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Abstract
This paper concerns second-order nonlinear neutral dynamic equations with
distributed deviating arguments on time scales of the form

(r(t)((y(t) + p(t)y(τ (t)))�)
γ
)
� +

∫ b

a
f (t, y(δ(t,ξ )))�ξ = 0,

where γ > 0 is a quotient of odd positive integers. By using the generalized Riccati
technique and integral averaging techniques, we derive new oscillation criteria for the
above equations, which generalize and improve some existing results in the literature.

Keywords: neutral dynamic equations on time scales; distributed deviating
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1 Introduction
In this paper, we consider second-order nonlinear neutral dynamic equations with dis-
tributed deviating arguments of the following form:

(
r(t)

((
y(t) + p(t)y

(
τ (t)

))�)γ )� +
∫ b

a
f
(
t, y

(
δ(t, ξ )

))
�ξ =  (.)

on a time scale T satisfying infT = t and supT = ∞. Throughout this paper, we assume
the following:

(H) γ >  is a quotient of odd positive integers,  < a < b, τ (t) ∈ Crd(T,T) such that
τ (t) ≤ t and limt→∞ τ (t) = ∞, δ(t, ξ ) ∈ Crd(T× [a, b],T) such that
limt→∞ δ(t, ξ ) = ∞;

(H) r(t) ∈ Crd(T, (,∞)) such that
∫ ∞

t
( 

r(t) )

γ �t = ∞, and p(t) ∈ Crd(T, [, ));

(H) f : T×R→R is a continuous function such that uf (t, u) >  for all u �= , and
there exists a function q(t) ∈ Crd(T, [,∞)) such that |f (t, u)| ≥ q(t)|u|γ .

Oscillation of some second-order nonlinear delay dynamic equations on time scales has
been discussed; see [–] and the references therein. Recently, there has been much re-
search activity concerning the oscillation of second-order nonlinear neutral delay dynamic
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equation

(
r(t)

((
y(t) + p(t)y

(
τ (t)

))�)γ )� + f
(
t, y

(
δ(t)

))
= , t ∈ T.

We refer the reader to [–].
In , Thandapani and Piramanantham [] discussed oscillation of the second-order

nonlinear neutral delay dynamic equation with distributed deviating arguments

(
r(t)

(
x(t) + p(t)x(t – τ )

)�)� +
∫ b

a
q(t, ξ )f

(
x
(
g(t, ξ )

))
�ξ = , t ∈ T,

where g(t, ξ ) is strictly increasing with respect to t and decreasing with respect to ξ , and
f ∈ C(R,R) with uf (u) >  for u �= , f (–u) = –f (u).

In , Candan [] discussed the oscillation of Eq. (.) for δ(t, ξ ) ≤ t and δ(t, ξ ) > t,
respectively, where γ >  is a quotient of odd positive integers. In [], δ(t, ξ ) is decreasing
with respect to ξ ,  < p(t) <  is increasing and f ∈ C(T×R,R) with uf (t, u) >  for all u �= .
There exists a positive function q(t) defined on T such that |f (t, u)| ≥ q(t)|u|β , where β > 
is a ratio of odd positive integers. In , Candan [] established other oscillation criteria
of Eq. (.) for δ(t, ξ ) ≤ t, where γ ≥  is a quotient of odd positive integers, β (in []) is
equal to γ , r�(t) > , and δ(t, ξ ) is decreasing with respect to ξ .

The purpose of this paper is to establish new oscillation criteria of Eq. (.) for γ > ,
a quotient of odd positive integers, where functions p(t) and r(t) may not be monotonic,
δ(t, ξ ) may not be decreasing with respect to ξ . Hence, our results will generalize and
improve those in [, ] and others.

By a solution of Eq. (.), we mean a nontrivial real-valued function y(t) such that
y(t) + p(t)y(τ (t)) ∈ C

rd[τ ∗
 (t),∞), r(t)((y(t) + p(t)y(τ (t)))�)γ ∈ Crd[τ ∗

 (t),∞) and satisfies
Eq. (.). Our attention is restricted to those solutions of Eq. (.) that satisfy sup{|y(t)| : t ≥
ty} >  for any ty ≥ t. A solution y(t) of Eq. (.) is said to be oscillatory if it is neither even-
tually positive nor eventually negative. Otherwise, it is called nonoscillatory. The equation
itself is called oscillatory if all its solutions are oscillatory.

This paper is organized as follows. After this introduction, we introduce some basic
lemmas in Section . In Section , we present the main results. In Section , we illustrate
the versatility of our results by two examples.

2 Some preliminaries
In this section, we present several technical lemmas which will be used in the proofs of
the main results. For convenience, we use the notation (x(σ (t)))γ = (xσ (t))γ and set

x(t) := y(t) + p(t)y
(
τ (t)

)
. (.)

Then Eq. (.) becomes

(
r(t)

(
x�(t)

)γ )� +
∫ b

a
f
(
t, y

(
δ(t, ξ )

))
�ξ = .

For t, T ∈ T with t > T , we define

β(t, T) =
∫ t

T



r

γ (s)

�s, and gξ (t, T) =

{
β(δ(t,ξ ),T)

β(t,T) , δ(t, ξ ) < t,
, δ(t, ξ ) ≥ t;

(.)
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Q(t, T) = q(t)
∫ b

a

[
 – p

(
δ(t, ξ )

)]γ gγ

ξ (t, T)�ξ .

For D = {(t, s) ∈ T
 : t ≥ s ≥ }, we define

H =
{

H(t, s) ∈ C
rd

(
D, [,∞)

)
: H(t, t) = , H(t, s) >  and H�

s (t, s) ≥  for t > s ≥ 
}

,

C(t, s) = H�
s (t, s)zσ (s) + H(t, s)z�(s) for H(t, s) ∈H,

where z ∈ C
rd(T, (,∞)) is to be given in Theorems . and ., and z�

+ (t) = max{z�(t), }.
First of all, we give the following lemma.

Lemma . Let conditions (H)-(H) hold. If y(t) is an eventually positive solution
of Eq. (.), then there exists T ∈ T sufficiently large such that x(t) > , x�(t) ≥ ,
(r(t)(x�(t))γ )� ≤ , x(t) ≥ r


γ (t)x�(t)β(t, T), and x(δ(t, ξ )) ≥ gξ (t, T)x(t) for t ∈ [T ,∞)T.

Proof Since y(t) is an eventually positive solution of Eq. (.), then by (H) there exists
T ∈ [t,∞)T such that

δ(t, ξ ) > T , y(t) > , y
(
τ (t)

)
>  and y

(
δ(t, ξ )

)
>  for t ≥ T .

From (.) and (H), we see that x(t) is also positive and satisfies x(t) ≥ y(t). Also by Eq.
(.) and (H), we have that x(t) satisfies

(
r(t)

(
x�(t)

)γ )� ≤ –
∫ b

a
q(t)yγ

(
δ(t, ξ )

)
�ξ ≤  for t ≥ T ,

which implies that r(t)(x�(t))γ is decreasing on [T ,∞)T. So we can get

x(t) = x(T) +
∫ t

T

(r(s)(x�(s))γ )

γ

r

γ (s)

�s

≥ r

γ (t)x�(t)

∫ t

T



r

γ (s)

�s := r

γ (t)x�(t)β(t, T).

We claim that r(t)(x�(t))γ ≥  on [T ,∞)T. Assume not, there is t ∈ [T ,∞)T such that
r(t)(x�(t))γ < . Since r(t)(x�(t))γ ≤ r(t)(x�(t))γ for t ≥ t, we have

x�(t) ≤ r

γ (t)x�(t)

(
/r(t)

)/γ .

Integrating the inequality above from t to t (≥ T ), by (H) we get

x(t) ≤ x(t) + r

γ (t)x�(t)

∫ t

t

(
/r(s)

)/γ
�s → –∞ (t → ∞),

and this contradicts the fact that x(t) >  for all t ≥ T . Thus we have r(t)(x�(t))γ ≥  on
[T ,∞)T and so x�(t) ≥  on [T ,∞)T.

Let t ≥ T be fixed such that δ(t, ξ ) ≥ T . We consider the two cases δ(t, ξ ) < t and
δ(t, ξ ) ≥ t, respectively.
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Case I: δ(t, ξ ) < t. Noting that (r(t)(x�(t))γ )� ≤ , we have

x(t) – x
(
δ(t, ξ )

)
=

∫ t

δ(t,ξ )

(r(s)(x�(s))γ )

γ

r

γ (s)

�s ≤ (
r
(
δ(t, ξ )

)(
x�

(
δ(t, ξ )

))γ ) 
γ

∫ t

δ(t,ξ )

�s

r

γ (s)

.

It follows that

x(t)
x(δ(t, ξ ))

≤  +
(r(δ(t))(x�(δ(t, ξ )))γ )


γ

x(δ(t, ξ ))

∫ t

δ(t,ξ )

�s

r

γ (s)

.

Since δ(t, ξ ) ≥ T for t ∈ [T ,∞),

x
(
δ(t, ξ )

)
>

∫ δ(t,ξ )

T

(r(s)(x�(s))γ )

γ

r

γ (s)

�s ≥ (
r
(
δ(t, ξ )

)(
x�

(
δ(t, ξ )

))γ ) 
γ

∫ δ(t,ξ )

T

�s

r

γ (s)

,

which implies that

(r(δ(t, ξ ))(x�(δ(t, ξ )))γ )

γ

x(δ(t, ξ ))
<

∫ δ(t,ξ )
T

�s

r

γ (s)

.

Thus

x(t)
x(δ(t, ξ ))

<  +

∫ t
δ(t,ξ )

�s

r

γ (s)∫ δ(t,ξ )

T
�s

r

γ (s)

≤
∫ t

T
�s

r

γ (s)∫ δ(t,ξ )

T
�s

r

γ (s)

.

Case II: δ(t, ξ ) ≥ t. Noting that x�(t) ≥  and from the definition of gξ (t, T) defined in
(.), we have

x
(
δ(t, ξ )

) ≥ gξ (t, T)x(t). �

Remark . By x(t) ≥ y(t) on [t,∞)T, x�(t) >  and τ (t) ≤ t, we get

y(t) = x(t) – p(t)x
(
τ (t)

) ≥ (
 – p(t)

)
x(t).

Then from Eq. (.), x(δ(t, ξ )) ≥ gξ (t, T)x(t), (H) and (H), we conclude that

 ≥ (
r(t)

(
x�(t)

)γ )�

+ xγ (t)q(t)
∫ b

a

[
 – p

(
δ(t, ξ )

)]γ gγ

ξ (t, T)�ξ , t ≥ t, ξ ∈ [a, b]. (.)

Lemma . ([]) Let g(u) = Bu – Au
γ +
γ , where A >  and B are constants, γ is a positive

number. Then g attains its maximum value on [,∞) at u∗ = ( Bγ

A(γ +) )γ , and

max
u∈[,∞)

g = g
(
u∗) =

γ γ

(γ + )γ +
Bγ +

Aγ
.
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3 Main results
In this section, we establish our main results.

Theorem . Let γ > . Assume that (H)-(H) hold. Furthermore, for sufficiently large
T ∈ T, one of the following conditions is satisfied:

(a) either
∫ ∞

t Q(s, T)�s = ∞, or

∫ ∞

t
Q(s, T)�s < ∞ and βγ (t, T)

∫ ∞

t
Q(s, T)�s >  for all t > T ,

(b) there exists z ∈ C
rd(T, (,∞)) such that

lim sup
t→∞

∫ t

T

[
z(s)Q(s, T) –

z�
+ (s)

βγ (s, T)

]
�s = ∞,

(c) there exists z ∈ C
rd(T, (,∞)) such that

lim sup
t→∞

∫ t

T

[
z(s)Q(s, T) –


(γ + )γ +

r(s)(z�(s))γ +

zγ (s)

]
�s = ∞,

(d) there exist z ∈ C
rd(T, (,∞)) and H ∈H such that

lim sup
t→∞


H(t, T)

∫ t

T

[
H(t, s)z(s)Q(s, T) –

Cγ +(t, s)
Hγ (t, s)(γ + )γ +zγ (s)

]
�s = ∞.

Then every solution y(t) of Eq. (.) is oscillatory.

Proof Suppose to the contrary that Eq. (.) has a nonoscillatory solution y(t). Without
loss of generality, we may assume that y(t) is eventually positive. Then, by (H)-(H), there
exists T ∈ [t,∞)T such that for t ≥ T , y(τ (t)) > , y(δ(t, ξ )) > , and Lemma . holds.

The rest of the proof is divided into four parts corresponding to conditions (a)-(d), re-
spectively.

Part I: Assume condition (a) holds.
Let φ(t) := r(t)(x�(t))γ . Then φ(t) ≥  and φ�(t) ≤  for t ≥ T , and limt→∞ φ(t) = ζ ≥ .

From (.), we have

φ�(t) + xγ (t)q(t)
∫ b

a

[
 – p

(
δ(t, ξ )

)]γ gγ

ξ (t, T)�ξ ≤ . (.)

Integrating both sides of (.) from t to ∞, we obtain

ζ – φ(t) +
∫ ∞

t
Q(s, T)xγ (s)�s ≤ .

In view of x�(t) ≥ , we have reached a contradiction if
∫ ∞

t Q(s, T)�s = ∞. If
∫ ∞

t Q(s,
T)�s < ∞, then

φ(t) ≥
∫ ∞

t
Q(s, T)xγ (s)�s ≥ xγ (t)

∫ ∞

t
Q(s, T)�s.
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By Lemma ., we obtain

βγ (t, T)
∫ ∞

t
Q(s, T)�s ≤ ,

which is a contradiction to condition (a). Therefore, every solution y(t) of Eq. (.) is os-
cillatory.

Part II: Assume condition (b) holds. Define

w(t) :=
z(t)r(t)(x�(t))γ

xγ (t)
for t ≥ T . (.)

Then w(t) > . From (.), we have

w�(t) =
(
r(t)

(
x�(t)

)γ )�

(
z(t)

xγ (t)

)
+

(
r(t)

(
x�(t)

)γ )σ

(
z(t)

xγ (t)

)�

≤ –z(t)Q(t, T) +
(
r(t)

(
x�(t)

)γ )σ

[
z�(t)xγ (t) – z(t)(xγ (t))�

xγ (t)(xσ (t))γ

]

≤ –z(t)Q(t, T) +
z�

+ (t)(r(t)(x�(t))γ )σ

(xσ (t))γ
–

(r(t)(x�(t))γ )σ z(t)(xγ (t))�

xγ (t)xγ (σ (t))
. (.)

When γ ≥ , using x�(t) >  and the Keller?s chain rule, we get

(
xγ (t)

)� = γ

[∫ 



(
x(t) + hμ(t)x�(t)

)γ – dh
]

x�(t)

≥ γ x�(t)
∫ 



(
( – h)x(t) + hx(t)

)γ – dh = γ xγ –(t)x�(t). (.)

When  < γ < , using x�(t) >  and the Keller?s chain rule, we obtain

(
xγ (t)

)� ≥ γ x�(t)
∫ 



(
( – h)xσ (t) + hxσ (t)

)γ – dh = γ
(
xσ (t)

)γ –x�(t). (.)

Noting that r(t) >  and from (.), (.), and Lemma ., we obtain

(r(t)(x�(t))γ )σ z(t)(xγ (t))�

xγ (t)xγ (σ (t))
≥ .

Since (r(t)(x�(t))γ )� ≤  and t ≤ σ (t), we have

r
(
σ (t)

)
(x�

(
σ (t)

)γ ≤ r(t)
(
x�(t)

)γ . (.)

Hence from (.) and Lemma . and noting that x�(t) ≥ , we have

w�(t) ≤ –z(t)Q(t, T) +
z�

+ (t)
βγ (t, T)

.

Integrating the above inequality from T to t for t ≥ T , we get

∫ t

T

[
z(s)Q(s, T) –

z�
+ (s)

βγ (s, T)

]
�s ≤ w(T) – w(t) < w(T).
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Taking limsup on both sides as t → ∞, we obtain a contradiction to condition (b). There-
fore, every solution y(t) of Eq. (.) is oscillatory.

Part III: Assume condition (c) holds.
When γ ≥ , from (.) and (.) we have

w�(t) ≤ –z(t)Q(t, T) +
z�(t)
zσ (t)

wσ (t) –
(
r(t)

(
x�(t)

)γ )σ z(t)γ xγ –(t)x�(t)
xγ (t)xγ (σ (t))

≤ –z(t)Q(t, T) +
z�(t)
zσ (t)

wσ (t) –
(
r(t)

(
x�(t)

)γ )σ z(t)γ x�(t)
xγ +(σ (t))

. (.)

From (.) we get

–
(
r(t)

(
x�(t)

)γ )σ z(t)γ x�(t)
xγ +(σ (t))

≤ –
(
rσ (t)

) γ +
γ

(
x�

(
σ (t)

))γ + z(t)γ

r

γ (t)xγ +(σ (t))

= –
z(t)γ

z
γ +
γ (σ (t))r


γ (t)

w
γ +
γ

(
σ (t)

)
.

Then

w�(t) ≤ –z(t)Q(t, T) +
z�(t)
zσ (t)

wσ (t) –
z(t)γ

z
γ +
γ (σ (t))r


γ (t)

w
γ +
γ

(
σ (t)

)
. (.)

When  < γ < , by (.) and (.) we have

w�(t) ≤ –z(t)Q(t, T) + wσ (t)
z�(t)
zσ (t)

–
(
r(t)

(
x�(t)

)γ )σ z(t)γ (xσ (t))γ –x�(t)
xγ (t)(xσ (t))γ

.

By (.) we have

–(r(t)(x�(t))γ )σ z(t)γ (xσ (t))γ –x�(t)
xγ (t)(xσ (t))γ

= –
(rσ (t))

γ +
γ ((x�(t))σ )γ +z(t)γ x�(t)

xγ (t)xσ (t)(rσ (t))

γ (x�(t))σ

≤ –
(rσ (t))

γ +
γ ((x�(t))σ )γ +z(t)γ x�(t)

xγ (t)xσ (t)r

γ (t)x�(t)

≤ –
z(t)γ

(zσ (t))
γ +
γ r


γ (t)

(
wσ (t)

) γ +
γ .

It follows that

w�(t) ≤ –z(t)Q(t, T) + wσ (t)
z�(t)
zσ (t)

–
z(t)γ

(zσ (t))
γ +
γ r


γ (t)

(
wσ (t)

) γ +
γ , (.)

which is the same as (.). Let

B =
z�(t)
zσ (t)

, A =
z(t)γ

(zσ (t))
γ +
γ r


γ (t)

, u = wσ (t).



Zhang and Wang Advances in Difference Equations  (2015) 2015:7 Page 8 of 11

Then by Lemma . and (.) we obtain that for all t ≥ T ,

w�(t) ≤ –z(t)Q(t, T) +


(γ + )γ +
r(t)(z�(t))γ +

zγ (t)
.

Integrating the above inequality from T to t for ≥ T , we get

∫ t

T

[
z(s)Q(s, T) –


(γ + )γ +

r(s)(z�(s))γ +

zγ (s)

]
�s ≤ w(T) – w(t) < w(T).

By taking limsup on both sides as t → ∞, we obtain a contradiction to condition (c).
Therefore, every solution y(t) of Eq. (.) is oscillatory.

Part IV: Assume condition (d) holds.
From (.) and (.) we have that for H ∈H∗ and t ≥ T ,

∫ t

T
H(t, s)z(s)Q(s, T)�s ≤ –

∫ t

T
H(t, s)w�(s)�s +

∫ t

T
H(t, s)wσ (s)

z�(s)
zσ (s)

�s

–
∫ t

T
H(t, s)

z(s)γ

(zσ (s))
γ +
γ r


γ (s)

(
wσ (s)

) γ +
γ �s.

By integration by parts we obtain

–
∫ t

T
H(t, s)w�(s)�s = H(t, T)w(T) +

∫ t

T
H�

s (t, s)wσ (s)�s.

It follows that

∫ t

T
H(t, s)z(s)Q(s, T)�s ≤ H(t, T)w(T) +

∫ t

T

[
H�

s (t, s) + H(t, s)
z�(s)
zσ (s)

]
wσ (s)�s

–
∫ t

T

H(t, s)z(s)γ

(zσ (s))
γ +
γ r


γ (s)

(
wσ (s)

) γ +
γ �s.

Let

B = H�
s (t, s) + H(t, s)

z�(s)
zσ (s)

, A =
H(t, s)z(s)γ

(zσ (s))
γ +
γ r


γ (s)

, u = wσ (s),

by Lemma . we obtain that for all t ≥ T ,

∫ t

T
H(t, s)z(s)Q(s, T)�s ≤ H(t, T)w(T)

+
∫ t

T

[H�
s (t, s) + H(t, s) z�(s)

zσ (s) ]γ +r(s)(zσ (s))γ +

Hγ (t, s)(γ + )γ +zγ (s)
�s.

That is,


H(t, T)

∫ t

T

[
H(t, s)z(s)Q(s, T) –

[C(t, s)]γ +r(s)
Hγ (t, s)(γ + )γ +zγ (s)

]
�s ≤ w(T).
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By taking limsup on both sides as t → ∞, we obtain a contradiction to condition (d).
Therefore, every solution y(t) of Eq. (.) is oscillatory.

The proof is complete. �

The results in the next theorem hold only for γ ≥ .

Theorem . Let γ ≥ . Assume that (H)-(H) hold. Furthermore, for sufficiently large
T ∈ T, there exists z ∈ C

rd(T, (,∞)) such that one of the following conditions is satisfied:
(a)

lim sup
t→∞

∫ t

T

[
z(s)Q(s, T) –

(z�(s))r

γ (s)

γ z(s)βγ –(s, T)

]
�s = ∞,

(b) there exists H ∈H such that

lim sup
t→∞


H(t, T)

∫ t

T

[
H(t, s)z(s)Q(s, T) –

C(t, s)r

γ (s)

γ z(s)H(t, s)βγ –(s, T)

]
�s = ∞.

Then every solution y(t) of Eq. (.) is oscillatory.

Proof Suppose to the contrary that Eq. (.) has a nonoscillatory solution y(t). Without
loss of generality, we may assume that y(t) is eventually positive. Then, by (H)-(H) there
exists T ∈ [t,∞)T such that for t ≥ T , y(t) > , y(δ(t, ξ )) > , y(τ (t)) > , and Lemma .
holds.

The rest of the proof is divided into two parts corresponding to conditions (a) and (b),
respectively.

Part I: Assume condition (a) holds.
Define w(t) as in (.). By x�(t) ≥ , σ (t) ≥ t, (.), and (.), we obtain

w�(t) ≤ –z(t)Q(t, T) + wσ (t)
z�(t)
zσ (t)

–
(
r(t)

(
x�(t)

)γ )σ z(t)γ xγ –(t)x�(t)
xγ (t)(xσ (t))γ

≤ –z(t)Q(t, T) + wσ (t)
z�(t)
zσ (t)

–
z(t)γ xγ –(t)x�(t)

(zσ (t))(r(t)(x�(t))γ )σ
(
wσ (t)

).

From (.) and Lemma ., we get

w�(t) ≤ –z(t)Q(t, T) + wσ (t)
z�(t)
zσ (t)

–
z(t)γ

(zσ (t))r(t)
xγ –(t)

(x�(t))γ –

(
wσ (t)

)

≤ –z(t)Q(t, T) + wσ (t)
z�(t)
zσ (t)

–
z(t)γβγ –(t, T)

(zσ (t))r

γ (t)

(
wσ (t)

). (.)

By completing the square for wσ (t) on the right-hand side, we have

w�(t) ≤ –z(t)Q(t, T) +
(z�(t))r


γ (t)

γ z(t)βγ –(t, T)
.

Integrating the above inequality from T to t for t ≥ T , we get

∫ t

T

[
z(s)Q(s, T) –

(z�(s))r

γ (s)

γ z(s)βγ –(s, T)

]
�s ≤ w(T) – w(t) < w(T).
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Taking limsup on both sides as t → ∞, we obtain a contradiction to condition (a). There-
fore, every solution y(t) of Eq. (.) is oscillatory.

Part II: Assume condition (b) holds.
Based on (.), the proof is similar to those of Part IV of Theorem . and Part I of

Theorem ., and hence is omitted.
The proof is complete. �

4 Examples
In this section, we give two examples to illustrate our main results.

Example . Consider the equation

(

t

((
y(t) +


t

y
(
τ (t)

))�) 

)�

+
∫ b

a


(t – ) 


y



(
δ(t, ξ )

)
�ξ = , t ∈ T, (.)

where δ(t, ξ ) ≥ t, τ (t) ≤ t and T = [,∞)T. Here we have
(i) γ = 

 , r(t) = p(t) = 
t , and q(t) = 

(t–)



;

(ii)
∫ ∞

 r– 
γ (s)�s =

∫ ∞
 s�s = ∞, gξ (t, T) = ;

(iii)
∫ b

a [ – p(δ(t, ξ ))]γ gγ

ξ (t, T)�ξ =
∫ b

a [ – 
δ(t,ξ ) ] 

 �ξ ≥ ∫ b
a [ – 

t ] 
 �ξ = [ – 

t ] 
 (b – a).

Hence (H)-(H) hold. With z(t) = , we see that for sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T
Q(s, T)�s ≥ lim sup

t→∞
[b – a]

∫ t

T


(s – ) 



(
 –


s

) 

�s

≥ lim sup
t→∞

[b – a]
∫ t

T


(s – ) 


(s – )





s 


�s

≥ lim sup
t→∞

[b – a]
∫ t

T


s 


�s = ∞.

Hence condition (c) of Theorem . is satisfied.
By Theorem ., every solution y(t) of Eq. (.) is oscillatory.

Example . Consider the equation

(


(t + σ (t))

((
y(t) + Ay

(
τ (t)

))�)
)�

+
∫ b

a
tyγ

(
δ(t – ξ )

)
�ξ = , t ∈ T, (.)

where  > A ≥ , τ (t) ≤ t and T = [,∞)T. Here we have
(i) γ = , r(t) = 

(t+σ (t)) , p(t) = A, δ(t, ξ ) = t – ξ < t, and q(t) = t;

(ii)
∫

(s + σ (s))�s = t + c,
∫ ∞

 r– 
γ (s)�s = ∞,

β(δ(t, ξ ), T) =
∫ t–ξ

T (s + σ (s))�s >
∫ t–ξ

T s�s > T(t – ξ – T), and
β(t, T) =

∫ t
T (s + σ (s))�s = t – T;

(iii)
∫ b

a [ – p(δ(t, ξ ))]γ gγ

ξ (t, T)�ξ > T[–A]

(t–T)

∫ b
a (t – ξ – T)�ξ > T[–A]

(t–T) (t – b – T)(b – a).
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Hence (H)-(H) hold. With z(t) = , we see that for sufficiently large T ∈ T,

lim sup
t→∞

∫ t

T
Q(s, T)�s ≥ lim sup

t→∞
T[ – A](b – a)

∫ t

T
s 

(s – T) (s – b – T)�s

≥ lim sup
t→∞

T[ – A](b – a)
∫ t

T


s

(
 –

b
s

–
T
s

)

�s = ∞.

Hence condition (a) of Theorem . is satisfied.
By Theorem ., every solution y(t) of Eq. (.) is oscillatory.
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