of the theory of comparison theorem and an almost periodic functional hull
theory, the authors obtained the result that system (.) is persistent and has a unique
positive almost periodic solution, which is globally attractive.
The study of dynamic equations on time scales goes back to its founder Stefan Hilger

[] and is a new area of still fairly theoretical exploration in mathematics. Motivating the
subject is the notion that dynamic equations on time scales can build bridges between con-
tinuous and discrete equations. Further, the study of time scales has led to several impor-
tant applications, for example, in the study of insect population models, neural networks,
heat transfer, and epidemic models. Recently the topic on the almost periodic solutions of
dynamic systems on time scales has been intensively investigated in many papers.
Motivated by the above statement, in this paper we will study the following Lotka-

Volterra system with delays on time scales:

x�
i (t) = xi(t)

[
ri(t) – aii(t)xi(t) –

n∑
j=,j �=i

aij(t)xσ
j
(
t – τij(t)

)

–
n∑
j=

∫ t

–∞
kij(t, θ )xσ

j (θ )�θ

]
, (.)

where t ∈ T is a periodic time scale,  ∈ T; ri(t) > , aij(t) >  and τij(t) >  are all almost
periodic functions, kij(t, s) > , sup{∫ t

–∞ kij(t, θ )�θ , t ∈ T} < ∞, i, j = , , . . . ,n. From the
point of view of biology, we focus our discussion on the existence, uniqueness and stability
of positive almost periodic solution of system (.) by using the theory of exponential
dichotomy on time scales, fixed point theory based on monotone operator and Lyapunov
functional.
The remainder of this paper is organized in the followingway. In Section , wewill intro-

duce some necessary notations, definitions and lemmas which will be used to gain novel
results. In Section , some conditions are derived ensuring the existence and uniqueness
of positive almost periodic solution of system (.) by using the theory of exponential di-
chotomy on time scales and fixed point theorem of monotone operator. In Section , we
establish sufficient conditions for the global attractivity of a unique almost periodic solu-
tion of system (.) and system (.) without delays by means of Lyapunov functional. The
main result in Section  is illustrated by giving some examples in Section .

2 Preliminaries
Now, let us state the following definitions and lemmas, which will be useful in proving our
main result.

Definition. ([]) A time scaleT is an arbitrary nonempty closed subset of the real setR
with the topology and ordering inherited from R. The forward jump operators σ : T → T
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and the graininess μ : T →R
+ are defined, respectively, by

σ (t) := inf{s ∈ T : s > t}, μ(t) := σ (t) – t.

The point t ∈ T is called left-dense, left-scattered, right-dense or right-scattered if ρ(t) = t,
ρ(t) < t, σ (t) = t or σ (t) > t, respectively. Points that are right-dense and left-dense at the
same time are called dense.

Definition . ([]) A function p : T →R is said to be regressive provided +μ(t)p(t) �= 
for all t ∈ T

k . The set of all regressive rd-continuous functions f : T→R is denoted byR.
Let p ∈R. The exponential function is defined by

ep(t, s) = exp

(∫ t

s
ξμ(τ )

(
p(τ )

)
�τ

)
,

where ξh(z) is the so-called cylinder transformation:

ξh(z) =

h
Log( + zh), h > ,

where Log is the principal logarithm function. For h = , ξ(z) = z. The inverse transfor-
mation of the cylinder transformation ξh is given by

ξ–
h (z) =


h
(
ezh – 

)
, h > .

When h = , ξ–
 (z) = z.

Throughout this paper, we always make the following assumption for system (.):

(H) ri ∈R, r–i >  and
∑n

i=(a–ij + k–ij ) > , where k–ij := infs∈R
∫ s
–∞ kij(s, θ )�θ , i, j = , , . . . ,n.

Lemma . ([]) Let p,q ∈R. Then
(i) e(t, s)≡  and ep(t, t)≡ ;
(ii) 

ep(t,s) = e	p(t, s), where 	p(t) = – p(t)
+μ(t)p(t) ;

(iii) ep(t, s)ep(s, r) = ep(t, r);
(iv) e�

p (·, s) = pep(·, s).

Definition . ([]) For f : T → R and t ∈ T
k , the delta derivative of f at t, denoted by

f �(t), is the number (provided it exists) with the property that given any ε > , there is a
neighborhood U ⊂ T of t such that

∣∣f (σ (t)) – f (s) – f �(t)
[
σ (t) – s

]∣∣ ≤ ε
∣∣σ (t) – s

∣∣, ∀s ∈U .

Lemma . ([]) Let f , g be �-differentiable functions on T
k . Then

(i) (kf + kg)� = kf � + kg� for any constants k, k;
(ii) (fg)�(t) = f �(t)g(t) + f (σ (t))g�(t) = f (t)g�(t) + f �(t)g(σ (t)).

Lemma . ([]) Assume that g : R → R is continuous, g : T → R is �-differentiable on
T

κ , and f : R → R is continuously differentiable. Then there exists c in the real interval

http://www.advancesindifferenceequations.com/content/2014/1/96
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[t,σ (t)] with

[
f
(
g(t)

)]� = f ′(g(c))g�(t).

Lemma . ([]) Assume that p(t) ≥  for t ≥ . Then ep(t, s)≥ .

Lemma . ([]) Suppose that p ∈R+. Then
(i) ep(t, s) >  for all t, s ∈ T;
(ii) if p(t) ≤ q(t) for all t ≥ s, t, s ∈ T, then ep(t, s)≤ eq(t, s) for all t ≥ s.

Lemma . ([]) Suppose that p ∈R and a,b, c ∈ T, then

[
ep(c, ·)

]� = –p
[
ep(c, ·)

]σ ,
∫ b

a
p(t)ep

(
c,σ (t)

)
�t = ep(c,a) – ep(c,b).

Definition . ([]) A time scale T is called a periodic time scale if

� := {τ ∈R : t + τ ∈ T,∀t ∈ T} �= {}.

Definition . ([]) LetT be a periodic time scale. A function x : T→ R
n is called almost

periodic on T, if for any ε > , the set

E(ε,x) =
{
τ ∈ � :

∣∣x(t + τ ) – x(t)
∣∣ < ε,∀t ∈ T

}
is relatively dense in T; that is, there exists a constant l = l(ε) > , for any interval with
length l(ε), there exists a number τ = τ (ε) in this interval such that

∥∥x(t + τ ) – x(t)
∥∥ < ε, ∀t ∈ T.

The set E(ε,x) is called the ε-translation set of x, τ is called the ε-translation number of
x, and l(ε) is called the inclusion of E(ε,x).

Definition . ([]) Let y ∈ C(T,Rn) and P(t) be a n×n continuousmatrix defined onT.
The linear system

y�(t) = P(t)y(t), t ∈ T

is said to be an exponential dichotomy on T if there exist constants k,λ > , and a projec-
tion S and the fundamental matrix Y (t) satisfying

∥∥Y (t)SY –(s)
∥∥ ≤ ke	λ(t, s), ∀t ≥ s,∥∥Y (t)(I – S)Y –(s)

∥∥ ≤ ke	λ(s, t), ∀t ≤ s, t, s ∈ T.

Lemma . ([]) If the linear system y�(t) = P(t)y(t) has an exponential dichotomy, then
the almost periodic system

y�(t) = P(t)y(t) + g(t), t ∈ T

http://www.advancesindifferenceequations.com/content/2014/1/96
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has a unique almost periodic solution y(t) which can be expressed as follows:

y(t) =
∫ t

–∞
Y (t)SY –(σ (s))g(s)�s –

∫ ∞

t
Y (t)(I – S)Y –(σ (s))g(s)�s.

Lemma. ([]) If P(t) = (aij(t))n×n is a uniformly bounded rd-continuousmatrix-valued
function on T, and there is a δ >  such that

∣∣aii(t)∣∣ –∑
j �=i

∣∣aij(t)∣∣ – 

μ(t)

[∑
j �=i

∣∣aij(t)∣∣
]

– δμ(t)≥ δ, t ∈ T, i = , , . . . ,n,

then y�(t) = P(t)y(t) admits an exponential dichotomy on T.

Lemma . ([]) Suppose that r : T→R is regressive. Let t ∈ T and y ∈R. The unique
solution of the initial value problem

y�(t) = r(t)y(t) + g(t), y(t) = y

is given by

y(t) = er(t, t)y +
∫ t

t
er

(
t,σ (s)

)
g(s)�s.

Similar to the proofs of Lemmas .-. which can be found in [, –], respectively,
we have:

Lemma . Assume that (H) holds, then system (.) has a unique almost periodic so-
lution x = (x,x, . . . ,xn)T which can be expressed as follows:

xi(t) =
∫ +∞

t
eri

(
t,σ (s)

)
xi(s)

[
aii(t)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s,

where i = , , . . . ,n.

In order to obtain the existence and uniqueness of positive almost periodic solution of
system (.), we first make the following preparations:
Let E be a Banach space and K be a cone in E. The semi-order induced by the cone K

is denoted by ‘≤’. That is, x ≤ y if and only if y – x ∈ K . x < y if x ≤ y and x �= y. x  y if
x – y ∈ K̂ , where K̂ is the interior of the cone K . A cone K is called minihedral if for any
pair {x, y}, x, y ∈ E, bounded above in order for there to exist a least upper bound sup{x, y}.
A cone K is called normal if there exists a constant N >  such that x≤ y, x, y ∈ K implies
‖x‖E ≤N‖y‖E .

Definition . ([]) � : K → K is said to be strongly superlinear, if for ∀x >  and t ∈
(, ), one has �(tx)� t�x.

http://www.advancesindifferenceequations.com/content/2014/1/96
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The following two lemmas cited from [, ] are useful for the proof of ourmain results
in this section.

Lemma . ([]) Let E be a real Banach space with an order cone K satisfying
(a) K has a nonempty interior,
(b) K is normal and minihedral.

Assume that there are two points in E, x∗ � x∗, and a monotone increasing compact con-
tinuous operator � : [x∗,x∗] → E. If

�x∗ � x∗, x∗ � �x∗,

then � has a fixed point x ∈ [x∗,x∗]. Here [x∗,x∗] denotes the order interval {x ∈ E : x∗ ≤
x ≤ x∗}.

Lemma. ([]) If� : K → K is strongly superlinear and increasing, then� has atmost
one positive fixed point.

Consider the Banach space E = AP(T,Rn) with the norm ‖x‖ = max≤i≤n{|xi|}, |xi| =
supt∈T |xi(t)|. Define the cone K in E by

K =
{
x = (x,x, . . . ,xn)T ∈ E : xi ≥ , i = , , . . . ,n

}
.

It is not difficult to verify that K is normal, minihedral and has a nonempty interior.
Let the map � be defined by

(�x)(t) =
(
(�x)(t), (�x)(t), . . . , (�nx)(t)

)T , (.)

where

(�ix)(t) =
∫ +∞

t
eri

(
t,σ (s)

)
xi(s)

[
aii(t)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s,

where x ∈ K , t ∈ T, i = , , . . . ,n.
Let

k+ij := sup
s∈T

∫ s

–∞
kij(s, θ )�θ , k–ij := inf

s∈T

∫ s

–∞
kij(s, θ )�θ .

By (H), one could choose some positive constants in K , xi < x̄i satisfying

n∑
j=

[
a+ij + k+ij

]
xj < r–i ,

n∑
j=

[
a–ij + k–ij

]
x̄j > r+i , i = , , . . . ,n.

Lemma . � : D → E is monotone increasing, where D = [x∗,x∗], x∗ = (x,x, . . . ,xn)T ,
x∗ = (x̄, x̄, . . . , x̄n)T .
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Proof For ∀x = (x,x, . . . ,xn)T , y = (y, y, . . . , yn)T ∈D, x ≤ y, i.e.,

y – x ∈ K ⇒ xi ≤ yi, i = , , . . . ,n.

So

(�ix)(t) – (�iy)(t)

=
∫ ∞

t
eri

(
t,σ (s)

)
xi(s)

[
aii(t)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

–
∫ ∞

t
eri

(
t,σ (s)

)
yi(s)

[
aii(t)yi(s)

+
n∑

j=,j �=i
aij(s)yσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )yσ

j (θ )�θ

]
�s

≤ ,

that is, (�ix) ≤ (�iy), i = , , . . . ,n, which implies that �y –�x ∈ K . Then �x ≤ �y. This
completes the proof. �

Lemma . � :D → E is complete continuous.

Proof First, we show that � maps bounded sets into bounded sets. For ∀x ∈D, we have

|�ix| ≤
n∑
j=

[
a+ij + k+ij

]|xi||xj| sup
t∈T

∫ ∞

t
er–i

(
t,σ (s)

)
�s

=

r–i

n∑
j=

[
a+ij + k+ij

]|xi||xj| sup
t∈T

∫ ∞

t

[
–er–i

(
t,σ (s)

)]�
�s

=

r–i

n∑
j=

[
a+ij + k+ij

]|xi||xj| sup
t∈T

er–i
(
t,σ (t)

)

≤ 
r–i

n∑
j=

[
a+ij + k+ij

]
x̄ix̄j, i = , , . . . ,n.

That is, �D is uniformly bounded. In addition, for ∀t, t ∈ T and t ≤ t, notice that

∣∣(�ix)(t) – (�ix)(t)
∣∣

=

∣∣∣∣∣
∫ ∞

t
eri

(
t,σ (s)

)
xi(s)

[
aii(s)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

http://www.advancesindifferenceequations.com/content/2014/1/96
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–
∫ ∞

t
eri

(
t,σ (s)

)
xi(s)

[
aii(s)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

+
∫ ∞

t
eri

(
t,σ (s)

)
xi(s)

[
aii(s)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

–
∫ ∞

t
eri

(
t,σ (s)

)
xi(s)

[
aii(s)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

t
eri

(
t,σ (s)

)
xi(s)

[
aii(s)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∞

t

[
eri

(
t,σ (s)

)
– eri

(
t,σ (s)

)]
xi(s)

[
aii(s)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

∣∣∣∣∣
≤

n∑
j=

[
a+ij + k+ij

]
x̄ix̄j|t – t| + 

r–i

n∑
j=

[
a+ij + k+ij

]
x̄ix̄j

∣∣ – er+i (t, t)
∣∣ → , as t → t,

where i = , , . . . ,n. So �x is equicontinuous for any x ∈ D = [x∗,x∗]. Using the Arzela-
Ascoli theorem on time scales [], �D is relatively compact. The Lebesgue’s dominated
convergence theorem on time scales [] yields then that � is continuous. Hence, � is
complete continuous. The proof of this lemma is complete. �

3 Almost periodic solutions
In this section, we will utilize Lemmas . and . given in the previous section to estab-
lish some sufficient criteria for the existence and uniqueness of positive (almost) periodic
solutions of system (.).

Theorem . Assume that (H) holds, then system (.) has a unique positive almost pe-
riodic solution.

Proof Now, we will use Lemma . to prove the existence of positive almost periodic so-
lutions of system (.). By Lemmas . and ., we know that� is amonotone increasing
complete continuous operator on D = [x∗,x∗]. It remains to prove that

�x∗ � x∗, x∗ � �x∗.

http://www.advancesindifferenceequations.com/content/2014/1/96
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On the one hand, by the definition of x∗ it follows that

�ix∗ =
∫ ∞

t
eri

(
t,σ (s)

)
xi

n∑
j=

[
aij(s) +

∫ s

–∞
kij(s, θ )�θ

]
xj�s

≤ xi
n∑
j=

[
a+ij + k+ij

]
xj

∫ ∞

t
eri

(
t,σ (s)

)
�s

≤ 
r–i

xi
n∑
j=

[
a+ij + k+ij

]
xj

< xi, i = , , . . . ,n,

which implies that

�x∗ = (�x∗,�x∗, . . . ,�nx∗)T < (x,x, . . . ,xn)
T = x∗ ⇒ �x∗ � x∗.

On the other hand, one has from the definition of x∗ that

�ix∗ =
∫ ∞

t
eri

(
t,σ (s)

)
x̄i

n∑
j=

[
aij(s) +

∫ s

–∞
kij(s, θ )�θ

]
x̄j�s

≥ x̄i
n∑
j=

[
a–ij + k–ij

]
x̄j

∫ ∞

t
eri

(
t,σ (s)

)
�s

≥ 
r+i
x̄i

n∑
j=

[
a–ij + k–ij

]
x̄j

> x̄i, i = , , . . . ,n,

which implies that

�x∗ =
(
�x∗,�x∗, . . . ,�nx∗)T > (x̄, x̄, . . . , x̄n)T = x∗ ⇒ �x∗  x∗.

Next, we prove the uniqueness of the positive almost periodic solution of system (.),
using Lemma .. For x >  and λ ∈ (, ), it follows that

�i(λx) = λ
∫ ∞

t
eri

(
t,σ (s)

)
xi(t)

[
aii(t)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

< λ

∫ ∞

t
eri

(
t,σ (s)

)
xi(t)

[
aii(t)xi(s)

+
n∑

j=,j �=i
aij(s)xσ

j
(
s – τij(s)

)
+

n∑
j=

∫ s

–∞
kij(s, θ )xσ

j (θ )�θ

]
�s

= λ�ix, i = , , . . . ,n,
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which implies that

�(λx) =
(
�(λx),�(λx), . . . ,�n(λx)

)T < λ(�x,�x, . . . ,�nx)T = λ�x

⇒ �(λx)� λ�x.

Therefore, � is strongly superlinear. By Lemma ., system (.) has at most one positive
almost periodic solution. As a whole, system (.) has a unique positive almost periodic
solution. This completes the proof. �

Remark . When kij ≡  (i, j = , , . . . ,n) in system (.) with T = R, then Theorem .
is obtained. So the work of this paper improves and extends the main result in [].

From Theorem ., we can easily obtain the following.

Theorem . Assume that (H) holds. Suppose further that all the coefficients of sys-
tem (.) are nonnegative ω-periodic functions, then system (.) has a unique positive
ω-periodic solution.

4 Global attractivity
In this section, we will construct suitable Lyapunov functional to study the global attrac-
tivity of system (.).
Now, we consider system (.) on time scales:

x�
i (t) = xi(t)

[
ri(t) – aii(t)xi(t) –

n∑
j=,j �=i

aij(t)xσ
j (t)

]
, i = , , . . . ,n. (.)

Theorem. Assume that (H) and
∑n

j=,j �=i a–ij >  hold, i = , , . . . ,n, suppose further that
there exists a constant γ >  such that

min
≤i≤n

inf
t∈R

[
aii(t) –

n∑
j=,j �=i

aji(t)

]
> γ ,

then system (.) has a unique positive almost periodic solution,which is globally attractive.

Proof By Theorem ., system (.) has a unique positive almost periodic solution. It re-
mains to prove the global attractivity of system (.).
There must exist a �-differentiable function λ defined on T

κ such that λ() =  and
λ(t)≡  for t ∈ [,∞]T. Define

pf (t) = ξ–
μ(t)

((
λ(t)f (t)

)�)
=

{
exp{μ(t)(λ(t)f (t))�}–

μ(t) , if μ(t) > ;
(λ(t)f (t))�, if μ(t) = ,

(.)

where t ∈ [,∞]T, f is a �-differentiable function on T
κ . Let xi(t) = epyi (t, ), i = , , . . . ,n.

Notice that

xi(t) = epyi (t, )

= exp

{∫ t


ξμ(s)

(
pyi (s)

)
�s

}
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= exp

{∫ t


ξμ(s)

(
ξ–
μ(s)

((
λ(s)yi(s)

)�))
�s

}

= exp

{∫ t



(
λ(s)yi(s)

)�
�s

}

= exp
{
yi(t)

}
(.)

and e�
pyi
(t, ) = pyi (t)epyi (t, ), t ∈ [,∞]T, i = , , . . . ,n. Then system (.) is transformed

into

pyi (t) = ri(t) – aii(t) exp
{
yi(t)

}
–

n∑
j=,j �=i

aij(t) exp
{
yσ
j (t)

}
. (.)

It is obvious that the global attractivity of system (.) is equivalent to that of system
(.). So in the following, we shall prove that system (.) is global attractivity. Suppose
that y = (y, y, . . . , yn)T and z = (z, z, . . . , zn)T are any positive solutions of system (.). So
y and z satisfy (.) and

pzi (t) = ri(t) – aii(t) exp
{
zi(t)

}
–

n∑
j=,j �=i

aij(t) exp
{
zσ
j (t)

}
, (.)

respectively, where i = , , . . . ,n, t ∈ [,∞]T.
In view of (.), using the mean value theorem of differential calculus on time scales

leads to

pyi (t) – pzi (t) =

{
eδi(t)[yi(t) – zi(t)]�, if μ(t) > ;
[yi(t) – zi(t)]�, if μ(t) = ,

(.)

where δi(t) lies between μ(t)y�
i (t) and μ(t)z�

i (t), t ∈ [,∞]T (λ(t)≡ ), i = , , . . . ,n.
By the definition of almost periodic time scale T, μ is bounded on T. By Lemma .

in [], there exists a large point t ∈ [,∞]T such that the species xi(t) of system (.) is
bounded for t ∈ [t,∞]T, and then x�

i (t) is bounded for t ∈ [t,∞]T, i = , , . . . ,n. In view
of (.), yi(t) is bounded for t ∈ [t,∞]T, i = , , . . . ,n. By Lemma ., ones obtain from
(.) that

x�
i (t) = ey(c)y�

i (t), c ∈ [
t,σ (t)

]
, t ∈ [t,∞]T,

which implies that y�
i is bounded for t ∈ [t,∞]T, similarly, zi and z�

i is also bounded for
t ∈ [t,∞]T, i = , , . . . ,n.
By the boundedness ofμ, y�

i , z�
i , themean value theorem of differential calculus on time

scales and the definition of δi, there are two positive constantsm andM such that


M

∣∣eyi(t) – ezi(t)
∣∣ ≤ ∣∣yi(t) – zi(t)

∣∣ ≤ 
m

∣∣eyi(t) – ezi(t)
∣∣,

m < e–δi(t) <M, ∀t ∈ [t,∞]T, i = , , . . . ,n.

Define a Lyapunov functional as follows:

V (t) =

{
e–η(t, t)

∑n
i= |yi(t) – zi(t)|, if μ(t) > ;∑n

i= |yi(t) – zi(t)|, if μ(t) = 

}
for t ∈ [t,∞]T, (.)

http://www.advancesindifferenceequations.com/content/2014/1/96
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where η is a positive constant. Obviously, there must exist a constant N >  such that
V (t) <N for t ∈ [t,∞]T.
Next, we will present two cases to prove the global attractivity of system (.).
Case I. If μ(t) > , set η > max{nMA,γ } and  – ημ(t) < , where A = max≤i,j≤n a+ij , t ∈

[t,∞]T. It follows from (.)-(.) that

[
yi(t) – zi(t)

]� = e–δi(t)
[
pyi (t) – pzi (t)

]
= e–δi(t)

(
–aii(t)

[
eyi(t) – ezi(t)

]
+

n∑
j=,j �=i

aij(t)
[
ey

σ
j (t) – ez

σ
j (t)

])

≤ e–δi(t)

(
–aii(t)

[
eyi(t) – ezi(t)

]
+

n∑
j=,j �=i

aij(t)
∣∣eyσj (t) – ez

σ
j (t)

∣∣),

where t ∈ [t,∞]T, i = , , . . . ,n.
Calculating the upper right derivatives of V along the solution of system (.), it follows

from (.) that

D+V (t) = e–η(t, t)
n∑
i=

sgn
[
yi(t) – zi(t)

][
y�
i (t) – z�

i (t)
]

– ηe–η(t, t)
n∑
i=

∣∣yσ
i (t) – zσ

i (t)
∣∣

≤ e–η(t, t)
n∑
i=

e–δi(t)

[
–aii(t)

∣∣eyi(t) – ezi(t)
∣∣ + n∑

j=,j �=i
aij(t)

∣∣eyσj (t) – ez
σ
j (t)

∣∣]

– ηe–η(t, t)
∣∣yσ

i (t) – zσ
i (t)

∣∣ – ηe–η(t, t)
n∑

j=,j �=i

∣∣yσ
j (t) – zσ

j (t)
∣∣

≤ –me–η(t, t)
n∑
i=

aii(t)
∣∣eyi(t) – ezi(t)

∣∣

– (η –MAn)e–η(t, t)
n∑

j=,j �=i

∣∣yσ
j (t) – zσ

j (t)
∣∣

≤ –me–η(t, t)
n∑
i=

aii(t)
∣∣yi(t) – zi(t)

∣∣
≤ –γV (t),

which implies from the comparison theorem that

V (t) ≤ e–γ (t, t)V (t) <Ne–γ (t, t),

that is,

e–η(t, t)
n∑
i=

∣∣yi(t) – zi(t)
∣∣ ≤ e–γ (t, t)V (t) <Ne–γ (t, t),
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then

n∑
i=

∣∣yi(t) – zi(t)
∣∣ ≤ e(–γ )	(–η)(t, t)V (t) <Ne(–γ )	(–η)(t, t), t ∈ [t,∞]T. (.)

Since  – ημ(t) <  and η > γ , then (–γ )	 (–η) < . So it follows from (.) that

lim
t→∞

∣∣yi(t) – zi(t)
∣∣ = , i = , , . . . ,n.

Case II. If μ(t) = , then σ (t) = t for t ∈ [t,∞]T. It follows from (.)-(.) that

[
yi(t) – zi(t)

]� =
[
pyi (t) – pzi (t)

] ≤ –aii(t)
[
eyi(t) – ezi(t)

]
+

n∑
j=,j �=i

aij(t)
∣∣eyj(t) – ezj(t)

∣∣,
where t ∈ [t,∞]T, i = , , . . . ,n.
Calculating the upper right derivatives of V along the solution of system (.), it follows

from (.) that

D+V (t) ≤
n∑
i=

[
–aii(t)

∣∣eyi(t) – ezi(t)
∣∣ + n∑

j=,j �=i
aij(t)

∣∣eyj(t) – ezj(t)
∣∣]

= –
n∑
i=

[
aii(t) –

n∑
j=,j �=i

aji(t)

]∣∣eyi(t) – ezi(t)
∣∣

≤ –mγ

n∑
i=

∣∣yi(t) – zi(t)
∣∣, t ∈ [t,∞]T. (.)

Therefore, V is non-increasing. Integrating (.) from t to +∞ leads to

lim
t→+∞V (t) +mγ

n∑
i=

∫ +∞

t

∣∣yi(s) – zi(s)
∣∣�s ≤ V (t) < +∞.

So

n∑
i=

∫ ∞

t

∣∣yi(s) – zi(s)
∣∣�s < +∞,

which implies that

n∑
i=

lim
s→+∞

∣∣yi(s) – zi(s)
∣∣ = ,

that is,

lim
s→+∞

∣∣yi(s) – zi(s)
∣∣ = , i = , , . . . ,n.

Thus, system (.) is globally attractive. This completes the proof. �

When T =R, system (.) changes to system (.). Then we have:
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Theorem . Assume that (H) holds, suppose further that (τ ′
ij)+ := supt∈R τ ′

ij(t) <  and
there exists a constant ρ >  such that

min
≤i≤n

inf
t∈R

[
aii(t) –

n∑
j=,j �=i

aji(ν–
ji (t))

 – τ ′
ji(ν–

ji (t))
–

n∑
j=

∫ ∞


kji(t + θ , t) dθ

]
> ρ,

where ν–
ji (t) is the inverse function of t – τij(t). Then system (.) has a unique positive

almost periodic solution, which is globally attractive.

Proof By Theorem ., system (.) has a unique positive almost periodic solution. It re-
mains to prove the global attractivity of system (.).
Suppose that x = (x,x, . . . ,xn)T and y = (y, y, . . . , yn)T are any positive solutions of sys-

tem (.).
Define a Lyapunov functional as follows:

V (t) =
n∑
i=

[
Vi(t) +Vi(t) +Vi(t)

]
,

where

Vi(t) =
∣∣lnxi(t) – ln yi(t)

∣∣,
Vi(t) =

n∑
j=,j �=i

∫ t

t–τij(t)

aij(ν–
ij (s))

 – τ ′
ij(ν–

ij (s))
∣∣xj(s) – yj(s)

∣∣ds,

Vi(t) =
n∑
j=

∫ ∞



∫ t

t–θ

kij(s + θ , s)
∣∣xj(s) – yj(s)

∣∣dsdθ , t ∈ R, i = , , . . . ,n.

Calculating the upper right derivatives of V along the solution of system (.), it follows
that

D+Vi(t) = sgn
[
xi(t) – yi(t)

][x′
i(t)
xi(t)

–
y′
i(t)
yi(t)

]

≤ –aii(t)
∣∣xi(t) – yi(t)

∣∣ + n∑
j=,j �=i

aij(t)
∣∣xj(t – τij(t)

)
– yj

(
t – τij(t)

)∣∣

+
n∑
j=

∫ t

–∞
kij(t, θ )

∣∣xj(θ ) – yj(θ )
∣∣dθ , (.)

D+Vi(t)≤
n∑

j=,j �=i

aij(ν–
ij (t))

 – τ ′
ij(ν–

ij (t))
∣∣xj(t) – yj(t)

∣∣

–
n∑

j=,j �=i
aij(t)

∣∣xj(t – τij(t)
)
– yj

(
t – τij(t)

)∣∣, (.)

D+Vi(t) =
n∑
j=

∫ ∞


kij(t + θ , t)

∣∣xj(t) – yj(t)
∣∣dθ

–
n∑
j=

∫ t

–∞
kij(t, θ )

∣∣xj(θ ) – yj(θ )
∣∣dθ , t ∈R, i = , , . . . ,n. (.)
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Together with (.)-(.), we get

D+V (t) =
n∑
i=

[
D+Vi(t) +D+Vi(t) +D+Vi(t)

]

≤ –
n∑
i=

[
aii(t) –

n∑
j=,j �=i

aji(ν–
ji (t))

 – τ ′
ji(ν–

ji (t))
–

n∑
j=

∫ ∞


kji(t + θ , t) dθ

]∣∣xi(t) – yi(t)
∣∣

≤ –ρ

n∑
i=

∣∣xi(t) – yi(t)
∣∣.

Similar to the argument as that in Theorem ., one has

lim
s→+∞

∣∣xi(s) – yi(s)
∣∣ = , i = , , . . . ,n.

Thus, system (.) is globally attractive. This completes the proof. �

Remark . From Theorem ., system (.) admits a unique globally attractive positive
almost periodic solution without condition (T) of Theorem .. Therefore, the main re-
sult in this paper improves and extends the work in [, ].

From Theorems . and ., we can easily obtain the following.

Theorem . Assume that all conditions of Theorem . hold. Suppose further that all
the coefficients of system (.) are nonnegative ω-periodic functions, then system (.) has
a unique positive ω-periodic solution, which is globally attractive.

Corollary . Assume that all conditions of Theorem . hold. Suppose further that all
the coefficients of system (.) are nonnegative ω-periodic functions, then system (.) has
a unique positive ω-periodic solution, which is globally attractive.

5 Applications of main theorems to global attractive almost periodic solutions
Example . Consider the following two species Lotka-Volterra system:

{
x�(t) = x(t)[ – a(t)x(t) – a(t)yσ (t)],
y�(t) = y(t)[ – a(t)y(t) – a(t)xσ (t)],

(.)

where

(
a(t)
a(t)

)
=

(
 + . sin(

√
t)

 + . cos(
√
t)

)
,

(
a(t)
a(t)

)
=

(
 + .| sin(√t)|
 + .| sin(t)|

)
,

∀t ∈ T = {nq : n ∈ Z}, q > . Then system (.) has a unique positive almost periodic solu-
tion.

Proof Obviously, r– = r– =  >  and a– = a– = , which imply that (H) of Theorem .
holds. By Theorem ., system (.) has a unique positive almost periodic solution. �
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Remark . When T =R, it is impossible to obtain the existence of positive almost peri-
odic solution of system (.) by Theorem . in Section .

Proof In view of Theorem . in Section  and system (.), one has

G(t) =
[∫ t

–∞
e–(t–s)a(s) ds

]–

≥ 

,

which implies that

m

[
r(t) –

∑
j=,j �=i

aj(t)G(t)

]
≤  –




×  = – < .

So (N) of Theorem . is invalid. This completes the proof. �

Example . Consider the following two species Lotka-Volterra system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x�(t) = x(t)[– – a(t)x(t) – a(t)yσ (t – . sin(

√
t))

–
∫ t
–∞ e–t+θyσ (θ )�θ ],

y�(t) = y(t)[ – a(t)y(t) – a(t)xσ (t – . cos(
√
t))

–
∫ t
–∞ e–t+θxσ (θ )�θ ],

(.)

where

(
a(t)
a(t)

)
=

(
 + . sin(

√
t)

 + . cos(
√
t)

)
,

(
a(t)
a(t)

)
=

(
. + .| sin(√t)|
. + .| sin(t)|

)
, ∀t ∈ T.

Then one finds that system (.) has a unique positive almost periodic solution. If T =R,
the almost periodic solution of system (.) is even globally attractive.

Proof Similar to the argument in Example ., all of the conditions in Theorem . are
satisfied. By Theorem ., system (.) has a unique positive almost periodic solution.
If T =R, by an easy calculation,

(
τ ′


)+ = (
τ ′


)+ = .,
∫ ∞


k(t + θ , t) dθ =

∫ ∞


k(t + θ , t) dθ = ,

which imply that all of the conditions in Theorem . hold. By Theorem ., system (.)
has a unique positive almost periodic solution, which is globally attractive. This completes
the proof. �

Remark . When T =R, it is impossible to obtain the existence, uniqueness and global
attractivity of positive almost periodic solution of system (.) byTheorem . in Section .

Proof In view of Theorem . in Section  and system (.), one has

M = sup
t∈R

r(t)
a(t)

≥ 

,
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which implies that

inf
t∈R

[
r(t) – a(t)M

] ≤ . – .× 

< .

So (T) of Theorem . is invalid. This completes the proof. �

6 Conclusion
In this paper, some sufficient conditions are established for the existence, uniqueness and
global attractivity of positive almost periodic solution for a delayed Lotka-Volterra system
on time scales by using the theory of exponential dichotomy on time scales, fixed point
theory based on monotone operator and Lyapunov functional. The main results obtained
in this paper are completely new even in case of the time scaleT =R orZ. The work of this
paper improves the previously known results. It is important to notice that the approach
used in this paper can be extended to other types of biologicalmodels of first order [, , ,
]. Future work will include biological dynamic systems based on impulsive differential
equations [, ].
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