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Abstract
We consider the existence of solutions for a Neumann boundary value problem for
the fractional p-Laplacian equation. Under certain nonlinear growth conditions of the
nonlinearity, we obtain a new result on the existence of solutions by using the
continuation theorem of coincidence degree theory.
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1 Introduction
The purpose of this paper is to establish the existence of solutions for the following Neu-
mann boundary value problem (NBVP for short) for a fractional p-Laplacian equation:{

Dβ

+φp(Dα
+ x(t)) = g(t, x(t)), t ∈ [, T],

Dα
+ x() = Dα

+ x(T) = ,
(.)

where  < α,β ≤ , Dα
+ is a Caputo fractional derivative, φp(s) = |s|p–s (p > ), T >  is a

given constant and g : [, T] × R → R is continuous. Obviously, φp is invertible and its
inverse operator is φq, where q >  is a constant such that /p + /q = .

The fractional calculus is a generalization of the ordinary differentiation and integra-
tion on an arbitrary order that can be noninteger. Fractional differential equations appear
in a number of fields such as physics, polymer rheology, regular variation in thermody-
namics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of a complex
medium, viscoelasticity, Bode analysis of feedback amplifiers, capacitor theory, electrical
circuits, electro-analytical chemistry, biology, control theory, fitting of experimental data,
etc. (see [–]). In recent years, because of the intensive development of the fractional cal-
culus theory itself and its applications, fractional differential equations have been of great
interest. For example, Agarwal et al. (see []) considered a two-point boundary value prob-
lem at nonresonance, and Bai (see []) considered a m-point boundary value problem at
resonance. For more papers on fractional boundary value problems, see [–] and the
references therein.

In [], by using the coincidence degree theory for Fredholm operators, the authors stud-
ied the existence of solutions for the following NBVP:{

Dβ

+φp(Dα
+ x(t)) = f (t, x(t), Dα

+ x(t)), t ∈ [, ],
Dα

+ x() = Dα
+ x() = .
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Notice that Dβ

+φp(Dα
+ ) is a nonlinear operator, so it is not a Fredholm operator. Hence,

there is a bug in the proof of the main result.

2 Preliminaries
In this section, for convenience of the reader, we will present here some necessary basic
knowledge and definitions as regards the fractional calculus theory, which can be found,
for instance, in [, ].

Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function u : (, +∞) →R is given by

Iα
+ u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

provided that the right-side integral is pointwise defined on (, +∞).

Definition . The Caputo fractional derivative of order α >  of a continuous function
u : (, +∞) →R is given by

Dα
+ u(t) = In–α

+
dnu(t)

dtn

=


�(n – α)

∫ t


(t – s)n–α–u(n)(s) ds,

where n is the smallest integer greater than or equal to α, provided that the right-side
integral is pointwise defined on (, +∞).

Lemma . (see []) Let α > . Assume that u, Dα
+ u ∈ L([, T],R). Then the following

equality holds:

Iα
+ Dα

+ u(t) = u(t) + c + ct + · · · + cn–tn–,

where ci ∈R, i = , , . . . , n – , here n is the smallest integer greater than or equal to α.

Lemma . (see []) For any u, v ≥ , then

φp(u + v) ≤ φp(u) + φp(v), if p < ;

φp(u + v) ≤ p–(φp(u) + φp(v)
)
, if p ≥ .

Now we briefly recall some notations and an abstract existence result, which can be
found in [].

Let X, Y be real Banach spaces, L : dom L ⊂ X → Y be a Fredholm operator with index
zero, and P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L,

X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q.
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It follows that

L|dom L∩Ker P : dom L ∩ Ker P → Im L

is invertible. We denote the inverse by KP .
If � is an open bounded subset of X such that dom L ∩ �̄ 
= ∅, then the map N : X → Y

will be called L-compact on �̄ if QN(�̄) is bounded and KP(I – Q)N : �̄ → X is compact.

Lemma . (see []) Let X and Y be two Banach spaces, L : dom L ⊂ X → Y be a Fred-
holm operator with index zero, � ⊂ X be an open bounded set, and N : �̄ → Y be L-com-
pact on �̄. Suppose that all of the following conditions hold:

() Lx 
= λNx, ∀x ∈ ∂� ∩ dom L, λ ∈ (, );
() QNx 
= , ∀x ∈ ∂� ∩ Ker L;
() deg(JQN ,� ∩ Ker L, ) 
= , where J : Im Q → Ker L is an isomorphism map.

Then the equation Lx = Nx has at least one solution on �̄ ∩ dom L.

3 Main result
In this section, we will give the main result on the existence of solutions for NBVP (.).

Theorem . Let g : [, T] ×R →R be continuous. Assume that

(C) there exists a constant d >  such that

(–)iug(t, u) >  (i = , ),∀t ∈ [, T], |u| > d;

(C) there exist nonnegative functions a, b ∈ C[, T] such that

∣∣g(t, u)
∣∣ ≤ a(t)|u|p– + b(t), ∀t ∈ [, T], u ∈R.

Then NBVP (.) has at least one solution, provided that

γ :=
p–Tβ+αp–α‖a‖

�(β + )(�(α + ))p– < , if p < ;

γ :=
p–Tβ+αp–α‖a‖

�(β + )(�(α + ))p– < , if p ≥ .
(.)

For making use of the continuation theorem to study the existence of solutions for NBVP
(.), we consider the following system:

⎧⎪⎨
⎪⎩

Dα
+ x(t) = φq(x(t)),

Dβ

+ x(t) = g(t, x(t)),
x() = x(T) = .

(.)

Clearly, if x(·) = (x(·), x(·))T is a solution of NBVP (.), then x(·) must be a solution of
NBVP (.). Hence, to prove that NBVP (.) has solutions, it suffices to show that NBVP
(.) has solutions.

In this paper, we take X = {x = (x, x)T|x, x ∈ C[, T]} with the norm ‖x‖ = max{‖x‖,
‖x‖}, where ‖xi‖ = maxt∈[,T] |xi(t)| (i = , ). By means of the linear functional analysis
theory, we can prove X is a Banach space.
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Define the operator L : dom L ⊂ X → X by

Lx =

(
Dα

+ x

Dβ

+ x

)
, (.)

where

dom L =
{

x ∈ X|Dα
+ x, Dβ

+ x ∈ C[, T], x() = x(T) = 
}

.

Let N : X → X be the Nemytskii operator

Nx(t) =

(
φq(x(t))
g(t, x(t))

)
, ∀t ∈ [, T]. (.)

Then NBVP (.) is equivalent to the operator equation as follows:

Lx = Nx, x ∈ dom L.

Next we will give some lemmas which are useful in the proof of Theorem ..

Lemma . Let L be defined by (.), then

Ker L =
{

x ∈ X|x(t) = c ∈R
,∀t ∈ [, T]

}
, (.)

Im L =
{

y ∈ X
∣∣∣y() = ,

∫ T


(T – s)β–y(s) ds = 

}
. (.)

Proof Obviously, from Lemma ., (.) holds.
If y ∈ Im L, then there exists x ∈ dom L such that y = Lx. That is, y(t) = Dα

+ x(t), y(t) =
Dβ

+ x(t). By Lemma ., we have

x(t) = c +


�(β)

∫ t


(t – s)β–y(s) ds, c ∈R.

From the boundary value conditions Dα
+ x() = x() = x(T) = , we obtain

y() = ,
∫ T


(T – s)β–y(s) ds = . (.)

So we get (.).
On the other hand, suppose y ∈ X which satisfies (.). Let x(t) = Iα

+ y(t), x(t) =
Iβ

+ y(t). Clearly x() = x(T) = . Hence x = (x, x)T ∈ dom L and Lx = y. Thus y ∈ Im L.
The proof is completed. �

Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero. The
linear projectors P : X → X and Q : X → X can be defined as

Px(t) = x(), ∀t ∈ [, T],

Qy(t) =

(
y()

β

Tβ

∫ T
 (T – s)β–y(s) ds

)
:=

(
(Qy)(t)
(Qy)(t)

)
, ∀t ∈ [, T].
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Furthermore, the operator KP : Im L → dom L ∩ Ker P can be written by

KPy =

(
Iα

+ y

Iβ

+ y

)
.

Proof For any y ∈ X, we have

Qy(t) = Q

(
y()

(Qy)(t)

)

=

(
y()

(Qy)(t) · β

Tβ

∫ T
 (T – s)β– ds

)
= Qy(t).

Let y∗ = y – Qy, then we get y∗
 () =  and

∫ T


(T – s)β–y∗

(s) ds

=
∫ T


(T – s)β–y(s) ds –

∫ T


(T – s)β–(Qy)(s) ds

=
Tβ

β

(
(Qy)(t) –

(
Qy

)
(t)

)
= .

So y∗ ∈ Im L. Thus X = Im L + Im Q. Since Im L ∩ Im Q = {}, we have X = Im L ⊕ Im Q.
Hence

dim Ker L = dim Im Q = codim Im L = .

This means that L is a Fredholm operator of index zero.
For y ∈ Im L, from the definition of KP , we have

LKPy =

(
Dα

+ Iα
+ y

Dβ

+ Iβ

+ y

)
= y.

On the other hand, for x ∈ dom L∩Ker P, we get x() = x() = . By Lemma ., we obtain

KPLx =

(
x – x()
x – x()

)
= x.

So we know that KP = (Ldom L∩Ker P)–. The proof is completed. �

Lemma . Let N be defined by (.). Assume � ⊂ X is an open bounded subset such that
dom L ∩ �̄ 
= ∅, then N is L-compact on �̄.

Proof By the continuity of φq and g , we find that QN(�̄) and KP(I – Q)N(�̄) are bounded.
Moreover, there exists a constant A >  such that ‖(I – Q)Nx‖ ≤ A, ∀x ∈ �̄, t ∈ [, T].
Hence, in view of the Arzelà-Ascoli theorem, we need only to prove that KP(I – Q)N(�̄) ⊂
X is equicontinuous.
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For  ≤ t < t ≤ T , x ∈ �̄, we have

KP(I – Q)Nx(t) – KP(I – Q)Nx(t)

=

(
Iα

+ ((I – Q)Nx)(t) – Iα
+ ((I – Q)Nx)(t)

Iβ

+ ((I – Q)Nx)(t) – Iβ

+ ((I – Q)Nx)(t)

)
.

From ‖(I – Q)Nx‖ ≤ A, ∀x ∈ �̄, t ∈ [, T], we can see that

∣∣Iα
+

(
(I – Q)Nx

)
(t) – Iα

+
(
(I – Q)Nx

)
(t)

∣∣
=


�(α)

∣∣∣∣
∫ t


(t – s)α–((I – Q)Nx

)
(s) ds

–
∫ t


(t – s)α–((I – Q)Nx

)
(s) ds

∣∣∣∣
≤ A

�(α)

{∫ t



[
(t – s)α– – (t – s)α–]ds +

∫ t

t

(t – s)α– ds
}

=
A

�(α + )
[
tα
 – tα

 + (t – t)α
]
.

Since tα is uniformly continuous on [, T], we can obtain that (KP(I – Q)N(�̄)) ⊂ C[, T]
is equicontinuous. A similar proof can show that (KP(I – Q)N(�̄)) ⊂ C[, T] is also
equicontinuous. Hence, we find that KP(I – Q)N : �̄ → X is compact. The proof is com-
pleted. �

Lemma . Suppose (C), (C) hold, then the set

� =
{

x ∈ dom L|Lx = λNx,λ ∈ (, )
}

is bounded.

Proof For x ∈ �, we have Nx ∈ Im L. Thus, from (.), we obtain

∫ T


(T – s)β–g

(
s, x(s)

)
ds = .

Then, by the integral mean value theorem, there exists a constant ξ ∈ (, T) such that
g(ξ , x(ξ )) = . So, from (C), we get |x(ξ )| ≤ d. By Lemma ., we have

x(t) = x(ξ ) – Iα
+ Dα

+ x(ξ ) + Iα
+ Dα

+ x(t),

which together with

∣∣Iα
+ Dα

+ x(t)
∣∣ =


�(α)

∣∣∣∣
∫ t


(t – s)α–Dα

+ x(s) ds
∣∣∣∣

≤ 
�(α)

∥∥Dα
+ x

∥∥
 · 

α
tα

≤ Tα

�(α + )
∥∥Dα

+ x
∥∥

, ∀t ∈ [, T],
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and |x(ξ )| ≤ d yields

‖x‖ ≤ d +
Tα

�(α + )
∥∥Dα

+ x
∥∥

. (.)

By Lx = λNx, we have

{
Dα

+ x(t) = λφq(x(t)),
Dβ

+ x(t) = λg(t, x(t)).
(.)

From the first equation of (.), we get x(t) = λ–pφp(Dα
+ x(t)). Then, by substituting it to

the second equation of (.), we get

Dβ

+φp
(
Dα

+ x(t)
)

= λpg(t, x) := λpNgx(t).

Thus, from Lemma . and the boundary value condition x() = , we obtain

φp
(
Dα

+ x(t)
)

= λpIβ

+ Ngx(t).

So, from (C), we have

∣∣φp
(
Dα

+ x(t)
)∣∣ ≤ 

�(β)

∫ t


(t – s)β–∣∣g(

s, x(s)
)∣∣ds

≤ 
�(β)

∫ t


(t – s)β–(a(s)

∣∣x(s)
∣∣p– + b(s)

)
ds

≤ Tβ

�(β + )
(‖a‖‖x‖p–

 + ‖b‖
)
, ∀t ∈ [, T],

which together with |φp(Dα
+ x(t))| = |Dα

+ x(t)|p– and (.) yields

∥∥Dα
+ x

∥∥p–
 ≤ Tβ

�(β + )

[
‖b‖ + ‖a‖

(
d +

Tα

�(α + )
∥∥Dα

+ x
∥∥



)p–]
.

If p < , by Lemma ., we get

∥∥Dα
+ x

∥∥p–
 ≤ Tβ

�(β + )

[
‖b‖ + ‖a‖

(
dp– +

(Tα)p–

(�(α + ))p–

∥∥Dα
+ x

∥∥p–


)]

= A +
p–Tβ+αp–α‖a‖

�(β + )(�(α + ))p–

∥∥Dα
+ x

∥∥p–
 ,

where A = Tβ

�(β+) (‖b‖ + dp–‖a‖). Then, from (.), we have

∥∥Dα
+ x

∥∥
 ≤

(
A

 – γ

)q–

:= B.

Thus, from (.), we get

‖x‖ ≤ d +
Tα

�(α + )
B. (.)
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If p ≥ , similar to the above argument, we let A = Tβ

�(β+) (‖b‖ + p–dp–‖a‖), we obtain

‖x‖ ≤ d +
Tα

�(α + )
B, (.)

where B = ( A
–γ

)q–. Hence, combining (.) with (.), we have

‖x‖ ≤ max

{
d +

Tα

�(α + )
B, d +

Tα

�(α + )
B

}
:= B. (.)

From the second equation of (.), Lemma ., and x() = , we have

x(t) = λIβ

+ Ngx(t).

So we have

‖x‖ ≤ Tβ

�(β + )
GB,

where GB = max{|g(t, x)||t ∈ [, T], |x| ≤ B}. Thus, from (.), we obtain

‖x‖ = max
{‖x‖,‖x‖

} ≤ max

{
B,

Tβ

�(β + )
GB

}
:= M.

Hence, � is bounded. The proof is completed. �

Lemma . Suppose (C) holds, then the set

� = {x ∈ Ker L|QNx = }

is bounded.

Proof For x ∈ �, we have x(t) = c, x(t) = c, ∀t ∈ [, T], c, c ∈R, and

φq(c) = , (.)∫ T


(T – s)β–g(s, c) ds = . (.)

From (.), we get c = . From (.) and (C), we get |c| ≤ d. Thus, we have

‖x‖ = max
{|c|, |c|

} ≤ d.

Hence, � is bounded. The proof is completed. �

Lemma . Suppose (C) holds, then the set

� =
{

x ∈ Ker L|μx + ( – μ)JQNx = ,μ ∈ [, ]
}
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is bounded, where J : Im Q → Ker L defined by

J(x, x)T =
(
(–)ix, x

)T

is an isomorphism map.

Proof For x ∈ �, we have x(t) = c, x(t) = c, ∀t ∈ [, T], c, c ∈R, and

μc + (–)i( – μ)
β

Tβ

∫ T


(T – s)β–g(s, c) ds = , (.)

μc + ( – μ)φq(c) = . (.)

From (.), we get c =  because c and φq(c) have the same sign. From (.), if μ = ,
we get |c| ≤ d because of (C). If μ ∈ (, ], we can also get |c| ≤ d. In fact, if |c| > d, in
view of (C), one has

μc
 + ( – μ)

β

Tβ

∫ T


(T – s)β–(–)icg(s, c) ds > ,

which contradicts to (.). So ‖x‖ ≤ d. Hence, � is bounded. The proof is completed.
�

Proof of Theorem . Set

� =
{

x ∈ X|‖x‖ < max{M, d} + 
}

.

Obviously (� ∪ � ∪ �) ⊂ �. It follows from Lemmas . and . that L (defined by
(.)) is a Fredholm operator of index zero and N (defined by (.)) is L-compact on �̄.
Moreover, by Lemmas . and ., the conditions () and () of Lemma . are satisfied.
Hence, it remains to verify the condition () of Lemma .. Define the operator H : �̄ ×
[, ] → X by

H(x,μ) = μx + ( – μ)JQNx.

Then, from Lemma ., we have

H(x,μ) 
= , ∀(x,μ) ∈ (∂� ∩ Ker L) × [, ].

Thus, by the homotopy property of the degree, we have

deg(JQN ,� ∩ Ker L, θ ) = deg
(
H(·, ),� ∩ Ker L, θ

)
= deg

(
H(·, ),� ∩ Ker L, θ

)
= deg(I,� ∩ Ker L, θ ) 
= ,

where θ is the zero element of X. So the condition () of Lemma . is satisfied.
Consequently, by Lemma ., the operator equation Lx = Nx has at least one solution

x(·) = (x(·), x(·))T on �̄ ∩ dom L. Namely, NBVP (.) has at least one solution x(·). The
proof is completed. �
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