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Abstract
This paper is concerned with oscillations of certain second-order Emden-Fowler
variable delay functional dynamic equations with damping and neutral of the form

[
A(t)ϕ(y�(t))

]�
+ b(t)ϕ(y�(t)) + P(t)F(ϕ(x(δ(t)))) – Q(t)f (ϕ(x(γ (t)))) = 0

on an arbitrary time scale T, where y(t) = x(t) + B(t)x(τ (t)) and ϕ(u) = |u|λ–1u (λ > 0).
By using the generalized Riccati transformation and the inequality technique, some
new oscillation criteria for the equations are established. Our results extend and
improve some known results, but they also unify the oscillation of second-order
Emden-Fowler delay differential equations with damping and second-order
Emden-Fowler delay difference equations with damping. Examples are given to
illustrate the importance of our results.
MSC: 34K11; 34C10; 39A10
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1 Introduction
The theory of time scales, which has recently received a lot of attention, was introduced
in [], in order to unify continuous and discrete analysis. Several authors have expounded
on various aspects of this new theory; see [–]. A time scale T is an arbitrary closed sub-
set of the reals, and the cases when this time scale is equal to the reals or to the integers
represent the classical theories of differential and of difference equations. Many other in-
teresting time scales exist, and they give rise to plenty of applications, among them the
study of discrete dynamic models of populations which are in season (and may follow a
difference scheme with variable step size but are often modeled by continuous dynamic
systems), die out, say in winter, while their eggs are incubating or dormant, and then in sea-
son again, and hatching gives rise to a nonoverlapping population (see []). Not only does
the new theory of so-called ‘dynamic equations’ unify the theories of differential equations
and difference equations, but also it extends these classical cases to cases ‘in between’, e.g.,
to so-called q-difference equations when T = qN = {qt : t ∈ N} for some q >  (which has
important applications in quantum theory) and can be applied on different time scales like
T = hN, T = N = {t : t ∈ N}, T = Tn = {tn =

∑n
k=


k , n ∈ N} and the space of the harmonic

numbers.
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In recent years, there has been much research activity concerning the oscillation and
nonoscillation of solutions of various equations on time scales, and we refer the reader
to the studies in [–]. However, there are few results dealing with the oscillation of the
solutions of second-order delay dynamic equations with damping on time scales [–].
In this article, we study oscillatory behavior of all solutions of second-order Emden-Fowler
variable delay functional dynamic equations with damping and neutral

[
A(t)ϕ

(
y�(t)

)]� + b(t)ϕ
(
y�(t)

)
+ P(t)F

(
ϕ
(
x
(
δ(t)

)))
– Q(t)f

(
ϕ
(
x
(
γ (t)

)))
= ,

t ∈ T, t ≥ t, (.)

where y(t) = x(t) + B(t)x(τ (t)), ϕ(u) = |u|λ–u, λ > , subject to the following hypotheses:

(H) T is a time scale (i.e., a nonempty closed subset of the real numbers R) which is
unbounded above, and t ∈ T with t > , we define a time scale interval of the
form [t, +∞)T by [t, +∞)T = [t, +∞) ∩ T. A(t), B(t), b(t), P(t), Q(t) ∈ Crd(T, R), i.e.,
A(t), B(t), b(t), P(t), Q(t) : T → R are rd-continuous functions. F(u), f (u) : R → R are
continuous functions with uF(u) >  (u �= ) and uf (u) >  (u �= ).

(H) τ (t), δ(t),γ (t) : T → T are delay functions such that τ (t) ≤ t, limt→+∞ τ (t) = +∞;
γ (t) = δ(t) ≤ t, limt→+∞ δ(t) = +∞.

(H)  ≤ B(t) < ; b(t) ≥ ; P(t) ≥ ; Q(t) ≥ ; A(t) > , A�(t) ≥  and –b/A ∈ 	+.
(H) There exist constants L >  and η >  such that F(u)/u ≥ L (u �= ), f (u)/u ≤ η (u �= )

and 	(t) = LP(t) – ηQ(t) > .

By a solution of (.), we mean a nontrivial real-valued function x(t) satisfying (.) for
t ∈ T. We recall that a solution x(t) of (.) is said to be oscillatory on [t, +∞)T if it is
neither eventually positive nor eventually negative; otherwise, the solution is said to be
nonoscillatory. Equation (.) is said to be oscillatory if all of its solutions are oscillatory.
Our attention is restricted to those solutions x(t) of (.) where x(t) is not eventually iden-
tically zero.

Note that if T = R, then σ (t) = t, μ(t) = , x�(t) = x′(t), and (.) becomes second-order
differential equation

[
A(t)ϕ

(
y′(t)

)]′ + b(t)ϕ
(
y′(t)

)
+ P(t)F

(
ϕ
(
x
(
δ(t)

)))
– Q(t)f

(
ϕ
(
x
(
γ (t)

)))
= ,

t ∈ R. (.)

If T = Z, then σ (t) = t + , μ(t) = , x�(t) = �x(t) = x(t + ) – x(t), and (.) becomes second-
order difference equation

�
[
A(t)ϕ

(
�y(t)

)]
+ b(t)ϕ

(
�y(t)

)
+ P(t)F

(
ϕ
(
x
(
δ(t)

)))
– Q(t)f

(
ϕ
(
x
(
γ (t)

)))
= ,

t ∈ Z. (.)

If T = qN = {qt : t ∈ N, q > }, then σ (t) = qt, μ(t) = (q – )t, x�(t) = �qx(t) = x(qt)–x(t)
(q–)t ,

and (.) becomes a second-order q-difference equation

�q
[
A(t)ϕ

(
�qy(t)

)]
+ b(t)ϕ

(
�qy(t)

)
+ P(t)F

(
ϕ
(
x
(
δ(t)

)))
– Q(t)f

(
ϕ
(
x
(
γ (t)

)))
= . (.)
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In (.), if λ = , Q(t) ≡ , then (.) is simplified to the equation

{
A(t)

[
x(t) + B(t)x

(
τ (t)

)]�}� + b(t)
[
x(t) + B(t)x

(
τ (t)

)]
+ P(t)F

(
x
(
δ(t)

))
= ,

t ∈ T, t ≥ t. (.)

If B(t) ≡  and Q(t) ≡  in (.), then (.) is simplified to the equation

[
A(t)

∣∣x�(t)
∣∣λ–x�(t)

]� + b(t)
∣∣x�(t)

∣∣λ–x�(t) + P(t)
∣∣x

(
δ(t)

)∣∣λ–x
(
δ(t)

)
= ,

t ∈ T, t ≥ t. (.)

In (.), if b(t) ≡  and B(t) ≡ , then (.) is simplified to the equation

[
A(t)x�(t)

]� + P(t)F
(
x
(
δ(t)

))
= , t ∈ T, t ≥ t. (.)

In (.), if B(t) ≡ , b(t) ≡ , F(u) = u, δ(t) = t, Q(t) ≡ , and λ is an odd, then (.) is
simplified to the equation

{
A(t)

[
x�(t)

]λ–}� + P(t)
[
x(t)

]λ– = , t ∈ T, t ≥ t. (.)

In (.), if b(t) ≡ , B(t) ≡  and A(t) ≡ , then (.) is simplified to the equation

x��(t) + P(t)F
(
x
(
δ(t)

))
= , t ∈ T, t ≥ t. (.)

In recent years, there has been an increasing interest in studying the oscillatory behav-
ior of first and second-order neutral delay dynamic equations on time scales, see [–].
As a special case of (.), Agarwal et al. [], Sahiner [] considered second-order de-
lay dynamic equation (.), and Saker [] considered second-order half-linear dynamic
equation (.), and established some sufficient conditions for oscillation of (.) and (.).
Erbe et al. [] considered the general nonlinear delay dynamic equation (.), setting out
to obtain some new oscillation criteria which improve the results given in []. So far, os-
cillation of the second-order nonlinear delay dynamic equation with damping (.) has
rarely been discussed. Sun et al. [] extended and improved the results of [–], mean-
while obtaining some oscillatory criteria. On this basis, by using the Riccati transforma-
tion technique and inequalities, Zhang et al. [, , ] studied the oscillatory behavior
of all solutions of (.). Note that the results in [, , ] are based on the condition
δ(T) = T, which can be a restrictive condition and it is not easy to satisfy. For instance,
when T = {, , , , . . .} and letting δ(t) = t – , then δ is a strictly increasing function,
δ(t) ≤ t and limt→+∞ δ(t) = +∞, but δ(T) = {, , , , . . .} �= T, so the condition δ(T) = T
in [, , ] does not hold and the results in [, , ] may not be true.

Hence, it would be interesting to study the oscillation behavior of (.) when δ(T) = T
does not hold. In this paper, we discuss the oscillation of solutions of (.). By using the
generalized Riccati transformation and the inequality technique, we obtain some new os-
cillation criteria for (.), some results of [–, , , , ] are now special examples
of our results. We shall also consider the two cases

∫ +∞

t

[
e–b/A(s, t)

A(s)

]/λ

�s = +∞ (.)
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and

∫ +∞

t

[
e–b/A(s, t)

A(s)

]/λ

�s < +∞. (.)

2 Preliminaries
We shall employ the following lemmas.

Lemma . [] Assume that x(t) is �-differentiable and eventually positive or eventually
negative, then

[
xλ(t)

]� = λ

∫ 



[
hxσ + ( – h)x

]λ–x�(t) dh. (.)

Lemma . [] Assume that
(i) u ∈ C

rd(I, R), where I = [t∗, +∞), t∗ > .
(ii) u(t) > , u�(t) > , u��(t) ≤ , t ≥ t∗.

Then, for every c ∈ (, ), there exists a constant tc ∈ T, tc > t∗ such that u(σ (t)) ≤ σ (t)u(δ(t))
cδ(t)

for all t ≥ tc.

Lemma . [] If g ∈ 	+, i.e., g : T → R is rd-continuous and such that  + μ(t)g(t) >  for
all t ∈ [t, +∞)T, then the initial value problem y�(t) = g(t)y(t), y(t) = y ∈ R has a unique
and positive solution on [t, +∞)T, denoted by eg(t, t). This ‘exponential function’ satisfies
the semigroup property eg(a, b)eg(b, c) = eg(a, c).

Lemma . [] Assume that a and b are nonnegative real numbers, then rabr– – ar ≤
(r – )br for all r > , where the equality holds if and only if a = b.

Lemma . ([], Hölder’s inequality) Let a, b ∈ T and a < b. For rd-continuous functions
f , g : [a, b] → R, we have

∫ b
a |f (u)g(u)|�u ≤ (

∫ b
a |f (u)|p�u)/p(

∫ b
a |g(u)|q�u)/q, where p > 

and 
p + 

q = .

Lemma . Assume (H)-(H) and (.). Let x(t) be an eventually positive solution of (.).
Then there exists t ∈ [t, +∞)T such that

y(t) > , y�(t) > , A(t)ϕ
(
y�(t)

)
> ,

[
A(t)ϕ

(
y�(t)

)]� ≤  and x(t) ≥ [
 – B(t)

]
y(t)

for all t ∈ [t, +∞)T.

Proof Since x(t) is an eventually positive solution of (.), there exists t ∈ [t, +∞)T such
that x(t) > , x(τ (t)) > , x(γ (t)) = x(δ(t)) >  for all t ∈ [t, +∞)T, thus, y(t) > . From (.)
we obtain

[
A(t)ϕ

(
y�(t)

)]� + b(t)ϕ
(
y�(t)

)

≤ –LP(t)
[
x
(
δ(t)

)]λ + ηQ(t)
[
x
(
γ (t)

)]λ

= –
[
LP(t) – ηQ(t)

][
x
(
δ(t)

)]λ = –	(t)
[
x
(
δ(t)

)]λ < , t ∈ [t, +∞)T. (.)
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Thus, by Lemma ., we obtain on [t, +∞)T,

[
A(t)ϕ(y�(t))
e–b/A(t, t)

]�

=
[A(t)ϕ(y�(t))]�e–b/A(t, t) – A(t)ϕ(y�(t))[e–b/A(t, t)]�

e–b/A(t, t)e–b/A(σ (t), t)

=
[A(t)ϕ(y�(t))]� + b(t)ϕ(y�(t))

e–b/A(σ (t), t)
≤ –

	(t)[x(δ(t))]λ

e–b/A(σ (t), t)
< . (.)

Hence, A(t)ϕ(y�(t))
e–b/A(t,t) = A(t)|y�(t)|λ–y�(t)

e–b/A(t,t) is decreasing and, therefore, eventually of one sign,
so (use Lemma .) y�(t) is either eventually positive or eventually negative. We assert
that y�(t) >  for all t ∈ [t, +∞)T. Assume that y�(t) <  eventually; then there exists
t ∈ [t, +∞)T such that y�(t) <  for all t ∈ [t, +∞)T. From Lemma . we obtain

A(t)ϕ(y�(t))
e–b/A(t, t)

≤ A(t)ϕ(y�(t))
e–b/A(t, t)

= –M <  for all t ∈ [t, +∞)T,

where M = – A(t)ϕ(y�(t))
e–b/A(t,t) = A(t)|y�(t)|λ–[–y�(t)]

e–b/A(t,t) > . By the above inequality we obtain
A(t)ϕ(y�(t)) ≤ –Me–b/A(t, t), therefore, it follows that [–y�(t)]λ ≥ Me–b/A(t,t)

A(t) , i.e.,

y�(t) ≤ –M

λ

[
e–b/A(t, t)

A(t)

]/λ

for all t ∈ [t, +∞)T.

Integrating the above inequality from t to t (t ∈ [t, +∞)T) leads to

y(t) ≤ y(t) – M

λ

∫ t

t

[
e–b/A(s, t)

A(s)

]/λ

�s → –∞ as t → +∞,

which contradicts with y(t) > . So y�(t) > , and then A(t)ϕ(y�(t)) > . From (.) we
obtain [A(t)ϕ(y�(t))]� ≤ .

Moreover, in view of x(t) ≤ y(t), we have

y(t) = x(t) + B(t)x
(
τ (t)

) ≤ x(t) + B(t)y
(
τ (t)

) ≤ x(t) + B(t)y(t),

i.e., x(t) ≥ [ – B(t)]y(t). This completes the proof. �

3 Main results
In this section, we use the generalized Riccati transformation and the inequality technique
to obtain some sufficient conditions for oscillation of all solutions of (.), provided the
condition (.) holds. If (.) is not satisfied, i.e., if (.) holds, then we present some
conditions that guarantee that each solution of (.) is either oscillatory or converges to
zero.

For convenience, consider the set D = {(t, s) : t ≥ s ≥ t, t, s ∈ [t, +∞)T}. We say that a
function H = H(t, s) belongs to function class �, denoted by H ∈ �, if H ∈ Crd(D, R), which
satisfies

H(t, t) =  for t ≥ t, H(t, s) >  for t > s ≥ t, t, s ∈ [t, +∞)T

and has a nonpositive continuous �-partial derivative H�
s (t, s) with respect to the second

variable, i.e., H�
s (t, s) ∈ Crd and H�

s (t, s) ≤ .
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Theorem . Assume (H)-(H) and (.). If there exist H ∈ � and a positive and �-
differentiable function φ : T → R such that

lim sup
t→+∞


H(t, t)

∫ t

T

{
cλH(t, s)φ(s)(s) –

[|h(t, s)|φ(σ (s))A(σ (s))]λ+

(λ + )λ+[φ(s)A(s)H(t, s)]λ

}
�s = +∞ (.)

for some constant T ≥ t, where the constant c is defined as in Lemma ., the functions
(s) and h(t, s) are defined as follows:

(s) = 	(s)
[
 – B

(
δ(s)

)]λ

[
δ(s)
σ (s)

]λ

,

h(t, s) =
[
H(t, s)

]�

s +
[
φ�(s) –

φ(s)b(s)
A(σ (s))

]
H(t, s)
φ(σ (s))

.
(.)

Then (.) is oscillatory on [t, +∞)T.

Proof Suppose that (.) has a nonoscillatory solution x(t) on [t, +∞)T. We may assume
without loss of generality that x(t) >  and x(τ (t)) > , x(δ(t)) >  for all t ∈ [t, +∞)T,
t ∈ [t, +∞)T. Then y(t) > . Now, we claim that

y��(t) ≤  and

⎧
⎨

⎩
[(y(t))λ]� ≥ λ(y(t))λ–y�(t), if λ ≥ ,

[(y(t))λ]� ≥ λ[y(σ (t))]λ–y�(t), if  < λ < .
(.)

In fact, if λ ≥ , then, by (.), we get

[(
y(t)

)λ]� ≥ λ

∫ 



[
hy + ( – h)y

]λ–y�(t) dh = λ
(
y(t)

)λ–y�(t),

and then [(y�(t))λ]� ≥ λ(y�(t))λ–y��(t). Hence,

[
A(t)

(
y�(t)

)λ]� = A�(t)
(
y�(t)

)λ + A
(
σ (t)

)[(
y�(t)

)λ]�

≥ A�(t)
(
y�(t)

)λ + λA
(
σ (t)

)(
y�(t)

)λ–y��(t),

in view of Lemma . and A�(t) ≥ , we get y��(t) ≤ .
If  < λ < , then, by (.), we get

[(
y(t)

)λ]� ≥ λ

∫ 



[
hyσ + ( – h)yσ

]λ–y�(t) dh = λ
[
y
(
σ (t)

)]λ–y�(t).

Similarly, we can easily find y��(t) ≤ , and hence this completes the proof of the claim.
By Lemma ., there exists T ∈ [t, +∞)T with T ≥ max{tc, t}, ∀c ∈ (, ), we have

y
(
δ(t)

) ≥ cδ(t)
σ (t)

y
(
σ (t)

) ≥ cδ(t)
σ (t)

y(t) for all t ∈ [T, +∞)T. (.)

Now define the function w(t) by

w(t) = φ(t)
A(t)ϕ(y�(t))

ϕ(y(t))
= φ(t)

A(t)(y�(t))λ

(y(t))λ
on [T, +∞)T. (.)

Then we have w(t) >  (t ∈ [T, +∞)T).
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If λ ≥ , then, by (.) (use (.), Lemma . and [(y(t))λ]� ≥ λ(y(t))λ–y�(t)), we obtain
for t ∈ [T, +∞)T

w�(t) = φ�(t)
A(σ (t))ϕ(y�(σ (t)))

ϕ(y(σ (t)))

+ φ(t)
[A(t)(y�(t))λ]�(y(t))λ – A(t)(y�(t))λ[(y(t))λ]�

(y(t))λ[y(σ (t))]λ

≤ φ�(t)w(σ (t))
φ(σ (t))

– φ(t)
	(t)[x(δ(t))]λ + b(t)ϕ(y�(t))

[y(σ (t))]λ
– φ(t)

A(t)(y�(t))λ[(y(t))λ]�

(y(t))λ[y(σ (t))]λ

≤ φ�(t)w(σ (t))
φ(σ (t))

– φ(t)	(t)
[
 – B

(
δ(t)

)]λ [y(δ(t))]λ

[y(σ (t))]λ

– φ(t)
b(t)[y�(t)]λ

[y(σ (t))]λ
– λφ(t)

A(t)(y�(t))λ+

y(t)[y(σ (t))]λ
. (.)

From y��(t) ≤  and y�(t) > , we get y�(t) ≥ y�(σ (t)) and y(t) ≤ y(σ (t)). In view of the
first formula of (.) and (.), it follows from (.) that

w�(t) ≤ φ�(t)w(σ (t))
φ(σ (t))

– φ(t)	(t)
[
 – B

(
δ(t)

)]λ

[
cδ(t)
σ (t)

]λ

– φ(t)
b(t)[y�(σ (t)]λ

[y(σ (t))]λ
– λφ(t)

A(t)[y�(σ (t))]λ+

[y(σ (t))]λ+

=
[

φ�(t)
φ(σ (t))

–
φ(t)b(t)

φ(σ (t))A(σ (t))

]
w

(
σ (t)

)
– cλφ(t)(t)

–
λφ(t)A(t)[w(σ (t))]

λ+
λ

[φ(σ (t))A(σ (t))]
λ+
λ

for t ∈ [T, +∞)T,

i.e.,

cλφ(t)(t) ≤ –w�(t) +
[
φ�(t) –

φ(t)b(t)
A(σ (t))

]
w(σ (t))
φ(σ (t))

– λφ(t)A(t)
[

w(σ (t))
φ(σ (t))A(σ (t))

] λ+
λ

for t ∈ [T, +∞)T. (.)

If  < λ < , in view of [(y(t))λ]� ≥ λ[y(σ (t))]λ–y�(t), then (.) becomes

w�(t) ≤ φ�(t)w(σ (t))
φ(σ (t))

– φ(t)	(t)
[
 – B

(
δ(t)

)]λ [y(δ(t))]λ

[y(σ (t))]λ

– φ(t)
b(t)[y�(t)]λ

[y(σ (t))]λ
– λφ(t)

A(t)(y�(t))λ+

(y(t))λy(σ (t))
,

similarly, we can get (.). Then from (.), we can obtain

∫ t

T

cλH(t, s)φ(s)(s)�s

≤ –
∫ t

T

H(t, s)w�(s)�s +
∫ t

T

H(t, s)
[
φ�(s) –

φ(s)b(s)
A(σ (s))

]
w(σ (s))
φ(σ (s))

�s



Yang and Qin Advances in Difference Equations  (2015) 2015:97 Page 8 of 16

–
∫ t

T

H(t, s)
λφ(s)A(s)

[φ(σ (s))A(σ (s))]
λ+
λ

[
w

(
σ (s)

)] λ+
λ �s

= –
[
H(t, s)w(s)

]t
T

+
∫ t

T

[
H(t, s)

]�

s w
(
σ (s)

)
�s

+
∫ t

T

H(t, s)
[
φ�(s) –

φ(s)b(s)
A(σ (s))

]
w(σ (s))
φ(σ (s))

�s

–
∫ t

T

H(t, s)
λφ(s)A(s)

[φ(σ (s))A(σ (s))]
λ+
λ

[
w

(
σ (s)

)] λ+
λ �s

≤ H(t, T)w(T) +
∫ t

T

{
[
H(t, s)

]�

s +
[
φ�(s) –

φ(s)b(s)
A(σ (s))

]
H(t, s)
φ(σ (s))

}
w

(
σ (s)

)
�s

–
∫ t

T

H(t, s)
λφ(s)A(s)

[φ(σ (s))A(σ (s))]
λ+
λ

[
w

(
σ (s)

)] λ+
λ �s

= H(t, T)w(T) +
∫ t

T

h(t, s)w
(
σ (s)

)
�s

–
∫ t

T

λφ(s)A(s)H(t, s)

[φ(σ (s))A(σ (s))]
λ+
λ

[
w

(
σ (s)

)] λ+
λ �s. (.)

Now, in Lemma ., we let

r =
λ + 

λ
, a =

[
λφ(s)A(s)H(t, s)

] λ
λ+ w(σ (s))

φ(σ (s))A(σ (s))
,

b =
(

λ

λ + 

)λ[∣∣h(t, s)
∣∣φ

(
σ (s)

)
A

(
σ (s)

)]λ[
λφ(s)A(s)H(t, s)

] –λ
λ+ .

From Lemma ., we then obtain

∣
∣h(t, s)

∣
∣w

(
σ (s)

)
–

λφ(s)A(s)H(t, s)

[φ(σ (s))A(σ (s))] λ+
λ

[
w

(
σ (s)

)] λ+
λ ≤ [|h(t, s)|φ(σ (s))A(σ (s))]λ+

(λ + )λ+[φ(s)A(s)H(t, s)]λ
.

Hence, (.) implies

∫ t

T

cλH(t, s)φ(s)(s)�s ≤ H(t, T)w(T) +
∫ t

T

[|h(t, s)|φ(σ (s))A(σ (s))]λ+

(λ + )λ+[φ(s)A(s)H(t, s)]λ
�s,

and therefore

∫ t

T

{
cλH(t, s)φ(s)(s) –

[|h(t, s)|φ(σ (s))A(σ (s))]λ+

(λ + )λ+[φ(s)A(s)H(t, s)]λ

}
�s

≤ H(t, T)w(T) ≤ H(t, t)w(T). (.)

Thus


H(t, t)

∫ t

T

{
cλH(t, s)φ(s)(s) –

[|h(t, s)|φ(σ (s))A(σ (s))]λ+

(λ + )λ+[φ(s)A(s)H(t, s)]λ

}
�s ≤ w(T),

contradicting (.). This completes the proof. �
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Remark . From Theorem ., we can obtain different conditions for oscillation of all
solutions of (.) with different choices of H(t, s) and φ(t). For example, H(t, s) = (t – s)ω ,
H(t, s) = (ln t+

s+ )ω , or H(t, s) = [
∫ t

s u(t)�t]ω (u(t) > ), etc. Now, let us consider the function
H(t, s) defined by

H(t, s) = (t – s)ω, ω ≥ , t ≥ s ≥ t, t, s ∈ [t, +∞)T.

Then using the same idea as in the proof of Theorem ., we can now obtain the following
result.

Theorem . Assume (H)-(H) and (.). If there exists a positive and �-differentiable
function φ : T → R and ω ≥  such that

lim sup
t→+∞


tω

∫ t

T

(t – s)ω
{

cλφ(s)(s)

–
(λ + )–(λ+)

[φ(s)A(s)]λ

[∣∣
∣∣φ

�(s) –
φ(s)b(s)
A(σ (s))

∣∣
∣∣A

(
σ (s)

)]λ+}
�s = +∞ (.)

for some constant T ≥ t, where constant c is defined as in Lemma ., (s) is defined as
in Theorem ., then (.) is oscillatory on [t, +∞)T.

If (.) does not hold, then we have the following results.

Theorem . Assume (H)-(H) and (.). If there exist functions H ∈ �, ζ(t), ζ(t) ∈
Crd(T, R), and a positive, nondecreasing, differentiable function φ ∈ Crd(T, R+) such that

lim sup
t→+∞


H(t, t)

∫ t

u
H(t, s)φ(s)(s)�s ≥ ζ(u), (.)

lim sup
t→+∞


H(t, t)

∫ t

u

[|h(t, s)|φ(σ (s))A(σ (s))]λ+

[φ(s)A(s)H(t, s)]λ
�s ≤ ζ(u) (.)

for u ≥ T, and

lim inf
t→+∞


H(t, t)

∫ t

T

H(t, s)φ(s)A(s)[ζ(σ (s)) – θζ(σ (s))](+λ)/λ
+

[φ(σ (s))A(σ (s))](λ+)/λ �s = +∞ (.)

for some constant T ≥ t, where [ζ(σ (s)) – θζ(σ (s))]+ = max{[ζ(σ (s)) – θζ(σ (s))], },
θ = c–λ(λ + )–(λ+), the constant c is defined as in Lemma ., the functions (s) and h(t, s)
are defined as in Theorem ., then (.) is oscillatory on [t, +∞)T.

Proof Suppose that (.) has a nonoscillatory solution x(t) on [t, +∞)T. We may assume
without loss of generality that x(t) >  and x(τ (t)) > , x(δ(t)) >  for all t ∈ [t, +∞)T,
t ∈ [t, +∞)T. We proceed as in the proof of Theorem . to obtain (.) and (.). Then
from (.), we have for t ≥ u ≥ T

∫ t

u
cλH(t, s)φ(s)(s)�s –

∫ t

u

[|h(t, s)|φ(σ (s))A(σ (s))]λ+

(λ + )λ+[φ(s)A(s)H(t, s)]λ
�s ≤ H(t, t)w(u),
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thus,

lim sup
t→+∞


H(t, t)

∫ t

u
cλH(t, s)φ(s)(s)�s

≤ w(u) + lim sup
t→+∞

∫ t

u

[|h(t, s)|φ(σ (s))A(σ (s))]λ+

(λ + )λ+[φ(s)A(s)H(t, s)]λ
�s.

Then, in view of (.) and (.), from the above inequality, we have cλζ(u) ≤ w(u) +
ζ(u)

(λ+)λ+ , that is,

ζ(u) – θζ(u) ≤ c–λw(u), u ≥ T ≥ t. (.)

Moreover, from (.), we find that


H(t, t)

∫ t

T

{
λφ(s)A(s)H(t, s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ –
∣∣h(t, s)

∣∣w
(
σ (s)

)
}
�s

≤ w(T) –


H(t, t)

∫ t

T

cλH(t, s)φ(s)(s)�s,

this inequality implies

lim inf
t→+∞


H(t, t)

∫ t

T

{
λφ(s)A(s)H(t, s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ –
∣∣h(t, s)

∣∣w
(
σ (s)

)
}
�s

≤ C, (.)

where C = w(T) – cλζ(T) is a constant. Now, we claim that

lim inf
t→+∞


H(t, t)

∫ t

T

λφ(s)A(s)H(t, s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ �s < +∞. (.)

In fact, if (.) does not hold, then there exists a sequence {Tn}+∞
n= : Tn ∈ [t, +∞)T with

limn→+∞ Tn = +∞ such that limn→+∞ 
H(Tn ,t)

∫ Tn
T

λφ(s)A(s)H(Tn ,s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ �s = +∞, it fol-
lows from (.) that

lim
n→+∞


H(Tn, t)

∫ Tn

T

∣
∣h(Tn, s)

∣
∣w

(
σ (s)

)
�s = +∞. (.)

Thus, for all sufficiently large positive integers n,


H(Tn, t)

∫ Tn

T

λφ(s)A(s)H(Tn, s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ �s

–


H(Tn, t)

∫ Tn

T

∣
∣h(Tn, s)

∣
∣w

(
σ (s)

)
�s < C + .

Therefore, for all sufficiently large positive integers n and ε ∈ (, ), we can easily find

∫ Tn
T

|h(Tn, s)|w(σ (s))�s
∫ Tn

T
λφ(s)A(s)H(Tn,s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ �s
>  – ε > . (.)
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On the other hand, by Lemma ., we obtain

∫ Tn

T

∣
∣h(Tn, s)

∣
∣w

(
σ (s)

)
�s

= λ
–λ
λ+

∫ Tn

T

[
λφ(s)A(s)H(Tn, s)

[φ(σ (s))A(σ (s))](λ+)/λ

] λ
λ+

w
(
σ (s)

) |h(Tn, s)|φ(σ (s))A(σ (s))
[φ(s)A(s)H(Tn, s)]λ/(λ+) �s

≤ λ
–λ
λ+

{∫ Tn

T

λφ(s)A(s)H(Tn, s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ �s
} λ

λ+

×
{∫ Tn

T

[|h(Tn, s)|φ(σ (s))A(σ (s))]λ+

[φ(s)A(s)H(Tn, s)]λ
�s

} 
λ+

.

Further, in view of (.), one can easily find

 <
( – ε)λ

H(Tn, t)

∫ Tn

T

∣
∣h(Tn, s)

∣
∣w

(
σ (s)

)
�s

<
{∫ Tn

T
|h(Tn, s)|w(σ (s))�s}λ+

H(Tn, t){∫ Tn
T

λφ(s)A(s)H(Tn,s)[w(σ (s))](λ+)/λ

[φ(σ (s))A(σ (s))](λ+)/λ �s}λ

≤ λ–λ

H(Tn, t)

∫ Tn

T

[|h(Tn, s)|φ(σ (s))A(σ (s))]λ+

[φ(s)A(s)H(Tn, s)]λ
�s ≤ λ–λζ(T),

contradicting (.). Therefore (.) holds. Now, in view of (.) and (.), it follows
that

lim inf
n→+∞


H(Tn, t)

∫ Tn

T

H(Tn, s)φ(s)A(s)[ζ(σ (s)) – θζ(σ (s))](+λ)/λ
+

[φ(σ (s))A(σ (s))](λ+)/λ �s

≤ lim inf
n→+∞

c–(λ+)

H(Tn, t)

∫ Tn

T

H(Tn, s)φ(s)A(s)[w(σ (s))](+λ)/λ

[φ(σ (s))A(σ (s))](λ+)/λ �s < +∞.

But this contradicts condition (.). The proof is complete. �

Clearly, the following immediate result can be extracted from Theorem ..

Theorem . Assume (H)-(H) and (.). If there exist functions ζ(t), ζ(t) ∈ Crd(T, R)
and a constant ω ≥  such that

lim sup
t→+∞


tω

∫ t

u
(t – s)ω(s)�s ≥ ζ(u), (.)

lim sup
t→+∞


tω

∫ t

u

(t – s)ω

Aλ(s)

[
ωA(σ (s))

t – s
+ b(s)

]λ+

�s ≤ ζ(u) (.)

for u ≥ T, and

lim inf
t→+∞


tω

∫ t

T

(t – s)ωA(s)[ξ(σ (s)) – θξ(σ (s))](λ+)/λ
+

[A(σ (s))](λ+)/λ �s = +∞ (.)
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for some constant T ≥ t, where [ζ(σ (s)) – θζ(σ (s))]+ = max{[ζ(σ (s)) – θζ(σ (s))], },
θ = c–λ(λ + )–(λ+), the constant c is defined as in Lemma ., the function (s) is defined
as in Theorem ., then (.) is oscillatory on [t, +∞)T.

Next, when (.) holds, we give some conditions that guarantee that every solution
of (.) oscillates or converges to zero.

Theorem . Assume (H)-(H), (.); if there exist H ∈ � and a positive and �-
differentiable function φ : T → R such that (.) holds, and

∫ +∞

t

[


A(t)

∫ t

t

e–b/A
(
t,σ (s)

)
ξλ(s)	(s)�s

]/λ

�t = +∞ (.)

for some constant t ≥ t, where ξ (t) =
∫ +∞

t [ e–b/A(s,t)
A(s) ]/λ�s, then (.) is oscillatory on

[t, +∞)T.

Proof Suppose to the contrary that x(t) is a nonoscillatory solution of (.) on [t, +∞)T.
We may assume without loss of generality that x(t) >  and x(τ (t)) > , x(δ(t)) >  for all t ∈
[t, +∞)T, t ∈ [t, +∞)T, and then y(t) > . Analogously, we shall distinguish the following
two cases:

(I) y�(t) >  for t ∈ [t, +∞)T; (II) y�(t) <  for t ∈ [t, +∞)T.

Case (I) The proof when y�(t) is eventually positive is similar to that of the proof of
Theorem . and it hence is omitted.

Case (II) Since y(t) > , y�(t) <  for t ∈ [t, +∞)T and  < x(t) ≤ y(t), in view of the
definition of y(t) and  ≤ B(t) < , we have

lim
t→+∞ x(t) = lim

t→+∞ x
(
τ (t)

)
= lim

t→+∞ x
(
δ(t)

) ≥ 


lim
t→+∞ y(t) >




lim
t→+∞ y(t),

therefore, there exists t ∈ [t, +∞)T such that x(δ(t)) ≥ 
 y(t) for all t ∈ [t, +∞)T.

We proceed as in the proof of Lemma . to find that A(t)|y�(t)|λ–y�(t)
e–b/A(t,t) (t ∈ [t, +∞)T)

is decreasing, and therefore, for all s ≥ t, s, t ∈ [t, +∞)T, we have A(s)|y�(s)|λ–y�(s)
e–b/A(s,t) ≤

A(t)|y�(t)|λ–y�(t)
e–b/A(t,t) , i.e., [–y�(s)]λ ≥ A(t)[–y�(t)]λ e–b/A(s,t)

A(s) , and thus, y�(s) ≤ [A(t)]

λ y�(t) ×

[ e–b/A(s,t)
A(s) ]/λ, it follows that

y(u) – y(t) ≤ [
A(t)

] 
λ y�(t)

∫ u

t

[
e–b/A(s, t)

A(s)

]/λ

�s.

Now, letting u → +∞, then we get (in view of Lemma ., we see that A(t)|y�(t)|λ–y�(t)
(t ∈ [t, +∞)T) is decreasing as well)

y(t) ≥ –
[
A(t)

] 
λ y�(t)

∫ +∞

t

[
e–b/A(s, t)

A(s)

]/λ

�s = –ξ (t)
[
A(t)

] 
λ y�(t)

≥ –ξ (t)
[
A(t)

] 
λ y�(t) = bξ (t),
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where b = [A(t)]/λ[–y�(t)] >  is a constant. Consequently, by (.), we find

–
[
A(t)ϕ

(
y�(t)

)]� ≥ b(t)ϕ
(
y�(t)

)
+ 	(t)

[
x
(
δ(t)

)]λ ≥ b(t)ϕ
(
y�(t)

)
+


λ

	(t)
[
y(t)

]λ

≥ b(t)ϕ
(
y�(t)

)
+

bλ


λ
	(t)ξλ(t). (.)

Define the function U(t) = A(t)ϕ(y�(t)) = A(t)|y�(t)|λ–y�(t) = –A(t)|y�(t)|λ, with (.)
this yields

U�(t) ≤ –
b(t)
A(t)

U(t) –
bλ


λ

	(t)ξλ(t), t ∈ [t, +∞)T. (.)

The inequality in (.) is the assumed inequality of [, Theorem .]. All other assump-
tions of [, Theorem .], e.g., –b/A ∈ 	+ are satisfied as well. Hence the conclusion of [,
Theorem .] holds, i.e.,

U(t) ≤ U(t)e–b/A(t, t) –
bλ


λ

∫ t

t

e–b/A
(
t,σ (s)

)
ξλ(s)	(s)�s

< –
bλ


λ

∫ t

t

e–b/A
(
t,σ (s)

)
ξλ(s)	(s)�s,

for all t ∈ [t, +∞)T, i.e., y�(t) < – b
 [ 

A(t)
∫ t

t
e–b/A(t,σ (s))ξλ(s)	(s)�s]/λ, and thus,

y(u) < y(t) –
b



∫ u

t

[


A(t)

∫ t

t

e–b/A
(
t,σ (s)

)
ξλ(s)	(s)�s

]/λ

�t → –∞ as u → +∞,

which contradicts with y(t) > . This completes the proof. �

Using the same method as in the proof of Theorem ., we can now obtain the following
results.

Theorem . Assume (H)-(H), (.) and (.) hold. If there exists a positive and �-
differentiable function φ : T → R and ω ≥  such that (.) holds, then (.) is oscillatory
on [t, +∞)T.

Theorem . Assume (H)-(H), (.), and (.) hold. If there exist functions H ∈ �,
ζ(t), ζ(t) ∈ Crd(T, R), and a positive, nondecreasing, differentiable function φ ∈ Crd(T, R+)
such that (.)-(.) hold, then (.) is oscillatory on [t, +∞)T.

Theorem . Assume (H)-(H), (.), and (.) hold. If there exist functions ζ(t), ζ(t) ∈
Crd(T, R) and a constant ω ≥  such that (.)-(.) hold, then (.) is oscillatory on
[t, +∞)T.

Remark . Our results in this paper not only extend and improve some known results,
and show some results of [–, , , ] to be special examples of our results, but
also unify the oscillation of the second-order nonlinear delay damped differential equa-
tions (.) and the second-order nonlinear delay damped difference equations (.). The
theorems in this paper are new even for the cases T = R and T = Z.
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4 Examples
In this section, we give several examples to illustrate our results.

Example . Consider second-order delay dynamic equation on time scales:

{
A(t)ϕ

([
x(t) +

(
√


–

t

)
x
(
τ (t)

)]�)}�

+ P(t)ϕ
(
x
(
δ(t)

))
= , t ∈ T, t ≥ t, (.)

here b(t) ≡ , Q(t) ≡ , B(t) = 
 – 

t , F(u) = u. Pick A(t) = t 
 , λ = 

 , τ (t) = δ(t) = t
 , P(t) =


t ( t

t+ ) 
 , T = Z, t = , then (.) becomes a second-order variable delay -difference

equation. We have

	(t) = LP(t) – ηQ(t) =

t

(
t

t + 
√



) 


> ,

∫ t

t

[
e–b/A(s, t)

A(s)

] 
λ

�s =
∫ t


s– 

 �s =
t


 – 






 – 

→ +∞ as t → +∞.

Hence, conditions (H)-(H) and (.) are clearly satisfied. Now, in Theorem ., pick
φ(t) = , ω = . Then for all t ≥ , we can obtain

lim sup
t→+∞


tω

∫ t

T

(t – s)ω
{

cλφ(s)(s) –
(λ + )–(λ+)

[φ(s)A(s)]λ

[∣
∣∣
∣φ

�(s) –
φ(s)b(s)
A(σ (s))

∣
∣∣
∣A

(
σ (s)

)
]λ+}

�s

= lim sup
t→+∞


t

∫ t


(t – s)

{
c





s

(
s

s + 

) 

[

 –
(




–

s

)] 

[

√


] 


– 
}
�s

=
[

c√


] 


lim sup
t→+∞


t

∫ t



(t – s)

s
�s

=
[

c√


] 


lim sup
t→+∞

{


[
log(t) – 

]
+


t

(
t – 

 – 

)
–


t

(t – )
}

= +∞.

Therefore, by Theorem ., (.) is oscillatory.

Example . Consider second-order nonlinear variable delay dynamic equation on time
scales T:

[
t


 x�(t)

]� + t– 
 x�(t) + t– 

 x
(

t


)
= , t ∈ T = Z, t ≥ t := , (.)

here A(t) = t/, B(t) ≡ , b(t) = t–/, P(t) = t–/, Q(t) ≡ , F(u) = u, δ(t) = t/, λ = .
Similarly, it is easy to see that conditions (H)-(H) and (.) are satisfied. Now, take ω = ,
φ(t) = , then we have

lim sup
t→+∞


tω

∫ t

T

(t – s)ω
{

cλφ(s)(s) –
(λ + )–(λ+)

[φ(s)A(s)]λ

[∣
∣∣
∣φ

�(s) –
φ(s)b(s)
A(σ (s))

∣
∣∣
∣A

(
σ (s)

)
]λ+}

�s

= lim sup
t→+∞


t

∫ t


(t – s)

{
c

–

s/ –
–

s/

(
s–/)

}
�s

=



lim sup
t→+∞


t

∫ t


(t – s)

(
c

s/ –


s/

)
�s < +∞,
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which implies that (.) does not hold. Therefore, Theorem . and Theorem . cannot
be applied to (.), and one can easily see that the results in [–, , , ] cannot be
applied in (.).

Next, we will apply Theorem . and it remains to satisfy the conditions (.)-(.).
Since

lim sup
t→+∞


tω

∫ t

u
(t – s)ω(s)�s

= lim sup
t→+∞


t

∫ t

u
(t – s) –

s/ �s =



lim sup
t→+∞


t

∫ t

u

(
ts–/ – ts–/ + s/)�s

=




u/ – 

≥ 
u/ = ξ(u),

lim sup
t→+∞


tω

∫ t

u

(t – s)ω

Aλ(s)

[
ωA(σ (s))

t – s
+ b(s)

]λ+

�s

= lim sup
t→+∞


t

∫ t

u


s/

[
(s)/ + (t – s)s–/]

�s

= lim sup
t→+∞


t

∫ t

u

[



 s


 + 


 ts– 

 – 

 s– 

 + ts– 
 – ts– 

 + s– 

]
�s

=
u–/

 – u–/ ≤ u–/

 – –/ = ξ(u),

we have

ξ
(
σ (s)

)
– θξ

(
σ (s)

)
=


(s)/ – θ

(s)–/

 – –/ =
k

s/ –
k

s/ ,

where k = 
·/ , k = –/

––/ θ . We conclude

lim inf
t→+∞


tω

∫ t

T

(t – s)ωA(s)[ξ(σ (s)) – θξ(σ (s))](λ+)/λ
+

[A(σ (s))](λ+)/λ �s

= lim inf
t→+∞


t

∫ t



(t – s)s/( k
s/ – k

s/ )

[(s)/] �s

=


/ lim inf
t→+∞


t

∫ t


(t – s)

(
k


s/ – 

kk

s/ +
k


s/

)
�s = +∞.

So, (.)-(.) are satisfied as well. Altogether, by Theorem ., we find that (.) is os-
cillatory.

Remark . One can easily see that the recent results cannot be applied in (.) or (.)
and (.), so our results are new ones.
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