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Abstract
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1 Introduction
The stability of stochastic partial differential equations (SPDEs) driven by Brownian mo-
tions or Lévy processes has been well established; see, e.g., Bao and Yuan [], Bao et al.
[, ], Chow [], Liu [] and Yuan and Bao [], to name a few, where the noise pro-
cesses are assumed to be square integrable. However, such restriction clearly rules out
the interesting α-stable processes since Wiener noise and Poisson-jump noise have arbi-
trary finite moments, while α-stable noise only has finite pth moment for p ∈ (,α) with
α < . Recently, stochastic equations driven by α-stable processes, which have plenty of
applications in physics due to the fact that the α-stable noise exhibits the heavy tailed
phenomenon, e.g., Solomon et al. [], receives great attention. For example, Priola and
Zabczyk [] gave a proper starting point on the investigation of structural properties of
SPDEs driven by an additive cylindrical stable noise, Dong et al. [] studied the ergodicity
of stochastic Burgers equations driven by α/-subordinated cylindrical Brownian motion
with α ∈ (, ), and Zhang [] established the Bismut-Elworthy-Li derivative formula for
stochastic differential equations (SDEs) driven by α-stable noise. For finite-dimensional
cases, Wang [] derived a gradient estimate for linear SDEs driven by α-stable noise,
and Wang [] established the functional inequalities for Ornstein-Uhlenbeck processes
driven by α-stable noise by the sharp estimates of density function for rotationally invari-
ant symmetric α-stable Lévy processes. However, there are few papers on the asymptotic
behavior of mild solution of SPDEs driven by α-stable processes. In this note, we shall
discuss the stability property of mild solutions of a class of SPDEs driven by α-stable pro-
cesses to close the gap. Due to the fact that α-stable noise only has finite pth moment for
p ∈ (,α) and that the stochastic evolution does not admit a stochastic differential, which
leads to the Itô formula being unavailable, then some new tricks need to be put forward
to overcome the difficulties brought about by α-stable noise.
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This note is organized as follows: in Section  we apply the Minkovski inequality and
the semigroup method to investigate the exponential stability of mild solutions for a class
of SPDEs driven by α-stable processes, and these tricks are extended to cope with the
stability of mild solutions of SPDEs driven by subordinated cylindrical Brownian motion
and fractional Brownian motion, respectively, in Section .

2 Stability of SPDEs driven by α-stable noise
We firstly give an overview of stable processes. An R-valued random variable η is said to
be stable with stability index α ∈ (, ), scale parameter σ ∈ (,∞), skewness parameter
β ∈ [–, ], and location parameter μ ∈ (–∞,∞) if it has characteristic function of the
form

φη(u) = E exp(iuη) = exp
{
–σα|u|α(

 – iβ sgn(u)�
)
+ iμu

}
, u ∈R,

where � = tan(πα/) for α �=  and � = –(/π ) log |u| for α = . We call η is strictly α-
stable whenever μ = , and if, in addition, β = , η is said to be symmetric α-stable. We
refer to, e.g., Applebaum [] and Sato [], for more details of stable distributions. Let
(H, 〈·, ·〉,‖ · ‖H) be a real separable Hilbert space, and Z(t) a cylindrical α-stable process,
defined by

Z(t) :=
∞∑
k=

βH
k Zk(t)ek . (.)

Here {ek}k≥ is an orthonormal basis of H, {Zk(t)}k≥ are independent, R-valued, normal-
ized, symmetric α-stable Lévy processes defined on the stochastic basis (	,F , {Ft}t≥,P),
and {βk}k≥ is a sequence of positive numbers.
In this section, we shall consider an SPDE driven by α-stable process in H

dX(t) =
{
AX(t) + b

(
t,X(t)

)}
dt + σ (t) dZ(t), t > , (.)

with initial value X() = x.
In this section we shall assume the following.
(A) (A,D(A)) is a self-adjoint compact operator on H such that –A has discrete

spectrum  < λ < λ < · · · < λk < · · · , limk→∞ λk =∞ with corresponding
eigenbasis {ek}k≥ of H. In this case, by [, Theorem ., p.] and
[, Theorem ., p.], A generates a C-semigroup etA, t ≥ , such that
‖etA‖ ≤ e–λt , where ‖ · ‖ denotes the usual operator norm.

(A) b : [,∞)×H →H and there exist L >  and L >  such that

∥∥b(t,x) – b(t, y)
∥∥
H

≤ L‖x – y‖H, t ≥ ,x, y ∈ H

and

∥∥b(t,x)∥∥
H

≤ L
(
γ (t) + ‖x‖H

)
, t ≥ ,x ∈H ,

where γ : [,∞)→ [,∞) is a local integrable continuous function.
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(A) σ : [,∞)→R
+ is a continuous function such that

δ(t) :=
∞∑
k=

βα
k

∫ t


e–αλk (t–s)σα(s) ds, t ≥ ,

is locally bounded, i.e., δ(t) is bounded on the time interval [,T] for any T > ,
where {βk}k≥ is the sequence appearing in (.) and {λk}k≥ is the discrete
spectrum of A.

Under (A)-(A), equation (.) has a unique mild solution, see, e.g., [, Formula .],
that is, there exists a predictable H-valued stochastic process X(t) such that

X(t) = etAx +
∫ t


e(t–s)Ab

(
t,X(s)

)
ds +

∫ t


e(t–s)Aσ (s) dZ(s). (.)

Next we recall the following Minkowski inequality, which plays a key role in revealing
the stability property of SPDEs driven by α-stable processes.

Lemma . Let (S,μ) and (S,μ) be two measurable spaces and F : S × S → R be
measurable. Then, for any q > ,

(∫
S

∣∣∣∣
∫
S

F(x, y)μ(dx)
∣∣∣∣
q

μ(dy)
)/q

≤
∫
S

(∫
S

∣∣F(x, y)∣∣qμ(dx)
)/q

μ(dy).

We now can state our main results in this section.

Theorem . Let (A) and (A) hold and assume further that

δ := sup
t≥

(∫ t


eλsγ (s) ds

)
< ∞ (.)

and

δ := sup
t≥

{
eαλt

∞∑
k=

βα
k

∫ t


e–αλk (t–s)σα(s) ds

}
<∞. (.)

Then, for α ∈ (, ), p ∈ (,α) and L ∈ (,λ), there exists c >  such that

E
(∥∥X(t)∥∥p

H

) ≤ ce–p(λ–L)t . (.)

That is, the solution is exponentially stable in the pth moment with the Lyapunov exponent
–(λ – L).

Proof Under (A), (A), and (.), (.) has a uniquemild solutionX(t). Recall the fact that
(E‖ · ‖p

H
)/p, p ∈ (,α), is a norm, which will be utilized again and again. We then obtain

from (.)

(
E

(∥∥X(t)∥∥p
H

))/p ≤ ∥∥etAx∥∥
H
+

(
E

(∥∥∥∥
∫ t


e(t–s)Ab

(
s,X(s)

)
ds

∥∥∥∥
p

H

))/p

+
(
E

(∥∥∥∥
∫ t


e(t–s)Aσ (s) dZ(s)

∥∥∥∥
p

H

))/p

=: I(t) + I(t) +
(
E

(∥∥I(t)∥∥p
H

))/p. (.)
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By (A), it is readily seen that

I(t)≤ e–λt‖x‖H. (.)

Next, applying Lemma . and using (A) and (A) yield

I(t) ≤
∫ t



(
E

(∥∥e(t–s)Ab(s,X(s))∥∥p
H

))/p ds
≤

∫ t


e–λ(t–s)

(
E

(∥∥b(s,X(s))∥∥p
H

))/p ds
≤ L

∫ t


e–λ(t–s)

(
E

(
γ (s) +

∥∥X(s)∥∥p
H

))/p ds
≤ L

∫ t


e–λ(t–s)

{
γ (s) +

(
E

(∥∥X(s)∥∥p
H

))/p}ds, (.)

where we have also used the fact that (E‖ · ‖p
H
)/p, p ∈ (,α), is a norm. By virtue of (.)

and (A), a direct calculation shows

I(t) =
∞∑
k=

k(t)ek ,

where k(t) :=
∫ t
 βke–λk (t–s)σ (s) dZk(s). Let {rk}k≥ be a Rademacher sequence defined on

a new probability space (	′,F ′, {F ′
t }t≥,P′), i.e., rk :	′ → {,–} are i.i.d. with P

′(rk = ) =
P

′(rk = –) = /. Recall Khintchine’s inequality: for a sequence of real numbers {ck}k≥

and any q > , there exists cq >  such that

(∑
k≥

ck

)/

≤ cq
(
E

′
∣∣∣∣∑
k≥

rkck
∣∣∣∣
q)/q

. (.)

Then, by (.) and following an argument similar to that of [, Theorem .], the stochas-
tic evolution I(t) has the estimation

(
E

(∥∥I(t)∥∥p
H

))/p = E

( ∞∑
k=

(∫ t


βke–λk (t–s)σ (s) dZk(s)

)
)p/

≤ cppEE
′
∣∣∣∣∣

∞∑
k=

rkk(t)

∣∣∣∣∣
p

= cppE
′
E

∣∣∣∣∣
∞∑
k=

rkk(t)

∣∣∣∣∣
p

≤ cp

( ∞∑
k=

βα
k

∫ t


e–αλk (t–s)σα(s) ds

)/α

, (.)

where cp >  is some constant. Substituting (.)-(.) into (.) gives

eλt
(
E

(∥∥X(t)∥∥p
H

))/p ≤ ‖x‖H + L
∫ t


eλs

{
γ (s) +

(
E

(∥∥X(s)∥∥p
H

))/p}ds
+ cpeλt

( ∞∑
k=

βα
k

∫ t


e–αλk (t–s)σα(s) ds

)/α

.
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Thus, by (.) and (.), we arrive at

eλt
(
E

(∥∥X(t)∥∥p
H

))/p ≤ {‖x‖H + Lδ + cpδ/α
}
+ L

∫ t


eλs

(
E

(∥∥X(s)∥∥p
H

))/p ds.
In view of the Gronwall inequality,

eλt
(
E

(∥∥X(t)∥∥p
H

))/p ≤ {‖x‖H + Lδ + cpδ/α
}
eLt

holds and the desired assertion (.) follows due to L ∈ (,λ). �

In what follows, we establish an example to demonstrate that the condition (.) holds
in many practical situations.

Example . Let σ (t) = e–(λ+ε)t , where ε >  is a constant such that λ + ε < λ. A direct
computation shows that

eαλt
∞∑
k=

βα
k

∫ t


e–αλk (t–s)σα(s) ds = eαλt

∞∑
k=

βα
k e

–αλk t
∫ t


eα(λk–λ–ε)s ds

= βα


∫ t


e–αεs ds + eαλt

∞∑
k=

βα
k e

–αλk t
∫ t


eα(λk–λ–ε)s ds

≤ βα


αε
+ e–αεt

∞∑
k=

βα
k

α(λk – λ – ε)

≤ βα


αε
+

λ

α(λ – λ – ε)

∞∑
k=

βα
k

λk

due to the increasing property of the spectrum {λk}k≥. If
∑∞

k=
βα
k

λk
< ∞ holds, then both

(A) and (.) are satisfied. There are plenty of examples such that the condition
∑∞

k=
βα
k

λk
<

∞ holds, e.g., [, Example .]. Moreover, if b(t,x) = c(e–δt + b̄(x)), t ≥ , x ∈ H , c > ,
δ ∈ (λ,∞), where  is the identical operator onH and b̄ is Lipschitzian such that b̄() = ,
then (A) and (.) holds.

Remark . To reveal the stability property of the mild solution of (.), we replace (A)
by a little bit strong condition (.), although (.) admits a unique mild solution in finite-
time horizon under (A)-(A).

Remark . For α ∈ (, ), if b : [,∞)×H →H is bounded, then (.) has a unique mild
solution under (A)-(A); see, e.g., [, Proposition .]. For such case, by the fundamental
inequality

(a + b + c)θ ≤ aθ + bθ + cθ , a,b, c > , θ ∈ (, ),

we have

E
(∥∥X(t)∥∥p

H

) ≤ ∥∥etAx∥∥p
H
+E

(∥∥∥∥
∫ t


e(t–s)Ab

(
s,X(s)

)
ds

∥∥∥∥
p

H

)
+E

(∥∥I(t)∥∥p
H

)
,
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where I(t) is defined as in (.). Then under appropriate conditions, we can also discuss
the stability property of the mild solution of (.).

Remark . Due to the fact that stochastic evolution does not admit stochastic differen-
tial, we apply the semigroup method, not the Itô formula, to study the stability property
of the mild solution of (.). Comparing with the current technique, we generally adopt
the following procedure to discuss the exponential stability of (.): For p ∈ (,α), by the
inequality (a + b + c)p ≤ p–(ap + bp + cp), a,b, c > , (A), and the Hölder inequality

E
(∥∥X(t)∥∥p

H

) ≤ p–
{
e–pλt‖x‖p

H
+E

(∫ t


e–λ(t–s)

∥∥b(s,X(s))∥∥
H
ds

)p

+E
(∥∥I(t)∥∥p

H

)}

= p–
{
e–pλt‖x‖p

H
+E

(∫ t


e–(p–)/pλ(t–s)e–(λ/p)(t–s)

∥∥b(s,X(s))∥∥
H
ds

)p

+E
(∥∥I(t)∥∥p

H

)}

≤ p–
{
e–λt‖x‖p

H
+ λ

–p
 E

∫ t


e–λ(t–s)

∥∥b(s,X(s))∥∥p
H
ds +E

(∥∥I(t)∥∥p
H

)}
.

Hence it follows that

eλtE
(∥∥X(t)∥∥p

H

) ≤ p–
{
‖x‖p

H
+ λ

–p
 E

∫ t


eλs

∥∥b(s,X(s))∥∥p
H
ds + eλtE

(∥∥I(t)∥∥p
H

)}
.

Thus, carrying out a similar argument to that of Theorem ., we conclude by the pre-
vious method that the Lyapunov exponent is dependent on p–, λ

–p
 and L. However,

by the technique introduced in the argument of Theorem ., we find that the Lyapunov
exponent is –(λ – L), which only is dependent on λ and L.

3 Extension to SPDEs driven by subordinated cylindrical Brownianmotions
and fractional Brownianmotions

In the last section, we introduce some tricks to study the stability of mild solutions for
a class of SPDEs driven by α-stable noise. In this section, following these tricks, we pro-
ceed to investigate the stability of SPDEs driven by subordinated cylindrical Brownian
motion and fractional Brownian motion, respectively. To begin with, we recall some no-
tions. For α ∈ (, ), let S(t) be an α/-stable subordinator defined on the probability
space (	,F , {Ft}t≥,P), i.e., an increasing R-valued Lévy process; see, e.g., Applebaum
[, pp.-] and Sato [, Chapter ], with Laplace transform

Ee–uS(t) = e–t|u|α/ , u > ,

see, e.g., [, Example .., p.]. Let {Wk(t), t ≥ }k∈N be a sequence of indepen-
dent standard one-dimensional Brownian motion defined on the probability space
(	,F , {Ft}t≥,P). The subordinated cylindrical Brownian motion on H is defined by

L(t) :=
∞∑
k=

βkWk(S(t))ek , (.)

http://www.advancesindifferenceequations.com/content/2014/1/98
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where S(t) is an α/-stable subordinator independent of {Wk(t)}k≥, {βk}k≥ is a sequence
of real numbers, and {ek}≥ is an orthonormal basis of H. Note that Zk(t) := Wk(S(t)),
which satisfies Zk(t)(ω) :=Wk(S(t)(ω))(ω) for each ω ∈ 	, is a Lévy process by [, Theo-
rem .., p.] and an α-stable process due to [, Proposition .., p.].
In this section, we shall consider an SPDE driven by the subordinated cylindrical Brow-

nian motion L(t), defined by (.), on H

dX(t) =
{
AX(t) + b

(
t,X(t)

)}
dt + σ (t) dL(t), t > , (.)

with initial value X = x, where σ : [,∞)→R is local integrable continuous function. Let
(A) and (A) hold and assume further that

δ̄(t) :=
∞∑
k=

β
k

∫ t


e–λk (t–s)σ (s) ds, t ≥ ,

is locally bounded. Then (.) admits a unique mild solution in a finite-time interval; see,
e.g., [, Proposition .], that is, there exists a predictable H-valued stochastic process
X(t) such that

X(t) = etAx +
∫ t


e(t–s)Ab

(
s,X(s)

)
ds +

∫ t


e(t–s)Aσ (s) dL(s).

One of our main results in this section is as follows.

Theorem . Let (A), (A), and (.) hold and assume further that

δ := sup
t≥

{
eλt

∞∑
k=

β
k

∫ t


e–λk (t–s)σ (s) ds

}
< ∞. (.)

Then, for α ∈ (, ), p ∈ (,α) and L ∈ (,λ), there exist c >  and γ ∈ (,λ – L) such that

E
(∥∥X(t)∥∥p

H

) ≤ ce–pγ t .

In other words, the solution is exponentially stable in the pth moment, where the Lyapunov
exponent is –γ .

Proof Also by the fact that (E‖ · ‖p
H
)/p, p ∈ (,α), is norm, we deduce from (.) that

(
E

(∥∥X(t)∥∥p
H

))/p ≤ I(t) + I(t) +
(
E

(∥∥I(t)∥∥p
H

))/p, (.)

where I(t) and I(t) are defined as in (.), and I(t) is defined by

I(t) :=
∫ t


e(t–s)Aσ (s) dZ(s) =

∞∑
k=

(∫ t


βke–λk (t–s)σ (s) dWk(S(s)))ek .

By the Gaussian formula, following an argument like that of [, Proposition .] and
(.), we get

(
E

(∥∥I(t)∥∥p
H

))/p ≤ C

( ∞∑
k=

∫ t


β
k e

–λk (t–s)σ (s) ds

)/

t

α – 

 , (.)

http://www.advancesindifferenceequations.com/content/2014/1/98
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where C >  is some constant. In view of (.), (.), and (.), it follows from (.) that

eλt
(
E

(∥∥X(t)∥∥p
H

))/p ≤ ‖x‖H + L
∫ t


eλs

{
γ (s) +

(
E

(∥∥X(s)∥∥p
H

))/p}ds
+C/peλt

( ∞∑
k=

∫ t


β
k e

–λk (t–s)σ (s) ds

)/

t

α – 

 .

Then, for arbitrary ε >  sufficiently small, one has

e(λ–ε)t(
E

(∥∥X(t)∥∥p
H

))/p ≤ ‖x‖H + L
∫ t


eλsγ (s) ds + L

∫ t


e(λ–ε)s(

E
(∥∥X(s)∥∥

H

)p)/p ds
+C/peλt

( ∞∑
k=

∫ t


β
k e

–λk (t–s)σ (s) ds

)/

t

α – 

 e–εt .

Thanks to (.), (.), and the uniform boundedness of t 
α – 

 e–εt by α ∈ (, ) and ε > ,
there exists C̄ >  such that

e(λ–ε)t(
E

(∥∥X(t)∥∥p
H

))/p ≤ C̄ + L
∫ t


e(λ–ε)s(

E
(∥∥X(s)∥∥

H

)p)/p ds.
This, together with the Gronwall inequality, leads to

e(λ–ε)t(
E

(∥∥X(t)∥∥p
H

))/p ≤ C̄eLt .

Then, by L ∈ (,λ), we take ε >  such that λ – L – ε >  and the desired assertion
follows immediately. �

Remark . We remark that Example . still satisfies the condition (.).

In what follows, we further apply the technique adopted in the argument of Theorem .
to study the stability for a class of SPDEs driven by fractional Brownian motion. We also
need to recall some details of fractional Brownianmotion. Let BH (t) be anH-valued cylin-
drical fractional Brownian motion defined by

BH (t) :=
∞∑
k=

βH
k (t)ek , t ≥ . (.)

Here, {βH
k }k≥, H ∈ (, ), are R-valued independent fractional Brownian motions with

Hurst index H , i.e., for each k > , βH
k is an R-valued centered Gaussian process starting

from zero, defined on the probability space (	,F , {Ft}t≥,P), with covariance function

R(t, s) := E
[
βH
k (t)β

H
k (s)

]
=

(
tH + sH – |t – s|H)

/, t, s ≥ ,

and {ek}k≥ is an orthonormal basis of H . {βH
k }k≥ are standard Brownian motions for

H = 
 , admit self-similarity, possess Hölder continuity, but are not semi-martingales for

http://www.advancesindifferenceequations.com/content/2014/1/98
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H �= 
 ; see, e.g., [, Chapter ]. To the best of our knowledge, there are essentially two dif-

ferent approaches to construct stochastic integrals with respect to the fractional Brownian
motion, i.e., a path-wise approach and theMalliavin calculus; see, e.g., themonograph [].
For any T > , H > 

 and σ : [,∞) → L(H,H), the family of linear operators from H

to H, the stochastic integral with respect to the cylindrical fractional Brownian motion is
defined by

∫ t


σ (s) dBH(s) :=

∞∑
k=

∫ t


σ (s)ek dβH

k (s) =
∞∑
k=

∫ t



(
K∗
H (σ ek)

)
(s) dWk(s), t ∈ [,T]

provided that
∑∞

k=
∫ T
 ‖K∗

H (σ ek)(t)‖H dt < ∞. Here, for each k ≥ , βH
k admits theWiener

integral representation:

βH
k (t) =

∫ t


KH (t, s) dWk(s),

whereWk is an R-valued Wiener process, and the kernel KH is given by

KH (t, s) := cHs/–H
∫ t

s
(u – s)H–/uH–/ du, s < t

for some positive constant cH , and, for φ : [,T]→H,

(
K∗
Hφ

)
(t) :=

∫ T

t
φ(s)

∂KH

∂s
(s, t) ds, t ∈ [,T].

Formore details of the stochastic integrationwith respect to the infinite-dimensional frac-
tional Brownian motion, we refer to, e.g., Tindel et al. [].
In the following section, we consider an SPDE driven by the cylindrical fractional Brow-

nian motion BH (t), defined by (.), on H

dX(t) =
{
AX(t) + b

(
t,X(t)

)}
dt + σ (t) dBH(t), t >  (.)

with initial value X() = x, whereA and b are defined as in (.) and σ : [, )→ LHS(H,H),
the space of all Hilbert-Schmidt operators, such that

∫ T



∥∥σ (t)
∥∥
HS dt < ∞ for any T > , (.)

where ‖ · ‖HS denotes the usual Hilbert-Schmidt norm, i.e., ‖T‖HS := (
∑∞

i= ‖Tei‖H)/ for
a Hilbert-Schmidt operator. Under (A), (A), and (.), (.) has a unique mild solution;
see, e.g., [, Theorem ], that is, there exists a predictable H-valued stochastic process
X(t) such that

X(t) = etAx +
∫ t


e(t–s)Ab

(
X(s)

)
ds +

∫ t


e(t–s)Aσ (s) dBH(s).

Note that the solution of (.) is even not a semi-martingale so that the Itô formula is
unavailable.
The other main results in this section is as follows.

http://www.advancesindifferenceequations.com/content/2014/1/98
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Theorem . Let (A), (A), and (.) hold and assume further that

δ̃ := sup
t≥

(∫ t


esλ

∥∥σ (s)
∥∥
HS ds

)
< ∞. (.)

Then, for H > 
 and L ∈ (,λ), there exist c >  and γ ∈ (,λ – L) such that

E
(∥∥X(t)∥∥

H

) ≤ ce–γ t .

In other words, the solution is exponentially stable in mean square, where the Lyapunov
exponent is –γ .

Proof We here only outline the argument of Theorem . since it is similar to that of
Theorem .. Recall from [, Lemma ] that

E

∥∥∥∥
∫ t


e(t–s)Aσ (s) dBH(s)

∥∥∥∥


H

≤ cH(H – )tH–
∫ t



∥∥e(t–s)Aσ (s)
∥∥
HS ds

≤ cH(H – )tH–
∫ t


e–(t–s)λ

∥∥σ (s)
∥∥
HS ds (.)

for some constant c > , due to the fact that etA is a bounded linear operator and σ is
Hilbert-Schmidt. Following the argument of Theorem ., for any ε >  sufficiently small,
we have

e(λ–ε)t(
E

(∥∥X(t)∥∥
H

))/ ≤ ‖x‖H + L
∫ t


eλsγ (s) ds + L

∫ t


e(λ–ε)s(

E
(∥∥X(s)∥∥

H

))/ ds
+

√
cH(H – )t(H–)/e–εt

(∫ t


esλ

∥∥σ (s)
∥∥
HS ds

)/

.

Taking (.), (.), and the uniform boundedness of t(H–)/e–εt into account and thus
applying the Gronwall inequality yields the desired assertion. �

Remark . By the approach introduced in the previous section, we discuss the mean
square exponential stability of (.) under the condition L ∈ (,λ). However, Caraballo
et al. [] investigated the same problem under L ∈ (, –/λ). In other words, we have
improved some existing results in certain sense.

Remark . All the results in this paper can be further extended to functional SPDEs
driven by α-stable noise and fractional Brownianmotion, including variable delay and dis-
tributed delay, while we here omit such discussions since there are no technical problems.
Furthermore, there are also some interesting problems for SPDEs driven by α-stable noise
to be investigated, e.g., since (.) is non-autonomous, the mild solution is not a homo-
geneous Markov process, which makes the investigation of the stability in distribution of
analytic solution, a weaker stability notion than exponential stability, and the correspond-
ing numerical stability, very interesting. Such a topic will be reported in our forthcoming
paper.

http://www.advancesindifferenceequations.com/content/2014/1/98
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