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Abstract
By using the Arzela-Ascoli theorem, the Bellman inequality, and a monotone
perturbation iterative technique in the presence of lower and upper solutions, we
discuss the existence of mild solutions for a class of nonlinear first-order implicit
semilinear impulsive integro-differential equations in Banach spaces. Under wide
monotone conditions and the noncompactness measure conditions, we also obtain
the existence of extremal solutions and a unique mild solution between lower and
upper solutions.
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1 Introduction
The theory of impulsive differential equations has become an important area of investi-
gation in recent years stimulated by their numerous applications to problems arising in
mechanics, electrical engineering, medicine, biology, ecology, etc. Various evolutionary
processes undergo abrupt changes of states at certain moments of time; between intervals
of continuous evolution such changes can be well approximated as being instantaneous
changes at state, or in the form of impulses. These process are modeled by impulse differ-
ential equations and have been the most important research directions and connections
for impulsive differential equations; see, for example, [–] and the references therein.
Subsequently, many authors have investigated the existence of solutions to impulsive dif-
ferential equations or (implicit) impulsive integro-differential equations with their strong
applications in Banach spaces; see [–] and the references therein.

Recently, Lan and Cui [] studied a class of initial value problems of nonlinear first-
order implicit impulsive integro-differential equations in Banach space. By using the
Mönch fixed point theorem, they obtained some new existence theorems of solutions for
this class of nonlinear first-order implicit impulsive integro-differential equations in Ba-
nach spaces under some weaker conditions. Furthermore, some (implicit) impulsive dif-
ferential equations under various initial and boundary conditions has also been studied by
several authors; see, for example, [, , , , ] and the references therein. By using

© 2015 Lan and Cui; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13662-014-0329-y
mailto:hengyoulan@163.com


Lan and Cui Advances in Difference Equations  (2015) 2015:11 Page 2 of 15

a monotone iterative technique in the presence of lower and upper solutions, Lan [] dis-
cussed the existence of solutions for a new class of nonlinear first-order implicit impulsive
integro-differential equations in Banach spaces. Under wide monotone conditions and the
noncompactness measure conditions, he also obtained the existence of extremal solutions
and a unique solution between lower and upper solutions. In [], Chen and Li introduced
and studied a class of semilinear impulsive evolution equations in Banach spaces by us-
ing a mixed monotone iterative technique. The presented results improved and extended
some relevant results in ordinary differential equations and partial differential equations.
For related works, see [, , , , ] and the references therein.

On the other hand, the monotone iterative technique, which is one of the approxima-
tion methods for finding solutions of a comparatively large class of impulsive differential
equations, can be applied in practice easily; see, for example, [, , , , –, ].
Further, some nice examples of the monotone iterative technique can be found in [, ].
As a matter of fact, Li and Liu [] pointed out that ‘the monotone iterative technique in
the presence of lower and upper solutions is an important method for seeking solutions
of differential equations in abstract spaces’. Moreover, Li and Liu [] used a monotone
iterative technique in the presence of lower and upper solutions to discuss the existence
of solutions for the initial value problem of the impulsive integro-differential equation of
Volterra type in a Banach space. Under monotone conditions and the noncompactness
measure condition of the nonlinearity function f , the authors also obtained the existence
of extremal solutions and a unique solution between lower and upper solutions. In [],
by using a monotone iterative technique in the presence of lower and upper solutions,
we discussed the existence of solutions for a new system of nonlinear mixed type implicit
impulsive integro-differential equations in Banach spaces. Under some monotonicity con-
ditions and the noncompactness measure conditions, they also obtained the existence of
extremal solutions and a unique solution between lower and upper solutions.

Motivated and inspired by the above works, by using the Arzela-Ascoli theorem, the
Bellman inequality, and the monotone iterative technique in the presence of lower and
upper solutions, we discuss the existence of mild solutions for the following nonlinear
first-order implicit semilinear impulsive differential equation problem in Banach space B:
Find u : J → B such that

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) = Au(t) + f (t, u(t), Tu(t), u′(t)), t �= tk ,

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u(t) = u,

(.)

where J = [t, t + a] ⊂R = (–∞, +∞) is a compact interval, the operator A is the infinites-
imal generator of a positive C-semigroup {G(t), t ≥ t} on B, f ∈ C(J ×B×B×B,B) is a
nonlinear continuous operator, t < t < · · · < tm < t + a < +∞, u ∈ B is a given element,
� ∈ C(D,R+), D = {(t, s) | s, t ∈ J , t ≥ s}, R+ = [, +∞),

Tu(t) =
∫ t

t

�(t, s)u(s) ds,

and for k = , , . . . , m, Ik ∈ C[B,B] is an impulsive function, �u|t=tk denotes the jump of
u(t) at t = tk , i.e., �u|t=tk = u(t+

k ) – u(t–
k ), u(t–

k ) and u(t+
k ) represent the left and right limits
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of u(t) at t = tk , respectively. Further, under wide monotone conditions and the noncom-
pactness measure conditions, we obtain the existence of extremal solutions and a unique
mild solution between lower and upper solutions.

2 Preliminaries
Throughout this paper, let B be an ordered Banach space with the norm ‖ · ‖ and par-
tial order ≤, whose positive cone P = {x ∈ B | x ≥ } is normal with normal constant N ,
and A : dom(A) ⊂ B → B be a closed linear operator and generate a C-semigroup G(t)
(t ≥ t) in B. Let J = [t, t + a], t < t < · · · < tm < t + a < +∞, J = [t, t], J = (t, t], . . . ,
Jk = (tk , tk+], . . . , Jm = (tm, t + a], and

PC(J ,B) =
{

x : J → B | x(t) is continuous at t �= tk , and

left continuous at t = tk , and x
(
t+
k
)

exists, k = , , . . . , m
}

.

Evidently, PC(J ,B) is a Banach space with norm ‖x‖PC = supt∈J x(t). Let J ′ = J \ {t, t,
. . . , tm}, and B∗ be the Banach space generated by dom(A) with norm ‖ · ‖∗ = ‖ · ‖ + ‖A · ‖.
An abstract function x ∈ PC(J ,B) ∩C(J ′,B) ∩C(J ′,B∗) is called a solution of problem (.)
if x(t) satisfies all the equalities of (.).

Let

PC(J ,B) =
{

x ∈ PC(J ,B) ∩ C(J ′,B
) ∩ C

(
J ′,B∗

) | x′(t+
k
)
, x′(t–

k
)

exist, k = , , . . . , m
}

,

where x′(t+
k ) and x′(t–

k ) represent the right and left derivatives of x(t) at t = tk , respectively.
For x ∈ PC(J ,B), by virtue of the mean value theorem

x(tk) – x(tk – τ ) ∈ τco
{

x′(t) : tk – τ < t < tk
}

(τ > ),

it is easy to see that the left derivative x′
–(tk) exists and

x′
–(tk) = lim

h→+
τ–[x(tk) – x(tk – τ )

]
= x′(t–

k
)
.

In the sequel, x′(tk) is understood as x′
–(tk), then x′ ∈ PC(J ,B). If x ∈ PC(J ,B) ∩ C(J ′,B) ∩

C(J ′,B∗) is a solution of problem (.), then by the continuity of f and the closed linearity
of A, we know x ∈ PC(J ,B). Evidently, PC(J ,B) is a Banach space with norm ‖x‖PC =
max{supt∈J ‖x(t)‖, supt∈J ‖x′(t)‖}.

A mapping F : J → B is differentiable at t ∈ J if there exists a F ′(t) ∈ B such that the
limits

lim
τ→+

F(t + τ ) – F(t)
τ

and lim
τ→+

F(t) – F(t – τ )
τ

exist and are equal to F ′(t). Here the limits are taken inB. At the endpoints of J , we consider
the one-sided derivatives.

By the well-known result [], we know that there exist C >  and σ ∈ R such that
‖G(t)‖ ≤ Ceσ t . Letting

δ := inf
{
σ ∈ B | ∃C > ,

∥
∥G(t)

∥
∥ ≤ Ceσ t},
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then δ is called the increasing index of G(t). It follows from the properties of the C-
semigroup that the C-semigroup G(t) (t ≥ t) is exponentially stable if and only if δ < .

Let C(J ,B) denote the Banach space of all continuous differentiable B-value functions
on interval J with norm ‖x‖C = maxt∈J ‖x′(t)‖. Let α(·) denote the Kuratowski measure
of noncompactness of the bounded set. For the details of the definition and properties
of the measure of noncompactness, see []. For any E ⊂ C(J ,B) and t ∈ J , set E(t) =
{x(t) | x ∈ E} ⊂ B. If E is bounded in C(J ,B), then E(t) is bounded in B, and α(E(t)) ≤ α(E).

Lemma . Assume that the C-semigroup G(t) (t ≥ t) is exponentially stable, i.e., δ < .
Then for any p ∈ PC(J ,B) and vk , u ∈ B, k = , , . . . , m, the initial value problem of linear
impulsive evolution equation in B

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) = Au(t) + p(t), t ∈ J ′,

�u|t=tk = vk , k = , , . . . , m,

u(t) = u,

(.)

has a unique mild solution u ∈ PC(J ,B) expressed by

u(t) = G(t – t)u +
∫ t

t

G(t – s)p(s) ds +
∑

t<tk <t
G(t – tk)vk .

Proof It follows from Theorem . of [, Chapter ] and Lemma . in [] that this
conclusion follows directly. �

Lemma . [] If H is a bounded subset of PC(J ,B), the element of H ′ is equicontinuous
at Jk for all k = , , , . . . , m, then

α(H) = max
{

sup
t∈J

α
(
H(t)

)
, sup

t∈J
α
(
H ′(t)

)}
,

where H ′(t) = {x′(t) : x ∈ H}.

Lemma . [] Let E ⊂ C(J ,B) be bounded and equicontinuous. Then α(E(t)) is contin-
uous on J , and

α

({∫

J
x(t) dt

∣
∣
∣ x ∈ E

})

≤
∫

J
α
(
E(t)

)
dt.

Lemma . [, Corollary .(b)] Let E = {xn} ⊂ PC(J ,B) be a bounded and countable set.
Then α(E(t)) is Lebesgue integral on J , and

α

({∫

J
xn(t) dt

})

≤ 
∫

J
α
(
E(t)

)
dt.

3 Existence and uniqueness theorems
In this section, we will prove our main results concerning the mild solutions of the non-
linear first-order implicit impulsive integro-differential equation (.) in Banach spaces.
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Definition . If a function y ∈ PC(J ,B) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

y′(t) ≤ Au(t) + f (t, u(t), Tu(t), u′(t)), t �= tk ,

�y|t=tk ≤ Ik(u(tk)), k = , , . . . , m,

y(t) ≤ u,

(.)

then we call it a lower solution of problem (.); if all the inequalities of (.) are inverse,
then we call it an upper solution of problem (.).

Definition . A C-semigroup G(t) (t ≥ t) in B is said to be positive, if the order in-
equality G(t)x ≥ θ holds for every x ≥ θ , x ∈ B, and t ≥ t.

It is easy to see that for any M ≥ , A – MI also generates a C-semigroup �(t) =
e–M(t)G(t) (t ≥ t) in B. �(t) is a positive C-semigroup if G(t) is a positive C-semigroup
for all t ≥ t.

Now, let us first list the following assumptions for convenience:

(H) Problem (.) has a lower solution y ∈ PC(J ,B) and an upper solution x ∈ PC(J ,B)
with y ≤ x, and there exist constants M ∈ (, ) such that

f (t, u, v, w) – f (t, u, v, w) ≥ –M(u – u)

for all t ∈ J and y(t) ≤ u ≤ u ≤ x(t), Ty(t) ≤ v ≤ v ≤ Tx(t), and y′
(t) ≤ w ≤

w ≤ x′
(t).

(H) Ik(x) is increasing on the order interval [y(t), x(t)] for t ∈ J , k = , , . . . , m.
(H) There exist  < L <  – M such that

α
({

f
(
t, un(t), vn(t), wn(t)

)}) ≤ L
[
α
({

un(t)
})

+ α
({

vn(t)
})

+ α
({

wn(t)
})]

for all t ∈ J , and increasing or decreasing monotonic sequences {un} ⊂ [y(t), x(t)],
{vn} ⊂ [Ty(t), Tx(t)] and {wn} ⊂ [y′

(t), x′
(t)].

In the sequel, we prove the following main results of this paper.

Theorem . Let B be an ordered Banach space, whose positive cone P is normal, A :
dom(A) ⊂ B → B be a closed linear operator, the positive C-semigroup G(t) (t ≥ t) gener-
ated by A be compact in B, f ∈ C(J ×B×B×B,B), and Ik ∈ C(B,B) for k = , , . . . , m. Sup-
pose that the conditions (H) ∼ (H) hold. Then problem (.) has minimal and maximal
mild solutions between [y, x], which can be obtained by a monotone iterative procedure
starting from y and x, respectively.

Proof Let M = supt∈J ‖�(t)‖ and M = supt∈J ‖G′(t)‖. For any u ∈ PC(J ,B), define Fu on
J by the equation

Fu(t) = �(t – t)u +
∫ t

t

�(t – s)
[
f
(
s, u(s), Tu(s), u′(s)

)
+ Mu(s)

]
ds

+
∑

t<tk <t
�(t – tk)Ik

(
u(tk)

)
. (.)
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It is easy to see that F : PC(J ,B) → PC(J ,B) is continuous. By Lemma ., we know
that the mild solution of problem (.) is equivalent to the fixed point of F . Since G(t)
(t ≥ t) is a positive C-semigroup, G() = I ([]) and it follows from assumptions (H)
and (H) that F is increasing in [y, x] and maps any bounded set in [y, x] into a bounded
set.

We first show that y ≤ Fy, Fx ≤ x. Let p(t) = y′
(t) – Ay(t) + My(t), by the definition

of lower solution and (.), we know that p ∈ PC(J ,B) and p(t) ≤ f (t, y(t), Ty(t), y′
(t)) +

My(t) for t ∈ J ′. It follows from Lemma . that

y(t) = �(t – t)y(t) +
∫ t

t

�(t – s)g(s) ds +
∑

t<tk <t
�(t – tk)�y|t=tk

≤ �(t – t)u +
∫ t

t

�(t – s)
[
f
(
t, y(t), Ty(t), y′

(t)
)

+ My(t)
]

ds

+
∑

t<tk <t
�(t – tk)Ik

(
y(tk)

)

= Fy(t),

for all t ∈ J , i.e., y ≤ Fy. Similarly, it can be shown that Fx ≤ x. Combining these facts
and the increasing property of F in [y, x], we see that F maps [y, x] into itself, and
F : [y, x] → [y, x] is a continuously increasing operator.

Secondly, we prove that F : [y, x] → [y, x] is completely continuous. Let

�u(t) =
∫ t

t

�(t – s)
(
f
(
s, u(s), Tu(s), u′(s)

)
+ Mu(s)

)
ds,

	u(t) =
∑

t<tk <t
�(t – tk)Ik

(
u(tk)

)
.

(.)

On the one hand, for all t ∈ J , we show that K(t) = {�u(t) | u ∈ [y, x]} is precompact in B.
In fact, for any ε ∈ (t, t) and u ∈ [y, x], it follows from (.) that

�εu(t) =
∫ t–ε

t

�(t – s)
(
f
(
s, u(s), Tu(s), u′(s)

)
+ Mu(s)

)
ds

= �(ε)
∫ t–ε

t

�(t – ε – s)
(
f
(
s, u(s), Tu(s), u′(s)

)
+ Mu(s)

)
ds. (.)

It follows from the condition (H) that

f
(
t, y(t), Ty(t), y′

(t)
)

+ My(t)

≤ f
(
t, u(t), Tu(t), u′(t)

)
+ Mu(t)

≤ f
(
t, x(t), Tx(t), x′

(t)
)

+ Mx(t). (.)

By the normality of the cone P, now we know that there exists a constant M >  such that

∥
∥f

(
t, u(t), Tu(t), u′(t)

)
+ Mu(t)

∥
∥ ≤ M, ∀u ∈ [y, x].
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From the compactness of �(ε), we have Kε(t) = {�εu(t) | u ∈ [y, x]} is precompact in B.
Since

∥
∥�u(t) – �εu(t)

∥
∥ ≤

∫ t

t–ε

∥
∥�(t – s)

∥
∥ · ∥∥f

(
s, u(s), Tu(s), u′(s)

)
+ Mu(s)

∥
∥ds

≤ MMε,

the set K(t) is totally bounded in B. Moreover, K(t) is precompact in B.
On the other hand, for all t, t ∈ J , from (.)-(.), we have

∥
∥�u(t) – �u(t)

∥
∥ ≤

∫ t

t

(
�(t – s) – �(t – s)

)(∥
∥f

(
s, u(s), Tu(s), u′(s)

)
+ Mu(s)

∥
∥
)

ds

+
∫ t

t

�(t – s)
(∥
∥f

(
s, u(s), Tu(s), u′(s)

)
+ Mu(s)

∥
∥
)

ds

≤ M

∫ t

t

∥
∥�(t – s) – �(t – s)

∥
∥ds + MM(t – t)

≤ M

∫ t+a

t

∥
∥�(t – t + s) – �(s)

∥
∥ds + MM(t – t). (.)

The right side of (.) relies on t – t, but it is independent of u. Since G(t) (t ≥ t) is
compact, �(t) is compact and continuous in the uniform operator topology for all t ≥ t.
Thus, the right side of (.) tends to  as t – t → . Hence, �([y, x]) is an equicontin-
uous function of the cluster in C(J ,B).

Similarly, we can prove the compactness of 	 in (.).
For any t ∈ J , since {Fu(t) | u ∈ [y, x]} = {�(t – t) + �u(t) + 	u(t) | u ∈ [y, x]}, and

Fu(t) = u is precompact in B, we know that F([y, x]) is precompact in C(Jk ,B) by using
the Arzela-Ascoli theorem. Thus, F : [y, x] → [y, x] is completely continuous.

Finally, we show that problem (.) has minimal and maximal mild solutions between
[y, x], which can be obtained by a monotone iterative procedure starting from y and x,
respectively.

It follows from the completely continuity of F that F has minimal and maximal fixed
points u and u in [y, x], and so they are the minimal and maximal mild solutions of
problem (.) in [y, x], respectively.

On the other hand, from the above discussions, we know that F : [y, x] → [y, x] is a
continuously increasing operator. Now, we define two sequences {yn} and {xn} in [y, x]
by the iterative scheme

yn = Fyn–, xn = Fxn–, n = , , . . . . (.)

Then it follows from the monotonicity of F that

y ≤ y ≤ · · · ≤ yn ≤ · · · ≤ xn ≤ · · · ≤ x ≤ x. (.)

We prove that {yn} and {xn} are uniformly convergent in J .
For convenience, let E = {yn | n ∈N} and E = {yn– | n ∈N}. Since E = F(E), by (.) and

the boundedness of E, we easily see that E is equicontinuous in every interval J ′
k , where
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J ′
 = [t, t] and J ′

k = (tk–, tk], k = , , . . . , m. From E = E ∪ {y} and Lemma ., it follows
that α(E(t)) = α(E(t)) and

α(E(t)
)

= max
{
α
(
E(t)

)
,α

(
E′(t)

)}

for all t ∈ J . Letting

φ(t) = α(E(t)
)

= α(E(t)
)
, t ∈ J ,

by Lemma ., we know that φ ∈ PC(J ,R+). Going from J ′
 to J ′

m+ interval by interval, we
show that φ(t) ≡  in J .

In fact, for t ∈ J , there exists a J ′
k such that t ∈ J ′

k . By Lemma ., we have

α
(
T

(
E(t)

))
= α

({∫ t

t

�(t, s)yn–(s) ds
∣
∣
∣ n ∈N

})

≤
k–∑

j=

α

({∫ tj

tj–

�(t, s)yn–(s) ds
∣
∣
∣ n ∈N

})

+ α

({∫ t

tk–

�(t, s)yn–(s) ds
∣
∣
∣ n ∈N

})

≤ �

k–∑

j=

∫ tj

tj–

α
(
E(s)

)
ds + �

∫ t

tk–

α
(
E(s)

)
ds

≤ �

k–∑

j=

∫ tj

tj–

φ(s) ds + �

∫ t

tk–

φ(s) ds

= �

∫ t

t

φ(s) ds,

where � = max{|�(t, s)| : (t, s) ∈ D}. Hence,

∫ t

t

α
(
T

(
E(s)

))
ds ≤ a�

∫ t

t

φ(s) ds. (.)

It follows from (.), Lemma ., assumption (H) and (.) that, for t ∈ J ′
,

α
(
E(t)

)
= α

(
F
(
E(t)

))

= α

({∫ t

t

�(t – s)
(
f
(
s, yn–(s), Tyn–(s), y′

n–(s)
)

+ Myn–(s)
)

ds
∣
∣
∣ n ∈ N

})

≤ 
∫ t

t

�(t – s)α
(((

f
(
s, yn–(s), Tyn–(s), y′

n–(s)
)

+ Myn–(s)
) | n ∈N

))
ds

≤ M

∫ t

t

{
L
[
α
(
E(s)

)
+ α

(
T

(
E(s)

))
+ α

(
E′

(s)
)]

+ Mα
(
E(s)

)}
ds

≤ M

[

(L + M)
∫ t

t

α
(
E(s)

)
ds + L

∫ t

t

α
(
T

(
E(s)

))
ds + L

∫ t

t

α
(
E′

(s)
)

ds
]

≤ M(M + a�L + L)
∫ t

t

φ(s) ds,



Lan and Cui Advances in Difference Equations  (2015) 2015:11 Page 9 of 15

α
(
E′(t)

)
= α

(
(FE)′(t)

)

= α

(
d
dt

{∫ t

t

�(t – s)
(
f
(
s, yn–(s), Tyn–(s), y′

n–(s)
)

+ Myn–(s)
)

ds
∣
∣
∣ n ∈ N

})

= α

({∫ t

t

�′(t – s)f
(
s, yn–(s), Tyn–(s), y′

n–(s)
)

ds

+ Myn–(t) + �()f
(
t, yn–(t), Tyn–(t), y′

n–(t)
) ∣
∣
∣ n ∈N

})

= α

({

–MF
(
yn–(t)

)

+
∫ t

t

G′(t – s)e–M(t–s)f
(
s, yn–(s), Tyn–(s), y′

n–(s)
)

ds

+ Myn–(t) + G()f
(
t, yn–(t), Tyn–(t), y′

n–(t)
) ∣
∣
∣ n ∈N

})

≤ –Mα
(
F
(
E(t)

))

+ α

(∫ t

t

G′(t – s)e–M(t–s)f
(
s, yn–(s), Tyn–(s), y′

n–(s)
)

ds
∣
∣
∣ n ∈N

)

+ Mα
(
E(t)

)
+ α

({
f
(
t, yn–(ts), Tyn–(t), y′

n–(t)
)})

≤ –Mα
(
F
(
E(t)

))

+ 
∫ t

t

G′(t – s)e–M(t–s)α
(
f
(
s, yn–(s), Tyn–(s), y′

n–(s)
) | n ∈N

)
ds

+ Mα
(
E(t)

)
+ α

({
f
(
t, yn–(ts), Tyn–(t), y′

n–(t)
)})

≤ –Mα
(
F
(
E(t)

))
+ Mα

(
E(t)

)
+ ζ

[
α
(
E(t)

)
+ α

(
T(E)(t)

)
+ α

(
E′

(t)
)]

≤ [
a�ζ – M(M + a�ζ + ζ )

]
∫ t

t

φ(s) ds + (ζ + M)α
(
E(t)

)
+ Lα

(
E′

(t)
)

≤ [
a�ζ – M(M + a�ζ + ζ )

]
∫ t

t

φ(s) ds + (M + ζ )α(E(t)
)
,

and so

φ(t) ≤ �

∫ t

t

φ(s) ds + (M + L)φ(t),

i.e.,

φ(t) ≤ 

∫ t

t

φ(s) ds,

where ζ = L( + aM), � = max{(M + a�L + L), a�ζ – M(M + a�ζ + ζ )}, and
 = �/( – M – ζ ). Hence, by the Bellman inequality, we know that φ(t) ≡  in J ′

.
In particular, α(E(t)) = α(E(t)) = φ(t) = , and so α(E(t)) = α(E(t)) = , this means
that E(t) and E(t) are precompact in B. Thus I(E(t)) is precompact in B, and
α(I(E(t))) = .
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Now, for t ∈ J ′
, by (.) and the above argument for J ′

, we have

α
(
E(t)

)
= α

(
E(t)

)
= α

(
F(E)(t)

)

= α

({

�(t – t)u +
∫ t

t

�(t – s)
(
f
(
s, yn–(s), Tyn–(s), y′

n–(s)
)

+ Myn–(s)
)

ds

+ �(t – t)I
(
yn–(t)

) ∣
∣
∣ n ∈N

})

≤ (L + M + a�L)
∫ t

t

φ(s) ds + α
(
I

(
E(t)

))

≤ (M + a�L + L)
∫ t

t

φ(s) ds

= (M + a�L + L)
∫ t

t

φ(s) ds

and

φ(t) ≤ 

∫ t

t

φ(s) ds.

Again by the Bellman inequality, we know that φ(t) ≡  in J ′
, from which we obtain

α(E(t)) =  and α(I(E(t))) = .
Continuing such a process interval by interval up to J ′

m+, we can prove that φ(t) ≡  in
every J ′

k , k = , , . . . , m + .
For any Jk , if we modify the value of yn at t = tk– via yn(tk–) = yn(t+

k–), n ∈ N, then
{yn} ⊂ C(Jk ,B) and it is equicontinuous. Since α({yn(t)}) ≡ , {yn(t)} is precompact in B

for every t ∈ Jk . By the Arzela-Ascoli theorem, we know that {yn} is precompact in C(Jk ,B).
Hence, {yn} has a convergent subsequence in C(Jk ,B). Combining this with the mono-
tonicity (.), we easily prove that {yn} itself is convergent in C(Jk ,B). In particular, {yn(t)}
is uniformly convergent in J ′

k . Consequently, {yn(t)} is uniformly convergent over the whole
of J .

Using a similar argument to that for {yn(t)}, we can prove that {xn(t)} is also uniformly
convergent in J . Hence, {yn(t)} and {xn(t)} are convergent in PC(J ,B). Setting

u = lim
n→∞ yn, u = lim

n→∞ xn in PC(J ,B) (.)

and n → ∞ in (.) and (.), then we have v ≤ u ≤ u ≤ x and

u = Fu, u = Fu. (.)

By the monotonicity of F , it is easy to see that u and u are the minimal and maximal fixed
points of F in [y, x], and therefore they are the minimal and maximal mild solutions of
problem (.) in [y, x], respectively. This completes the proof. �

Remark . In Theorem ., if B is weakly sequentially complete, the condition (H)
holds automatically. In fact, by Theorem . of [], any monotonic and order-bounded
sequence is precompact. Let {xn} and {yn} be two increasing or decreasing sequences
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obeying condition (H), then, by condition (H), {f (t, xn, yn, zn) + Mxn} is a monotonic and
order-bounded sequence. By the property of the measure of noncompactness, we have

α
({

Axn(t) + f (t, xn, yn, zn) + Mxn
})

≤ α
({

Axn(t) + f (t, xn, yn, zn) + Mxn
})

+ Mα
({xn}

)
= .

Hence, condition (H) holds.

From Theorem ., we obtain the following result.

Corollary . Let B be an ordered and weakly sequentially complete Banach space, whose
positive cone P is normal, f ∈ C(J × B × B × B,B), and Ik ∈ C(B,B), k = , , . . . , m. If the
conditions (H) and (H) are satisfied, then problem (.) has minimal and maximal mild
solutions between y and x, which can be obtained by a monotone iterative procedure
starting from y and x, respectively.

Next we discuss the uniqueness of the mild solution to problem (.) in [y, x]. Assume
we replace the assumption (H) by the following assumption.

(H) There exist positive constants Ci (i = , , ) with C <  such that

f (t, u, v, w) – f (t, u, v, w) ≤ C(u – u) + C(v – v) + C(w – w),

∀t ∈ J , y(t) ≤ u ≤ u ≤ x(t), Ty(t) ≤ y ≤ y ≤ Tx(t),

for all t ∈ J and y(t) ≤ u ≤ u ≤ x(t), λTy(t) ≤ v ≤ v ≤ λTx(t) and λy′
(t) ≤ w ≤

w ≤ λx′
(t). Then we have the following unique existence result.

Theorem . Let B be an ordered Banach space, whose positive cone P is normal, f ∈
C(J ×B×B×B,B) and Ik ∈ C(B,B), k = , , . . . , m. If the conditions (H), (H), and (H)
hold, then problem (.) has a unique mild solution between y and x, which can be ob-
tained by a monotone iterative procedure starting from y or x.

Proof We first prove that (H) and (H) imply (H). In fact, for t ∈ J , let {un} ⊂ [y(t), x(t)],
{vn} ⊂ [Ty(t), Tx(t)], and {wn} ⊂ [y′

(t), x′
(t)] be increasing sequences. For m, n ∈N with

m > n, by (H) and (H),

θ ≤ (
f (t, um, vm, wm) – f (t, un, vn, wn)

)
+ M(um – un)

≤ (C + M)(um – un) + C(vm – vn) + C(wm – wn).

By this inequality and the normality of cone P, we have

∥
∥f (t, um, vm, wm) – f (t, un, vn, wn)

∥
∥

≤ N
∥
∥(C + M)(um – un) + C(vm – vn) + C(wm – wn)

∥
∥ + M‖um – un‖

≤ (M + MN + NC)‖um – un‖ + NC‖vm – vn‖ + NC(wm – wn).
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From this inequality and the definition of the measure of noncompactness, it follows that

α
({

f (t, un, vn, wn)
})

≤ (M + MN + NC)α
({un}

)
+ NCα

({vn}
)

+ NCα
({wn}

)

≤ L′[α
({un}

)
+ α

({vn}
)

+ α
({wn}

)]
,

where L′ = max{M + NM + NC, NC, NC}. If {un}, {vn}, and {wn} are decreasing se-
quences, the above inequality is also valid. Hence (H) holds.

Therefore, by Theorem ., problem (.) has a minimal solution u and a maximal solu-
tion u in [y, x]. By the proof of Theorem ., (.), (.), (.), and (.) are valid. Going
from J ′

 to J ′
m+ interval by interval, we show that u(t) ≡ u(t) in every J ′

k , k = , , . . . , m + .
Indeed, for t ∈ J ′

, by (.) and (.) and assumption (H), we have

θ ≤ u(t) – u(t) = Fu(t) – Fu(t)

=
∫ t

t

�(t – s)
[
f
(
s, u(s), Tu(s), u′(s)

)
– f

(
s, u(s), Tu(s), u′(s)

)
+ M

(
u(s) – u(s)

)]
ds

≤
∫ t

t

M
[
(M + C)

(
u(s) – u(s)

)
+ C

(
Tu(s) – Tu(s)

)
+ C

(
u′(s) – u′(s)

)]
ds

≤ M(M + C)
∫ t

t

(
u(s) – u(s)

)
ds

+ MC�

∫ t

t

∫ s

t

(
u(τ ) – u(τ )

)
dτ ds + MC

(
u(t) – u(t)

)

≤ M(M + C + aC�)
∫ t

t

(
u(s) – u(s)

)
ds + MC

(
u(t) – u(t)

)
, (.)

where M = supt∈J ‖�(t)‖. It follows from (.) and the normality of cone P that

∥
∥u(t) – u(t)

∥
∥ ≤ MN(M + C + aC�)

∫ t

t

∥
∥u(s) – u(s)

∥
∥ds + MC

∥
∥u(t) – u(t)

∥
∥,

i.e.,

∥
∥u(t) – u(t)

∥
∥ ≤ MN(M + C + aC�)

 – MC

∫ t

t

∥
∥u(s) – u(s)

∥
∥ds.

Thus, by the Bellman inequality, we obtain u(t) ≡ u(t) in J ′
.

For t ∈ J ′
, since I(u(t)) = I(u(t)), using (.) and by completely the same argument as

above for t ∈ J ′
, we can prove that

∥
∥u(t) – u(t)

∥
∥ ≤ MN(M + C + aC�)

 – MC

∫ t

t

∥
∥u(s) – u(s)

∥
∥ds

=
MN(M + C + aC�)

 – MC

∫ t

t

∥
∥u(s) – u(s)

∥
∥ds.

Again, by the Bellman inequality, we obtain u(t) ≡ u(t) in J ′
.
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Continuing such a process interval by interval up to J ′
m+, we see that u(t) ≡ u(t) over

the whole of J . Hence, u∗ := u = u is the unique mild solution of problem (.) in [y, x],
which can be obtained by the monotone iterative procedure (.) starting from y or x.

�

Remark . () Using the above argument method interval by interval from J ′
 to J ′

m+, we
can also improve the main results in [] and [], and delete some restrictive conditions
there.

() In this study, the equicontinuity of the semigroup G(t) (t ≥ t) generated by A is not
required.

4 Concluding remarks
In this paper, we introduce and study the following nonlinear first-order implicit impulsive
differential equation problem in Banach space B:

Find u : J → B×B×B such that

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) = Au(t) + f (t, u(t), Tu(t), u′(t)), t �= tk ,

�u|t=tk = Ik(u(tk)), k = , , . . . , m,

u(t) = u.

By using a monotone iterative technique in the presence of lower and upper solutions,
the existence of extremal solutions and a unique mild solution between the lower and
upper solutions are obtained under wide monotone conditions and the noncompactness
measure conditions. The results presented in this paper improved and generalized some
known results concerned with the integro-differential equations and classical (abstract)
differential equations.

Moreover, we remark that if the lower solution and the upper solution for problem (.)
do not exist, then we have the following results.

Theorem . Let B be an ordered Banach space, whose positive cone P is normal, A :
dom(A) ⊂ B → B be a closed linear operator and generate a positive C-semigroup G(t)
(t ≥ t) in B, f ∈ C(J × B × B × B,B), and Ik ∈ C(B,B), k = , , . . . , m. Assume that there
exist b > , x ∈ dom(A), x ≥ θ , yk ∈ dom(A), yk ≥ θ , k = , , . . . , m, h ∈ PC(J ,B), and
h(t) ≥ θ such that

f
(
t, x, Tx, x′) ≤ bx + h(t), Ik(x) ≤ yk , x ≥ θ ;

f
(
t, x, Tx, x′) ≥ bx – h(t), Ik(x) ≥ –yk , x ≤ θ .

Then the following results hold:
() If the C-semigroup G(t) (t ≥ t) is compact in B, and the conditions (H) and (H) in

Section  are satisfied, then problem (.) has minimal and maximal mild solutions.
() Problem (.) has minimal and maximal mild solutions when the conditions

(H) ∼ (H) in Section  are satisfied.
() If the positive cone P is regular, and the conditions (H) and (H) in Section  are

satisfied, then problem (.) has minimal and maximal mild solutions.
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() Problem (.) has a unique mild solution when the conditions (H), (H), and (H) in
Section  are satisfied.

Proof Firstly, we consider the following initial value problem of the linear impulsive evo-
lution equation in B:

⎧
⎪⎪⎨

⎪⎪⎩

u′(t) = Au(t) + bu(t) + h(t), t ∈ J ′,

�u|t=tk = yk , k = , , . . . , m,

u(t) = x.

(.)

Since (A + bI) generates a positive C-semigroup �(t) = ebtG(t) (t ≥ ) in B, it follows from
Theorem . in [, Chapter ] and Lemma ., that problem (.) has a unique positive
classical solution û ∈ PC(J , E). Let y = –û, x = û, it is easy to see that y and x are the
lower solution and the upper solution of problem (.), respectively. So, our conclusions
()-() follow from Theorems . and .. �
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