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Abstract
This paper is mainly concerned with the existence, uniqueness and continuous
dependence of mild solutions for fractional neutral functional differential equation
with nonlocal initial conditions and infinite delay. The results are obtained by means
of the classical fixed point theorems combined with theory of resolvent operators for
integral equations.
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1 Introduction
In this paper, we are concerned with the neutral fractional differential equation of the form

CDq(x(t) – g(t, xt)
)

= Ax(t) + f (t, xt), t ∈ (, T], (.)

x(ϑ) +
(
h(xt , xt , . . . , xtm )

)
(ϑ) = φ(ϑ) ∈ Bv, ϑ ≤ , (.)

where CDq is the Caputo fractional derivative of the order  < q ≤ .  < ti < T , i =
, , . . . , m. A is the infinitesimal generator of a C-semigroup of bounded linear opera-
tors, and densely defined on a Banach space (X,‖ · ‖). f , g , h, and φ are the given functions
and satisfy some assumptions. The history xt : (–∞, ] → X, xt(θ ) = x(t + θ ), θ ∈ (–∞, ],
belongs to an abstract phase space Bv which will be specified in Section . Moreover, the
integral equation

x(t) =


�(q)

∫ t



Ax(s)
(t – s)–q ds, t ≥ , (.)

has an associated resolvent operator (S(t))t≥ on X. By a resolvent operator, we mean the
definition as follows.

Definition . [, Definition .] A one parameter family of bounded linear operators
(S(t))t≥ on X is called a resolvent operator for (.) if the following conditions hold:

(a) S(·)x ∈ C([,∞), X) and S()x = x for all x ∈ X ,
(b) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) (the domain of A) and every

t ≥ ,
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(c) for every x ∈ D(A) and t ≥ ,

S(t)x = x +


�(q)

∫ t



AS(s)x
(t – s)–q ds.

To illustrate that our hypothesis on (.) is possible, we give the following example.

Example . We take X = L([,π ];R) and let A be the operator given by Ax = x′′ with
domain D(A) := {x ∈ X : x′′ ∈ X, x() = x(π ) = }. It is well known that A is the infinitesi-
mal generator of an analytic semigroup (T(t))t≥ on X. Furthermore, A has discrete spec-
trum with eigenvalues of the form –n, n ∈ N, and corresponding normalized eigenfunc-
tions given by zn(ξ ) := 

π
sin(nξ ). In addition, {zn : n ∈ N} is an orthogonal basis for X;

T(t)x =
∑∞

n= e–nt〈x, zn〉zn for all x ∈ X and every t > . From these expressions it follows
that (T(t))t≥ is a uniformly bounded compact semigroup, so that R(λ, A) = (λ – A)– is a
compact operator for all λ ∈ ρ(A).

From [, Example ..] we know that the integral equation

x(t) =


�(q)

∫ t



Ax(s)
(t – s)–q ds, t ≥ ,

has an associated analytic resolvent operator (S(t))t≥ on X. It is given by

S(t) =

{


π i
∫
�r,θ

eλt(λq – A)– dλ, t > ;
I, t = ,

where �r,θ denotes a contour consisting of the rays {reiθ : r ≥ } and {re–iθ : r ≥ } for
some θ ∈ ( π

 ,π ). Obviously, there exists a constant SA such that ‖[S ′(t) –S ′(s)]x‖ ≤ SA|t –
s|‖x‖[D(A)] for all t, s ≥ , where ‖ · ‖[D(A)] denote the graph norm.

Recently, fractional differential equations have been investigated extensively. The moti-
vation for those works arises from both the development of the theory of fractional cal-
culus itself and the applications of such constructions in various sciences such as physics,
chemistry, aerodynamics, electrodynamics of the complex medium, and so on. For more
details and examples see [–].

Especially, there are many papers treating the problem of the existence of a mild solu-
tion for abstract semilinear fractional differential equations; see [–]. But, as pointed
out by Hernández et al. in [], some concepts of mild solution are not realistic; see, for
examples, [, , ]. Furthermore, in [], the authors utilized an approach based on the
well-developed theory of resolvent operators for integral equations to deal with the fol-
lowing abstract fractional equations

Dα
(
x(t) + g

(
t, x(t)

))
= Ax(t) + f

(
t, x(t)

)
, t ∈ (, a],

x() = x,

where Dα is the Riemann-Liouville fractional derivative of the order  < α < . For the
resolvent operators, we refer the interested reader to [, –] and the references therein
for more details.
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Nonlocal conditions were initiated by Byszewski [] when he proved the existence and
uniqueness of mild and classical solutions of nonlocal Cauchy problems. As remarked by
Byszewski and Lakshmikantham [], the nonlocal condition can be more useful than the
standard initial condition to describe some physical phenomena. There are many papers
concerned with the nonlocal conditions; see [, , , , ] and the references therein,
for examples.

In addition, Zhou and Jiao in [] discuss a class of fractional neutral evolution equations
with nonlocal conditions

CDq[x(t) – h(t, xt)
]

+ Ax(t) = f (t, xt), t ∈ (, a],

x(ϑ) +
(
g(xt , xt , . . . , xtm )

)
(ϑ) = ϕ(ϑ), ϑ ∈ [–r, ],

where CDq is the Caputo fractional derivative of the order  < q ≤ .  < ti < a, i =
, , . . . , m. –A is the infinitesimal generator of an analytic semigroup on a Banach space E.
By considering an integral equation which is given in terms of probability density and
semigroup, they establish criteria on the existence and uniqueness of mild solutions.

In this paper, we used the theory of resolvent operators coupled with fixed point theo-
rem, to obtain some new results about the global uniqueness and existence of the problem
(.)-(.) in Section . Moreover, in Section , the continuous dependence of the mild so-
lution is also investigated.

2 Preliminaries
In this section, we shall introduce some basic definitions, notations, and lemmas which
are used throughout this paper.

Definition . The fractional (arbitrary) order integral of the function v(t) ∈ L([,∞],R)
of μ ∈R

+ is defined by

Iμv(t) =


�(μ)

∫ t


(t – s)μ–v(s) ds, t > ,

where � is the Euler gamma function.

Definition . The Caputo fractional derivative of order μ >  for a function v(t) given
in the interval [,∞) is defined by

CDμv(t) =


�(n – μ)

∫ t

a
(t – s)n–μ–v(n)(s) ds

provided that the right-hand side is point-wise defined. Here n = [μ] +  and [μ] means
the integral part of the number μ, and � is the Euler gamma function.

More details on fractional derivatives and their properties can be found in [, , ].
Now, let (Z;‖ · ‖Z) and (W ;‖ · ‖W ) be Banach spaces. We denote by L(Z; W ) the space

of bounded linear operators from Z into W endowed with the operator norm denoted by
‖ · ‖L(Z;W ), and we can write simply L(Z) and ‖ · ‖L(Z) when Z = W . The notation [D(A)]
stands for the domain of A endowed with the graph norm ‖x‖[D(A)] = ‖x‖ + ‖Ax‖. In addi-
tion, Br(x; Z) represents the closed ball with center at x and radius r in Z.
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In the sequel, we always assume that the resolvent operator (S(t))t≥ of (.) is analytic
and compact; see [, Chapter ] for details. In addition, ‖S ′(t)x‖ ≤ ϕA(t)‖x‖[D(A)] for all
t ≥  and ‖[S ′(t) – S ′(s)]x‖ ≤ SA|t – s|‖x‖[D(A)] for all t, s ≥ , where ϕA is a function in
L

loc([,∞);R+) and SA is a constant.
Consider the abstract integral equation

x(t) =


�(q)

∫ t



Ax(s)
(t – s)–q ds + w(t), t ∈ [, T], (.)

where w ∈ C([, T]; X). From [, Definition ..], we note the following concept of a mild
solution.

Definition . A function x ∈ C([, T]; X) is called a mild solution of the integral equation
(.) on [, T] provided that

∫ t
 (t – s)q–x(s) ds ∈ D(A) for all t ∈ [, T] and

x(t) =


�(q)
A

∫ t



x(s)
(t – s)–q ds + w(t), t ∈ [, T]. (.)

The next result plays an important part in our development, which follows from [,
Proposition I.., Theorem II.., Corollary II.., Proposition I..], and also can be found
in [, Lemma .].

Lemma . Assume that the resolvent operator (S(t))t≥ of (.) is analytic and compact,
and w ∈ C([, T]; D(A)), then the function x : [, T] → X defined by

x(t) =
∫ t


S ′(t – s)w(s) ds + w(t), t ∈ [, T],

is a mild solution of (.).

Lemma . [, Lemma .] Assume that S(t) is compact for all t > . Then S ′(t) is com-
pact for all t >  and the inclusion map ic : [D(A)] → X is compact.

Next, we present the abstract phase space Bv, which has been used in []. Assume that
v : (–∞, ] → (, +∞) is a continuous function with l =

∫ 
–∞ v(s) ds < +∞. For any a > ,

we define

B =
{
ξ : [–a, ] → X such that ξ (t) is bounded and measurable

}
,

and provide the space B with the norm ‖ξ‖[–a,] = supt∈[–a,] |ξ (t)|. Then we define

Bv =
{
ξ : [–∞, ] → X such that, for any c > , ξ |[–c,] ∈ B

and
∫ 

–∞
v(s)‖ξ‖[s,] ds < +∞

}
.

Obviously, the phase space Bv endowed with the norm ‖ξ‖Bv =
∫ 

–∞ v(s)‖ξ‖[s,] ds is a Ba-
nach space and |ξ ()| ≤ l–‖ξ‖Bv . Now we consider the space

BvT =
{
ξ : [–∞, T] → X such that, ξ |[,T] ∈ C

(
[, T], X

) ∩ D(A) and ξ ∈ Bv
}

,
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with the seminorm ‖ · ‖∗ defined by

‖x‖∗ =‖x‖Bv + l‖x‖[,T], x ∈ BvT .

Lemma . [] Assume x ∈ BvT , then for  ≤ t ≤ T , xt ∈ Bv. Moreover,

l
∣∣x(t)

∣∣ ≤ ‖xt‖Bv ≤ ‖x‖Bv + l‖x‖[,T].

We will now introduce the concept of a mild solution of (.)-(.). To this end, note that
if x ∈ BvT is a solution of (.)-(.), we can expect that

⎧
⎪⎨

⎪⎩

x(t) = φ() – (h(xt , xt , . . . , xtm ))() – g(, x) + g(t, xt)
+ 

�(q)
∫ t


f (s,xs)

(t–s)–q ds + 
�(q)

∫ t


Ax(s)
(t–s)–q ds,  < t ≤ T ;

x(ϑ) + (h(xt , xt , . . . , xtm ))(ϑ) = φ(ϑ), ϑ ≤ .

Furthermore, in view of x(t) = x(t), t ≤ , we can give the following definition.

Definition . A function x ∈ BvT is called a mild solution of (.)-(.) provided that
∫ t

 (t – s)q–x(s) ds ∈ D(A) for all t ∈ [, T] and

x(t) =

⎧
⎪⎨

⎪⎩

φ() – (h(xt , xt , . . . , xtm ))() – g(, x) + g(t, xt)
+ 

�(q)
∫ t


f (s,xs)

(t–s)–q ds + 
�(q) A

∫ t


x(s)
(t–s)–q ds,  < t ≤ T ;

φ(t) – (h(xt , xt , . . . , xtm ))(t), t ≤ .
(.)

3 Existence and uniqueness of mild solutions
To simplify our development, in the rest of this work, for a function x ∈ BvT we use the
notations Gx, Fx : [, T] → X given by

Gx(t) = φ() –
(
h(xt , xt , . . . , xtm )

)
() – g(, x) + g(t, xt)

and

Fx(t) =


�(q)

∫ t



f (s, xs)
(t – s)–q ds.

By Lemma ., one sees that

x(t) =

{∫ t
 S ′(t – s)[Gx(s) + Fx(s)] ds + Gx(t) + Fx(t),  < t ≤ T ;

φ(t) – (h(xt , xt , . . . , xtm ))(t), t ≤ ,
(.)

is a mild solution of (.)-(.).
From now on, we denote the set {x : x ∈ BvT ,‖x‖∗ ≤ r} by Br . Then Br , for each r > , is

a bounded, closed, nonempty, and convex subset in X.
Now, we introduce the map � : BvT → BvT by

�x(t) =

{∫ t
 S ′(t – s)[Gx(s) + Fx(s)] ds + Gx(t) + Fx(t),  < t ≤ T ;

φ(t) – (h(xt , xt , . . . , xtm ))(t), t ≤ .
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By Lemma . and the argument above, it is easy to see that the operator � having a fixed
point x∗ ∈ BvT is equivalent to the problem (.)-(.) having a mild solution x∗(t), –∞ <
t ≤ T .

To prove our results, we introduce the following conditions.
(H) f , g ∈ C([, T] ×Bv, X).
(H) There exists a constant Lf , such that, for all x, y ∈ Bv,

∥∥f (t, x) – f (t, y)
∥∥

[D(A)] ≤ Lf ‖x – y‖Bv , t ∈ [, T]. (.)

(H) There exist constants Lf , Lg , Lh, such that, for all x, y ∈ Bv,

∥∥g(t, x) – g(t, y)
∥∥

[D(A)] ≤ Lg‖x – y‖Bv ,
∥∥h(yt , yt , . . . , ytm ) – h(xt , xt , . . . , xtm )

∥∥
[D(A)] ≤ Lh‖xt – yt‖Bv .

(.)

(H) l(Lh + Lg)(‖ϕA‖L + ) + lLh < .
(H)

lim‖yt‖Bv →∞ sup
t∈[,T]

‖f (t, yt)‖[D(A)]

‖yt‖Bv
= λ, lim‖yt‖Bv →∞ sup

t∈[,T]

‖g(t, yt)‖[D(A)]

‖yt‖Bv
= λ.

First, we present a uniqueness result.

Theorem . Suppose that (H)-(H) hold, then system (.)-(.) has a unique mild so-
lution, provided that

∧ = l
[

Lh + Lg +
TqLf

q�(q)

](‖ϕA‖L + 
)

+ lLh < .

Proof For y ∈ BvT , From the assumption on f , g we see that

∫ t



∥∥S ′(t – s)
[
Gy(s) + Fy(s)

]∥∥ds

≤
∫ t


ϕA(t – s)

∥
∥Gy(s) + Fy(s)

∥
∥

[D(A)] ds

≤ ∥∥Gy(s) + Fy(s)
∥∥

C([,T],[D(A)])

∫ t


ϕA(t – s) ds

≤ (∥∥Gy(s)
∥
∥

C([,T],[D(A)]) +
∥
∥Fy(s)

∥
∥

C([,T],[D(A)])

)∫ t


ϕA(t – s) ds

≤
(∥

∥Gy(s)
∥
∥

C([,T],[D(A)]) + ‖f ‖C([,T],[D(A)])
Tq

q�(q)

)
‖ϕA‖L ,

which implies that the function s → S ′(t – s)[Gy(s) + Fy(s)] is integrable on [, t] for all
t ∈ [, T], since f , g ∈ C([, T] ×Bv, X). Then � is well defined.

From the definition of the Gy, Fy, we can see that, for x, y ∈ BvT ,

‖Gx – Gy‖[D(A)] ≤ ∥∥(
h(xt , xt , . . . , xtm )

)
()

–
(
h(yt , yt , . . . , ytm )

)
()

∥∥
[D(A)]
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+
∥∥g(, x) – g(, y)

∥∥
[D(A)]

+
∥
∥g(t, xt) – g(t, yt)

∥
∥

[D(A)]

≤ Lh‖xt – yt‖Bv + Lg‖xt – yt‖Bv

≤ (Lh + Lg)‖xt – yt‖Bv (.)

and

‖Fx – Fy‖[D(A)] ≤ Tq‖f (s, xs) – f (s, ys)‖[D(A)]

q�(q)

≤ TqLf

q�(q)
‖xt – yt‖Bv . (.)

Then, for x, y ∈ BvT , and t ∈ [, T], we have

l
∥
∥�x(t) – �y(t)

∥
∥ ≤ l

{∫ t



∥
∥S ′(t – s)

[
Fx(s) – Fy(s)

]∥∥ds

+
∫ t



∥∥S ′(t – s)
[
Gx(s) – Gy(s)

]∥∥ds

+ ‖Gx – Gy‖[D(A)] + ‖Fx – Fy‖[D(A)]

}

≤ l
{∫ t


ϕA(t – s)

∥
∥Fx(s) – Fy(s)

∥
∥

[D(A)] ds

+
∫ t


ϕA(t – s)

∥∥Gx(s) – Gy(s)
∥∥

[D(A)] ds

+ ‖Gx – Gy‖[D(A)] + ‖Fx – Fy‖[D(A)]

}

≤ l
{[

Lh + Lg +
TqLf

q�(q)

](‖ϕA‖L + 
)}‖xt – yt‖Bv .

On the other hand, for x, y ∈ BvT , and t < , we have

∥∥(�x) – (�y)
∥∥
Bv

≤
∫ 

–∞
v(s)

∥∥h(yt , yt , . . . , ytm ) – h(xt , xt , . . . , xtm )
∥∥

[D(A)] ds

≤ l
∥
∥h(yt , yt , . . . , ytm ) – h(xt , xt , . . . , xtm )

∥
∥

[D(A)]

≤ lLh‖xt – yt‖Bv . (.)

Hence,

‖�x – �y‖∗ ≤ ∧ ‖x – y‖∗,

which implies that � is a contraction and there exists a unique fixed point x∗ ∈ BvT of � .
x∗(t), –∞ < t ≤ T is a mild solution of system (.)-(.). The proof is complete. �

Next, we give some generally existence results. For this purpose, we present a fixed point
theorem due to Krasnoselskii which can be found in [, p.] or Smart [, p.] and
also can be found in [, Theorem K].
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Theorem . Let M be a closed, convex, and nonempty subset of a Banach space (X,‖ · ‖).
Suppose that A and B map M into X such that

(i) x, y ∈ M ⇒ Ax + By ∈ M,
(ii) A is compact and continuous,

(iii) B is a contraction mapping.
Then ∃y ∈ M with y = Ay + By.

In order to apply the fixed point theorem above, we introduce the decomposition � =
� + � + �, where

�y(t) =

{
Fy(t),  ≤ t ≤ T ;
, t ≤ ,

�y(t) =

{∫ t
 S ′(t – s)Fy(s) ds,  ≤ t ≤ T ;

, t ≤ ,

and

�y(t) =

{∫ t
 S ′(t – s)Gy(s) ds + Gy(t),  ≤ t ≤ T ;

φ(t) – (h(yt , yt , . . . , ytm ))(t), t ≤ .

Then we prove the following lemma.

Lemma . Suppose that (H), (H), and (H) hold, then the operator �, � are com-
pletely continuous and � is a contraction mapping on Br , r > .

Proof We divide this proof into three parts.
Part . � is completely continuous.
Step : � is continuous.
Let {yn} be a sequence in BvT such that yn → y as n → ∞. Then for  ≤ t ≤ T we have

∥∥�yn(t) – �y(t)
∥∥ ≤

∥
∥∥
∥


�(q)

∫ t


(t – s)q–[f

(
s, yn

s
)

– f (s, ys)
]

ds
∥
∥∥
∥

≤ 
�(q)

∫ t


(t – s)q–∥∥f

(
s, yn

s
)

– f (s, ys)
∥
∥ds

≤ Tq

q�(q)
∥∥f

(
t, yn

t
)

– f (t, yt)
∥∥

[,T], (.)

which proves that �yn → �y as n → ∞ and � is continuous, by the continuity of f .
Step : � is a compact operator.
Let  < ε < t < T . From the mean value theorem for the Bochner integral (see [,

Lemma ..]), for y ∈ BvT we see that

�y(t) =


�(q)

∫ ε



f (s, ys)
(t – s)–q ds +


�(q)

∫ t

ε

f (s, ys)
(t – s)–q ds

∈ B Mf εq

q�(q)
(θ ; X)

+ (t – ε)co
({

f (s, ys)
(t – s)–q : s ∈ [ε, t], y ∈ Br

})
, (.)
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where Mf = sup{f (t, y) : t ∈ [, T], y ∈ Br} and co(S) denotes the convex hull of a set S. Since
the map ic is compact and f is continuous, we know that Diam of the first part of the right-
hand side of (.) tends to  as ε →  and the second part is compact. This proves that
the set �Br(t) is relatively compact in X for all t ∈ [, T].

On the other hand, for  ≤ t < t ≤ T , we have

∥
∥�y(t) – �y(t)

∥
∥

≤ 
�(q)

∥∥
∥∥

∫ t


(t – s)q–f (s, ys) ds –

∫ t


(t – s)q–f (s, ys) ds

∥∥
∥∥

≤ 
�(q)

{∥
∥∥
∥

∫ t

t

(t – s)q–f (s, ys) ds
∥
∥∥
∥

+
∫ t



[
(t – s)q– – (t – s)q–]ds

∥∥f (t, yt)
∥∥

[,T]

}

≤ 
q�(q)

(
tq
 – tq


)∥∥f (t, yt)

∥
∥

[,T] (.)

and ‖f (t, yt)‖[,T] < +∞ when y ∈ Br since f ∈ C([, T] × Bv, X). Hence, (.) implies the
set of functions �Br is equicontinuous. This proves that � is a compact operator.

Part . � is completely continuous.
It is easy to show that � is continuous. We will prove that the set �Br(t) is relatively

compact in X for all t ∈ [, T] and the set of functions �Br is equicontinuous on [, T].
Firstly, let  < t ≤ T and ε < min{t, }. Since S ′(t) ∈ C((, T];L(X)), there are numbers

 = s < s < s < · · · < sn < sn+ = t such that |si – si+| < ε for all i = , , , . . . , n, and ‖S ′(s) –
S ′(sj)‖L(X) < ε for each s ∈ [sj, sj+] and every j = , , , . . . , n. Under these conditions, for
y ∈ Br we get

�y(t) =
∫ s


S ′(s)Fy(t – s) ds +

n∑

i=

∫ si+

si

[
S ′(s) – S ′(si)

]
Fy(t – s) ds

+
n∑

i=

S ′(si)
∫ si+

si

Fy(t – s) ds. (.)

Note now that
∥∥∥
∥

∫ s


S ′(s)Fy(t – s) ds

∥∥∥
∥ ≤ ‖ϕA‖L([,ε],R+)

Mf ε
q

q�(q)
,

∥∥
∥∥
∥

n∑

i=

∫ si+

si

[
S ′(s) – S ′(si)

]
Fy(t – s) ds

∥∥
∥∥
∥

≤ ε
Mf Tq+

q(q + )�(q)
,

where Mf is defined as in Part .
From Lemma . and similarly to the proof of Step  in Part , we infer that the set

�Br(t) is relatively compact in X for all t ∈ [, T].
Secondly, let  ≤ τ < τ ≤ T , we have

∥
∥�y(τ) – �y(τ)

∥
∥

≤
∥∥
∥∥

∫ τ


S ′(τ – s)Fy(s) ds –

∫ τ


S ′(τ – s)Fy(s) ds

∥∥
∥∥
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≤
∥∥
∥∥

∫ τ

τ

S ′(τ – s)Fy(s) ds
∥∥
∥∥ +

∥∥
∥∥

∫ τ


S ′(τ – s)Fy(s) – S ′(τ – s)Fy(s) ds

∥∥
∥∥

≤
∥∥
∥∥

∫ τ

τ

S ′(τ – s)Fy(s) ds
∥∥
∥∥ + SA|τ – τ|‖Fy‖[D(A)]

≤ |τ – τ|‖ϕA‖L‖Fy‖[D(A)] + SA|τ – τ|‖Fy‖[D(A)]. (.)

The equicontinuity of �Br is proved. Hence, � is completely continuous.
Part . � is a contraction on Br .
Proceeding as in the proof of Theorem ., we can show that, for x, y ∈ BvT ,

‖�x – �y‖∗

≤ l
[
(Lh + Lg)

(‖ϕA‖L + 
)

+ Lh
]‖x – y‖∗.

This proves � is a contraction on Br , because of (H). �

Theorem . Suppose that (H), (H)-(H) hold, then system (.)-(.) has at least a mild
solution, provided that

l
(

Lh + λ +
Tqλ

q�(q)

)(
 + ‖ϕA‖L

)
+ lLh < .

Proof Obviously, x(t) is a mild solution of (.)-(.) if and only if the operator equation
�x = �x + �x + �x has a solution x ∈ Br .

First, we prove that there exists a sufficiently large constant R, such that �x + �x +
�y ∈ BR, for ∀x, y ∈ BR.

From the condition (H), we know that, for a sufficiently small ε, such that

Mε = l
[(

Lh + ε + λ +
Tq(ε + λ)

q�(q)

)(
 + ‖ϕA‖L

)
+ Lh

]
< ,

there exists a constant R > , for yt ∈ Bv, ‖yt‖Bv > R, and we have

∥∥f (t, yt)
∥∥

[D(A)] ≤ (ε + λ)‖yt‖Bv ,
∥
∥g(t, yt)

∥
∥

[D(A)] ≤ (ε + λ)‖yt‖Bv .

On the other hand, by the continuity of f , g , we know

∥
∥f (t, yt)

∥
∥

[D(A)] ≤ Mf ,
∥
∥g(t, yt)

∥
∥

[D(A)] ≤ Mg , ‖yt‖Bv ≤ R,

where Mf , Mg are constants. Hence,

∥∥f (t, yt)
∥∥

[D(A)] ≤ Mf + (ε + λ)‖yt‖Bv ,
∥∥g(t, yt)

∥∥
[D(A)] ≤ Mg + (ε + λ)‖yt‖Bv , for all yt ∈ Bv.
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Define the function υ ∈ C((–∞, T], X) such that ‖υ‖∗ = . Immediately, for all y ∈ BvT , by
Lemma ., we obtain

‖Gy‖[D(A)] ≤ ∥∥φ() –
(
h(yt , yt , . . . , ytm )

)
()

∥∥
[D(A)]

+
∥∥g(, y)

∥∥
[D(A)] +

∥∥g(t, yt)
∥∥

[D(A)]

≤ Lh‖yt‖Bv + (ε + λ)‖yt‖Bv

+
∥
∥φ()

∥
∥

[D(A)] +
∥
∥(

h(υt ,υt , . . . ,υtm )
)
()

∥
∥

[D(A)] + Mg

≤ (Lh + ε + λ)‖yt‖Bv

+
∥∥φ()

∥∥
[D(A)] +

∥∥(
h(υt ,υt , . . . ,υtm )

)
()

∥∥
[D(A)] + Mg

� (Lh + ε + λ)‖yt‖Bv + MG

and

‖Fy‖[D(A)] ≤ Tq(Mf + (ε + λ)‖yt‖Bv )
q�(q)

� Tq(ε + λ)‖yt‖Bv

q�(q)
+ MF .

In view of Mε < , we can select a sufficiently large constant R > R such that

MεR + l
TqMf

q�(q)
+ l

∥∥φ()
∥∥

[D(A)] + l
∥∥(

h(υt ,υt , . . . ,υtm )
)
()

∥∥
[D(A)]

+ l(MG + MF )
(
 + ‖ϕA‖L

)

< R.

Hence, for y, x ∈ BR, we get

‖�y + �y + �x‖∗

≤ l
(

(Lh + ε + λ)‖xt‖Bv + MG +
Tq(ε + λ)‖yt‖Bv

q�(q)
+ MF

)(
 + ‖ϕA‖L

)

+ lLh‖xt‖Bv + l
∥
∥φ()

∥
∥

[D(A)] + l
∥
∥(

h(υt ,υt , . . . ,υtm )
)
()

∥
∥

[D(A)]

≤ l
[(

Lh + ε + λ +
Tq(ε + λ)

q�(q)

)
(
 + ‖ϕA‖L

)
+ Lh

]
R

+ l
∥
∥φ()

∥
∥

[D(A)] + l
∥
∥(

h(υt ,υt , . . . ,υtm )
)
()

∥
∥

[D(A)]

+ (MG + MF )
(
 + ‖ϕA‖L

)

≤ MεR + l
∥∥φ()

∥∥
[D(A)] + l

∥∥(
h(υt ,υt , . . . ,υtm )

)
()

∥∥
[D(A)]

+ l(MG + MF )
(
 + ‖ϕA‖L

)

< R,

which implies �y + �y + �x ∈ BR.
By Lemma . and Theorem ., the operator � has at least a fixed point y∗ ∈ BR. y∗(t),

–∞ < t ≤ T , is a mild solution of system (.)-(.). The proof is complete. �
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4 Continuous dependence of mild solution
Now, we give the continuous dependence of mild solution of system (.)-(.) on the initial
condition. As a matter of convenience, and in view of the characteristic of A, we have
‖φ – φ‖[D(A)] ≤ Lφ‖φ – φ‖Bv , Lφ is a constant.

Theorem . Suppose that (H)-(H) hold. Then for φ,φ ∈ Bv and the corresponding
mild solutions y, y of the problems (.)-(.), the following inequality holds:

‖y – y‖∗ ≤ ∧φ‖φ – φ‖Bv + ∧‖y – y‖∗, (.)

where ∧ is defined in Theorem . and

∧φ = l
(‖ϕA‖L + 

)
Lφ .

Furthermore if ∧ < , we have

‖y – y‖∗ ≤ ∧φ

 – ∧‖φ – φ‖Bv . (.)

Proof Suppose that φi ∈ Bv (i = , ) are arbitrary functions and that y, y are the corre-
sponding mild solutions of the problem (.)-(.). Let

Gyφi = φi() –
(
h
(
(yi)t , (yi)t , . . . , (yi)tm

))
()

– g
(
, (yi)

)
+ g

(
t, (yi)t

)
, i = , ,

Fyφi =


�(q)

∫ t



f (s, (yi)s)
(t – s)–q ds, i = , .

Then, for  < t ≤ T , we have

y(t) – y(t) =
∫ t


S ′(t – s)

[
Gyφ (s) – Gyφ (s)

]
ds + Gyφ (t) – Gyφ (t)

+
∫ t


S ′(t – s)

[
Fyφ (s) – Fyφ (s)

]
ds

+ Fyφ (t) – Fyφ (t), (.)

for t ≤ ,

y(t) – y(t) = φ(t) –
(
h
(
(y)t , (y)t , . . . , (y)tm

))
(t)

– φ(t) +
(
h
(
(y)t , (y)t , . . . , (y)tm

))
(t). (.)

Analogously to (.) and (.), we have

‖Gyφ – Gyφ‖[D(A)]

≤ ∥∥φ – φ – h
(
(y)t , (y)t , . . . , (y)tm

)

+ h
(
(y)t , (y)t , . . . , (y)tm

)∥∥
[D(A)]
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+
∥∥g

(
, (y)

)
– g

(
, (y)

)∥∥
[D(A)]

+
∥∥g

(
t, (y)t

)
– g

(
t, (y)t

)∥∥
[D(A)]

≤ Lφ‖φ – φ‖Bv + (Lh + Lg)
∥
∥(y)t – (y)t

∥
∥
Bv

, (.)

and

‖Fyφ – Fyφ‖[D(A)] ≤ Lf Tq

q�(q)
∥
∥(y)t – (y)t

∥
∥
Bv

. (.)

From (.), (.), (.), and (.), we get, for  < t ≤ T

l
∥∥y(t) – y(t)

∥∥ ≤ l
[

Lφ‖φ – φ‖Bv + (Lh + Lg)‖y – y‖Bv

+
Lf Tq

q�(q)
∥∥(y)t – (y)t

∥∥
Bv

]
(‖ϕA‖L + 

)
.

Immediately,

l‖y – y‖[,T] ≤ l
(‖ϕA‖L + 

)
Lφ‖φ – φ‖Bv

+ l
(

Lh + Lg +
Lf Tq

q�(q)

)
(‖ϕA‖L + 

)∥∥(y)t – (y)t
∥∥
Bv

. (.)

Similarly to (.), from (.), we have

∥
∥(y) – (y)

∥
∥
Bv

≤ lLφ‖φ – φ‖Bv + lLh
∥
∥(y)t – (y)t

∥
∥
Bv

. (.)

Equations (.) and (.) imply that

‖y – y‖∗

≤ l
(‖ϕA‖L + 

)
Lφ‖φ – φ‖Bv

+
[

lLh + l
(

Lh + Lg +
Lf Tq

q�(q)

)(‖ϕA‖L + 
)]∥

∥(y)t – (y)t
∥
∥
Bv

≤ l
(‖ϕA‖L + 

)
Lφ‖φ – φ‖Bv

+
[

lLh + l
(

Lh + Lg +
Lf Tq

q�(q)

)
(‖ϕA‖L + 

)
]
‖y – y‖∗

≤ ∧φ‖φ – φ‖Bv + ∧‖y – y‖∗.

Therefore, (.) holds. Inequality (.) is a consequence of (.). This completes the
proof. �
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